Огнестойкость здания как определить: Степень огнестойкости зданий и сооружений: таблица

Содержание

Как определить огнестойкость здания. Степень огнестойкости зданий, требуемые пределы огнестойкости птр строительных конструкций.пожарная опасность строительных материалов Определение степени огнестойкости зданий и сооружений таблица

Степень огнестойкости зданий и сооружений

Устойчивость к пожарам увеличивает шансы уцелеть зданию и сохранить человеческую жизнь. Огнестойкость зависит от материалов, из которых построено здание и предназначение сооружения по отношению к выполняемым функциям. Существуют разные категории степени огнестойкости, которые нумеруют римскими цифрами от одного до пяти.

Высокой устойчивостью к огню наделены производственные и складские сооружения, потому как имеют высокую степень возможности возгорания. Сильно подвержены опасности возгораний торговые и развлекательные центры, где большие шансы загораний и распространений огня по территории. Сейчас степень устойчивости здания к огню определяет основу пожарной безопасности.

СНИП

В основном здания и сооружения имеют противопожарные стены типа I, а точнее, пожарные отсеки. Степень устойчивости к огню определяется по минимальному пределу стойкости к огню материалов также по скорости захвата территории, то есть конструкций и каркасов.

Минимальный порог устойчивости здания к огню равен 25. Следовательно, этому можно использовать незащищённые металлические конструкции. Для всех типов зданий строительные нормы допускают облицовку гипсокартонными материалами, чтобы увеличить огнестойкость.

Обычно степень огнестойкости определяют за типом назначения здания:

  • по категории пожарной или взрывопожарной опасности.
  • пожарный отсек должен находиться в границах площади этажа.
  • Этажность здания.

По сгораемости строительные материалы делятся на такие группы:

  • Негорючие
  • Трудно сгораемые
  • Несгораемые

Устанавливая каркасные конструкции, следует использовать негорючие материалы. Горючие материалы можно использовать для зданий I-IV степени огнестойкости, кроме вестибюлей.

Строительные материалы классифицируют по токсичности и образованию дыма во время горения продуктов.

Алгоритм действий определения огнестойкости для разных типов строений

Жилые здания (дома)

Огнестойкость дома имеет пять степеней, которые дают характеристику каждому материалу, из чего сделан дом.

Конструктивные характеристики жилого дома:

  • Для домов этого класса огнестойкости требуется выполнение работы из негорючих материалов.
    Здание, следует выполнить из кирпича, бетонных блоков или камня. Для утепления требуются огнеустойчивые материалы. Крышу нужно сделать из черепицы, металлочерепицы, профнастила или шифера, то есть материалов устойчивых к огню. Для перекрытий необходимо использовать железобетонные плиты.
  • Здание построено из блоков и кирпича. Перекрытия могут быть деревянными, но покрыты защищающими материалами, такими как штукатурка или негорючие плиты. Деревянная стропильная система должна пройти обработку пропитками, защищающими от огня. Для утепления необязательно использовать негорючие материалы, можно применить предметы с пределами устойчивости к огню Г1, Г2.

III. Сооружение необходимо выполнить из металлического каркаса, это касается и стропильной системы. утепление следует выполнить с пределами устойчивости к огню Г1, Г2 или огнестойкое. Для наружной обшивки дома необходимо использовать негорючие материалы.

IIIб. Одноэтажный дом выполнений на каркасной основе следует пропитать огнестойкими веществами. Обшивка также подвергается пропиткам, утеплитель из групп Г1, Г2 или не воспламеняющихся материалов.

  • Деревянный каркас, защищённый материалами в виде штукатурного покрытия. Огнестойкая обработка должна быть на перекрытиях чердака. По обшивке дома не выдвигаются особые требования, поэтому ее можно выполнить из любых материалов.

IVб. Аналогично предыдущей группе только здание одноэтажное. Металлические материалы следует применить для каркасных конструкций. Ограждающие конструкции необходимо выполнить из материалов, не поддающихся горению. Материалы группы Г3 и Г4 необходимо использовать при укладке утеплителя.

  • Относятся все категории домов, не попавшие в этот список. К этой группе не выдвигаются особые требования по отношению их стойкости к огню.

Общественные здания

В основном жилые дома классифицируют по функциональной пожарной безопасности по следующим категориям:

  • Ф 1.2 Общежития
  • Ф 1.3 Многоквартирные здания, включая семьи, живущие с инвалидами.

Сквозные проезды в домах должны быть шириной в 3,5м, а высота требуется, чтобы была не меньше 4,25м. Необходимо чтобы через сквозные проходы вдоль лестничной клетки были размещены на расстоянии друг от друга не больше чем 100м. Верхний этаж определяет высоту сооружения, включая мансардный, не включая технический этаж, расположенный на самом верху здания. Разница границ точек проезда для огнеборющихся машин между верхней и нижней, определяет высоту этажа здания.

Следующему классу зданий Ф 1.3 можно определить опираясь на маркированный список, а также на максимально допустимую площадь пожарного отсека, размещённого на этаже.

  • Степени огнестойкости общественного сооружения делят на пять групп – I, II, III, IV, V.
  • По классу конструктивной пожарной опасности сооружения определяют: I- C0, II-С0, С1, III- С0,С1, IV-С0, С1, С2, V- не нумеруется.
  • Максимальная допустимая высота сооружения в метрах, а также площадь для пожарного отсека, размещенного на этаже: I-75м-;II-С0-50, С1-28; III-C0-28, С1-15; IV-CO-5-1000м2, С1-3м-1400м2, С2-5м-800м2. Далее идут цифры допустимой высоты без нумерации(С), 3м-1200м2, 5м-500м2, 3м-900м2; V-не нумеруется-5м-500м2 и 3м-800м2.

Внутри зданий, в которых находятся деревянные стены, потолки, и перегородки следует обрабатывать огнестойкими материалами, такими как лак и штукатурка. Это касается таких зданий, как школы, дошкольные заведения, больницы, пионерские лагеря и клубы.

Для автовокзалов внутреннюю площадь можно не ограничивать, потому как там имеется система пожаротушения. Относительно первой площадь автовокзала можно увеличить до 10000м2, в том случае если внизу вокзала в цокольных помещениях не находятся складские или кладовые помещения.

Производственные здания

Производственные здания определяют как сооружения выпускающие товары в виде полуфабрикатов, а также готовой продукции. Производства разделяются на многие отрасли и каждые имеют свои нюансы и тонкости, они бывают ремонтные, ткацкие, химические, инструментальные, металлургические, механосборочные и многие другие.

Степень огнестойкости производств особо важна, так как на некоторых ведется работа с взрывоопасными или ядовитыми веществами, которые могут навредить окружающей природной среде и непосредственно человеку.

Производственные здания классифицируют на пять степеней. Следуя возгораемости и пределом устойчивости к огню главных конструкций и материалов, из которых они сделаны, определяют степень огнестойкости здания.

Здания І-го класса определяются ІІ-й степенью, для ІІ-го-ІІІ-я. Для ІІІ и ІV нумерация не требуется. Поэтому пожарная безопасность производственных зданий напрямую зависит от огнестойкости строительных материалов.

Исходя из, конструкций и архитектурных сооружений производственные здания делятся на одноэтажные, многоэтажные и смешанной этажности.

Складские помещения

Предел устойчивости к огню и распространением его по территории определяет степень огнестойкости конструкций. Следовательно, этому разработанные разные строительные материалы, определяющие степень огнестойкости.

Наиболее уязвимыми считаются помещения складов из деревянных материалов, но степень стойкости к огню можно увеличить за счет разных пропиток, а также штукатурки. Огнестойкость складских помещений это пассивная защита, предотвращающая или уменьшающая степень распространение огня внутри сооружения.

Для увеличения степени огнестойкости металлических конструкций используют противопожарную обработку, это может быть штукатурка, керамическая или бетонная плитка. Очень эффективными считаются вспучивающиеся краски, которые дают больше времени для достижения температуры до критической.

Также для увеличения пожарной защиты следует обрабатывать специальными пропитками окна зачастую применяют полимерную пену или заменяют проемы на специальные стеклоблоки. Дверные проемы следует изготавливать из негорючих металлических веществ, например, алюминий.

Эти мероприятия смогут повысить предел огнестойкости складского помещения и обезопасить человеческую жизнь.

Разработанные законами СНИП позволяют определить степень огнестойкости зданий и сооружений, понять до какого класса и типа они принадлежат. Эти нормы дают четкую характеристику зданию и позволяют определить безопасность сооружения необходимую для охраны труда или сохранения жизни человека. Следовательно, нормам и предназначению здания используют соответствующие материалы, необходимы для выполнения каркасных конструкций, утепления и обшивки здания.

Степень огнестойкости зданий, требуемые пределы огнестойкости Птр строительных конструкций. Пожарная опасность строительных материалов

СТЕПЕНЬ ОГНЕСТОЙКОСТИ ЗДАНИЙ, ТРЕБУЕМЫЕ ПРЕДЕЛЫ ОГНЕСТОЙКОСТИ ПТР СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ.
ПОЖАРНАЯ ОПАСНОСТЬ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ.

Основным параметром, определяющим огнестойкость здания, является степень его огнестойкости. Степень огнестойкости различных зданий устанавливается соответствующими СНиПами. Для производственных зданий (СНиП 31-03-2001) степень огнестойкости зависит от категории помещений и зданий по взрывопожарной и пожарной опасности (А, Б, В, Г, Д) по НПБ105-95 (см. табл. 3). При определении категории помещений и зданий по взрыво-пожарной и пожарной опасности необходимо знать температуру вспышки горючих жидкостей. За температуру вспышки горючих жидкостей принимается наименьшая температура самой жидкости, при которой над её поверхностью образуется смесь паров жидкости с воздухом, способная воспламеняться от источника зажигания. По температуре вспышки жидкости подразделяются на легковоспламеняющиеся (ЛВЖ) с температурой вспышки до 61°С и горючие жидкости (ГЖ) с температурой вспышки более 61°С.
Например, для категории В, при высоте здания до 24 м требуемая степень огнестойкости II. Степени огнестойкости зданий варьируются от I до V. Самой огнестойкой является I степень, когда Птр составляет 120 мин., для V степени огнестойкости здания предел огнестойкости строительных конструкций не нормируется (см. табл. 4).
Для жилых зданий степень огнестойкости здания определяется по СНиП 31-01-03 в зависимости от высоты здания (табл. 5). Например, для зданий высотой до 50 м при площади этажа до 2500 м2 степень огнестойкости должна быть I.
Зная степень огнестойкости здания по табл. 6 из СНиП 21-01-97* «Пожарная безопасность зданий и сооружений» определяются требуемые пределы огнестойкости Птр всех строительных конструкций.
Предел огнестойкости строительных конструкций устанавливается по времени (в минутах) до момента наступления одного или последовательно нескольких нормируемых для данной конструкции признаков: для несущих конструкций по признаку потери несущей способности R, в мин. ; для наружных ненесущих стен, плит перекрытий по Е — потери целостности конструкции, т.е. до момента образования сквозных трещин, в мин.; для перекрытий, настилов, внутренних стен по J — потери теплоизолирующей способности, когда на противоположной от воздействия пожара стороне перекрытия температура в среднем повышается на 160°С. Требуемые пределы огнестойкости строительных конструкций Птр устанавливаются по R; RE; REJ, они даны в табл. 6 (СНиП 21-01-97).
Для обеспечения пожарной безопасности требуется выполнение условия: фактический предел огнестойкости конструкций (Пф) (см. табл. 2) должен быть равен или превышать требуемый (Птр) по нормам предел огнестойкости: (Пф>Птр).
Сопоставление пределов огнестойкости Птр и Пф производится по форме представленной в табл. 1. Для несущих элементов здания определяется предел огнестойкости по R, по RE — для элементов бесчердачных перекрытий, по REJ — для перекрытий, в том числе подвальных и чердачных, по Е — для наружных ненесущих стен.
Предел огнестойкости при заполнении проёмов в противопожарных преградах (двери, ворота, двери с остеклением, клапаны, шторы, экраны) на-ступает при потере целостности Е; теплоизолирующей способности J; достижения предельной величины плотности теплового потока W и (или) дымогазонепроницаемости S. Например, дымогазонепроницаемые двери с остеклением более 25% должны иметь предел огнестойкости EJWS60 для первого типа заполнения; EJSW30 — для второго типа заполнения проёма и EJSW15 — для третьего типа заполнения проёма в противопожарных пределах.
Предел огнестойкости по W характеризуется достижением предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности строительной конструкции (см. Технический регламент о требованиях пожарной безопасности № 123-ФЗ).
Пожарная опасность строительных материалов оценивается рядом пожарно-технических характеристик: горючестью, воспламеняемостью, распространением пламени по поверхности, дымообразующей способностью и токсичностью. Например, по горючести строительные материалы подразделяются на:
Г1-слабогорючие;
Г2-умеренногорючие;
Г3-нормальногорючие;
Г4-сильногорючие.
Аналогично подразделяются на строительные материалы по другим характеристикам пожароопасности (см. СНиП 21-01-97* «Пожарная опасность зданий и сооружений»).

Таблица 3

Категории помещения
Характеристика веществ и материалов, находящихся в помещении
А. Взрывопожароопасное
Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28°С в таком количестве, что могут образовывать парогазовоздушные смеси, при воспламенении которых развивается избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воз-духа или друг с другом в таком количестве, что избы-точное расчётное давление взрыва в помещении превышает 5 кПа (0,05 кГс/см2)
Б. Взрывопожароопасное
Горючие пыли и волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28°С. Горючие жидкости в таком количеств, что могут образовывать взрывоопасные пылевоздушные или паровоздушные смеси, при воспламенении которых развивается избыточное давление взрыва в помещении, превышающее 5 кПа (0,05 кГс/см2)
В1-В4. Пожароопасное
Горючие и трудногорючие жидкости, твёрдые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), веществ и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А и Б
Г.
Негорючие вещества и материалы в горячем состоянии, процесс обработки которых сопровождается вы-делением лучистого тепла, искр и пламени. Горючие газы, жидкости и твёрдые вещества, которые сжигаются или утилизируются в качестве топлива.
Д.
Негорючие вещества и материалы в холодном состоянии.

Таблица 4

Таблица 5

Определение степени огнестойкости жилых многоквартирных зданий по СНиП 31-01-03
Степень огнестойкости здания
Класс конструктивной пожарной опасности здания
Наибольшая допустимая высота здания, м
Допустимая площадь этажа, пожарного отсека, м2
I
СО
СО
Сl
75
50
28
2500
2500
2200
II
CO
CO
Cl
28
28
15
1800
1800
1800
III
CO
Cl
C2
5
5
2
100
800
1200
IV
Не нормируется
5
500
V
Не нормируется
5;3
500;800

Таблица 6


Степень огнестойкости – это показатель, определяющий возможное сопротивления помещения прямому воздействию огня. Показатель определяется согласно правил СНиП. Это общее определение, позволяющее оценить установленный уровень безопасности любого по назначению здания, а также материалов из которых оно построено.

От параметров огнестойкости зависит скорость площадь распространения пожара за единицу времени в конкретном помещении. Все типы зданий и сооружений в зависимости от сопротивления огню и быстроты распространения пожара подразделяют на пять категорий и обозначаются римскими цифрами.

По способности к возгоранию конструкции классифицируют следующим образом :

  • Несгораемые;
  • Трудно сгораемые;
  • Сгораемые.

Такая классификация условна, поскольку в пределах одного здания, разные помещения могут быть изготовленные из разных материалов. Несгораемыми считаются жилые или производственные здания, при построении которых использовались несгораемые материалы.

Трудно сгораемыми называют, те что выполнены из несгораемых или сгораемых материалов, имеющих дополнительную противопожарную защиту. К примеру деревянная дверь, покрыта специальным лаком, асбестом и кровельной сталью. Сгораемые те, которые легко воспламеняются и скорость распространения пожара велика.

Как определить степень огнестойкости здания

За основу определения степени огнестойкости любого помещения взято время с момента возгорания конструкционных материалов, до момента появления явных дефектов в этих конструкциях.

  • Появление трещин или же нарушение целостности поверхности, что может послужить причиной проникновения пламя либо продуктов сгорания;
  • Нагревание материала больше чем на 160 С, или более чем на 190 С, в любой точке поверхности;
  • Деформация основных узлов, что служит причиной ее обрушения, таким образом теряется несущая способность опорных конструкций.

Наиболее безопасными, в плане возгорания принято считать, железобетонные опорные конструкции, при условии, что в состав бетона входит цемент с высоким уровнем огнестойкости. Наименее пожароопасными принято считать незащищенные металлические материалы.

Классификация материалов и их огнестойкость

Фактическая степень огнестойкости зависит от материалов, что были использованы при возведении зданий и сооружений.

Все строительные материалы классифицируют согласно следующих характеристик :

  • Выделение токсичных веществ;
  • Воспламеняемость;
  • Горючесть;
  • Дымообразование;
  • Распространение огня по поверхности конструкции.

Согласно ГОСТу 30244-94 негорючие материалы показатели огнестойкости не нормируются и могут не определяться.


По времени деформации конструкции определяют нормы огнестойкости :

  • 300 мин. – кирпичи, изготовленные из керамики или силикатов;
  • 240 мин. – бетон, толщин которого превышает 250 мм;
  • 75 мин. – дерево с гипсовым покрытием толщиной не менее 20 мм;
  • 60 мин. – стандартная входная дверь, что заранее обработана антипиреном;
  • 20 мин. — конструкции из металла.

Причиной разрушения обычного бетона является наличие связанной воды, массовая доля которой составляет около 8%. Металлы имеют высокую степень огнеопасности поскольку при температуре свыше 1000 С, переходят из твердого состояния в жидкое.

Пустотелый кирпич и бетон, имеющий пористую структуру относиться к наиболее устойчивым к действию повышенных температур и открытого пламени. Здания изготовленные из этих материалов имеет I-II степени огнестойкости и класса конструктивной пожарной безопасности.

Правила определения огнестойкости зданий

Степень огнестойкости и класс пожарной опасности определяют уполномоченные службы. Любое производство имеет степени огнестойкости и класса конструктивной пожарной безопасности

Согласно СНиП 21.01-97 все здания могут подразделяться на 5 основных степеней огнестойкости конструкций. Требуемая степень огнестойкости всегда указывается в паспорте котельной, промышленного или жилого здания. И так огнестойкости подразделяются:

Степень огнестойкости Характеристика
I Все внешние стены должны быть выполнены из синтетического или натурального камня, пористого бетона или армированного бетона. Перекрытия выполняются из плит или других негорючих материалов, которые должны относится к классу защиты: «несгораемые».

Наиболее безопасные здание в плане возможности возникновения и распространения пожара. Высокий уровень безопасности. К ним в обязательном порядке относят котельные помещения.

II Эта степень огнестойкости сходна с I, отличие заключается в возможности использования открытых стальных конструкций. (Материалы для кирпичного дома).Кирпичные дома имеют имеет II степень огнестойкости и класс конструктивной пожарной безопасности
III Третий уровень безопасности предполагает, что все основные элементы производственных зданий должны быть выполнены из синтетического или натурального камня. деревянные перекрытия возможны если они покрываются гипсом или штукатуркой.

В качестве покрытия также возможен монтаж листовых материалов, относящихся к классу «трудносгораемые». Элементы покрытий не нормируются по возникновению и распространению пожара, но перекрытия крыши из дерева обрабатываются специальными растворами, что предотвращают возгорание.

ІІІ а Здания, сооруженные по типу каркасных конструкций, что выполнены из «голой» стали. Ограждающие профили из стали или других несгораемых материалов. Возможно использование трудногорючих утеплителей.
ІІІ б Деревянные дома в один этаж имеют III б степень огнестойкости и класс конструктивной пожарной безопасности. Все деревянные элементы поддаются огнезащитной обработке, которая должна ограничить распространение пожара. Ограничительные конструкции выполняются из дерева или композитных материалов, содержащих дерево.

Все оградительные конструкции в обязательном порядке подвергаются огнезащитной обработке, дабы предотвратить возможное возгорание, перегревания конструкции. Недопустимо возведения таких перекрытий недалеко от источника тепла и высоких температур.

IV 4 степень огнестойкости предполагает постройку деревянного дома. Защита от огня, осуществляется путем нанесения на древесину гипса, штукатурки или других изоляционных материалов. Элементы покрытий не имеют особых требований по возникновению и распространению огня, но деревянные перекрытия крыши обязательно должны пройти огнезащитную обработку.
IV a Одноэтажные здания, что выполнены из стали, что не имеет защитных изоляционных покрытий. Перекрытия также из стали, но с утеплительными несгораемыми материалами.
V Эта степень огнестойкости зданий включает все объекты (промышленные, жилые) к которым не выдвигаются особые требования касательно порога огнестойкости и скорости возгорания.

СНиП

Люди, задающиеся вопросом: что такое степень огнестойкость здания и как ее определить, должны понимать, что все соответствующее манипуляции определения степени огнестойкости от контейнера до большого производственного здания проделывают пожарные службы.

Согласно общепринятым правилам СНиП, котельные имеют I степень огнестойкости и класс конструктивной пожарной безопасности. Все печи должны быть отделены от основного котельного зала несгораемыми перегородками соответствующей толщины, что зависит от объема топливной камеры.

Если котельной используется газообразное или жидкое топливо, то помещение оснащается материалами, что поддаются быстрому демонтажу. Правила СНиП для котельной в зависимости от ежесуточного вырабатывания тепла нормируют толщину как основных, так и внутренних стен, а также материалы из которых они выполняются. По степени огнестойкости подобные здания относятся к первой группе.

Степень огнестойкости здания – это способность строения противостоять пожару какое-то время, не разрушаясь. На основе данного показателя можно дать оценку любому сооружению в плане пожарной безопасности. Именно от степени огнестойкости здания зависит, как быстро огонь будет распространяться по его помещениям и конструкциям. По понятным причинам этот показатель во многом будет зависеть от материалов, из которых строение возводится.

К определению степени огнестойкости строительных материалов надо подходить с позиции: горючие они или нет. Поэтому стандартная классификация их так и разделяет на «НГ» – негорючие или «Г» – горючие. Последние делятся на несколько классов:

  • Г1 – слабогорючие;
  • Г2 – умеренные;
  • Г3 – нормальные;
  • Г4 – сильные.

Есть другой параметр, который определяет огневую стойкость стройматериалов – это их воспламеняемость, обозначаемая буквой «В». Здесь три класса:

  • В1 – материалы, воспламеняемые с большим трудом;
  • В2 – воспламеняются умеренно;
  • В3 – легко.

Следующая характеристика степени огнестойкости стройматериалов – возможность или невозможность распространения пламени по своим поверхностям. Обозначается данный параметр аббревиатурой «РП». Итак:

  • РП1 – не распространяют пламя;
  • РП2 – слабо распространяют;
  • РП3 – умеренно;
  • РП4 – сильно.

Внимание! Показатель «РП» определяют только для напольных оснований и их покрытий, а также для кровель. К остальным конструктивным элементам он никакого отношения не имеет, за исключением разве что деревянных домов.

В СНиПах не указывается, что дым и токсичность выделяемых продуктов сгорания влияют на степень огнестойкости здания. И это правильно. Но при возникновении пожара, где главная задача не только его потушить, но и вовремя провести эвакуацию людей, эти два фактора играют важную роль. Поэтому их обязательно указывают в паспорте строения.

Задымленность или коэффициент выделение дыма строительными материалами обозначается буквой «Д». По этой характеристики все строения разделяются на три группы:

  • Д1 – с малым выделением дыма;
  • Д2 – с умеренным;
  • Д3 – большое выделение.

По токсичности при горении все стройматериалы делятся на четыре группы:

  • Т1 – низкая опасность;
  • Т2 – умеренная;
  • Т3 – высокая;
  • Т4 – крайне опасная для людей.

Обобщая все вышесказанное, можно закончить о степени огнестойкости строительных материалов тем, что в СНиПах все вышеобозначенные показатели (а их пять) объединяются в один общий, который обозначается аббревиатурой «КМ».

По показателю «КМ» стройматериалы делятся на пять классов, где класс КМ1 – это представители, у которых все вышеописанные характеристики имеют минимальное значение. Соответственно класс КМ5 – с максимальными значениями. КМ0 – это класс негорючих.

Разобравшись со стройматериалами, переходим к огнестойкости зданий и сооружений. Необходимо обозначить, что не все строения имеют идентичность материалов по всей конструкции . То есть, не всегда во всех строительных объектах в каждой их части (этажи, помещения и прочее) используются одни и те же строительные материалы. Поэтому производимая классификация по огневой стойкости считается условной. Но в любом случае все строительные объекты делят на три класса: несгораемые, трудно сгораемые, сгораемые.

Степень огнестойкости здания – как определить. В основе расчета лежит время от начала возгорания до момента разрушения или появления дефектов. Поэтому важно понимать, какие дефекты несущих конструкций можно принимать во внимание, чтобы точно говорить о том, что строение на пределе разрушения.

  1. Появляются сквозные отверстия и трещины, через которые проникают пламя огня и дым.
  2. Повышается температура нагрева конструкций в пределах от +160С до +190С. Здесь имеется в виду негорящая сторона. К примеру, если горит помещение, а стена с другой стороны нагревается на вышеобозначенные показатели, то это критичный момент.
  3. Деформируются несущие конструкция, приводящие к обрушению. Это в основном касается металлических узлов и конструкций. Кстати, незащищенные стальные профили относятся к категории КМ4. При температуре +1000С они просто начинают плавиться. К «КМ0» относятся железобетонные изделия.

Что касается скорости и времени сгорания, то, как уже было сказано выше, все зависит от материалов, из которых они возведены. К примеру, бетонная конструкция толщиною 25 см сгорает за 240 минут , кирпичная кладка за 300 минут, металлическая конструкция за 20, деревянная дверь (входная, обработанная антипиренами) за 60, деревянная конструкция, обшитая гипсокартоном толщиною 2 см, сгорает за 75 мин.

Классификация по степени огнестойкости зданий, сооружений и пожарных отсеков

Все строительные объекты делятся на пять степеней. И этот показатель обязательно указывается в паспорте строения.

Внимание! Степень огнестойкости здания могут определять только уполномоченные службы. Именно они дают оценку, определяют класс, который заносится в паспорт.

Итак, степень огнестойкости зданий и сооружений – таблица пяти классов огнестойкости (I-V), определяющих пожароопасность строения.

Класс Особенности конструкции
I Объекты, возведенные полностью из негорючих материалов: камень, бетон или железобетон.
II Сооружения, в которых частично используются в качестве несущих конструкций металлические узлы. К этому же классу относятся кирпичные дома.
III

Постройки, относящиеся к первой категории, только в их конструкциях разрешено использовать деревянные перекрытия, закрываемые штукатурными растворами или гипсовыми плитами. Для покрытия деревянных перекрытий здесь можно использовать листовые материалы, относящиеся к группе «трудносгораемых». Что касается кровель, то древесину можно применять и здесь, только с обработкой антипиренными составами.

IIIa Каркасные дома из металлической основы (стальные профили), у которых степень огнестойкости низкая. Их обшивают негорючими материалами. здесь же можно использовать утеплитель из трудносгораемого материала.
IIIб Деревянные дома или постройки из композитных материалов, основа которых – древесина. Строения обязательно подвергаются обработке огнезащитными составами. Основное к ним требование – строительство вдали от возможных очагов возгорания.
IV

Здания, возведенные из дерева, конструкции которых со всех сторон закрываются штукатурными растворами, гипсовыми плитами или другими изоляционными материалами, способными какое-то время сдерживать воздействие огня . Кровля обязательно подвергается огнезащите.

IVa Строительные конструкции, собранные из стальных профилей, необработанных защитными составами. Единственное – это перекрытия, которые также собираются из стальных конструкций, но с использованием несгораемых теплоизоляционных материалов.
V Здания и сооружения, к которым не предъявляются какие-то требования, касающиеся огневой стойкости, скорости возгорания и прочего.

Разобравшись с классами степени огнестойкости зданий, необходимо обозначить и виды этой характеристики. Здесь всего две позиции: фактическая огневая стойкость, обозначаемая СО ф и требуемая – СО тр.

Первая – это действительный показатель возведенного здания или сооружения, который был определен по результатам пожарно-технической экспертизы. В основе результатов лежат табличные значения, которые показаны на фото ниже.

Вторая – это подразумеваемое (запланированное) минимальное значение степени огнестойкости здания. Оно формируется на основе нормативных документов (отраслевых или специализированных). При этом учитывается назначение строения, его площадь, этажность, используются ли внутри взрывоопасные технологии, есть ли система пожаротушения и прочее.

Внимание! Сравнивая две разновидности огневой стойкости, необходимо всегда принимать за основу соотношение, что СО ф не должна быть меньше СО тр.

Заключение

К классификации зданий и сооружений по степени огнестойкости надо относиться серьезно. Учитывая данный показатель, надо определяться с требованиями к системе пожарной безопасности. И чем ниже предел огневой стойкости постройки, тем больше вложений придется делать, организовывая систему пожарной охраны.

Степень стойкости к огню является важным параметром, который определяется при строительных работах и после их завершения. Строителям очень важно знать, что та или иная конструкция здания имеет свою степень огнестойкости. Как определить огнестойкость здания, вы узнаете из этой статьи.

Под выражением огнестойкость подразумевается способность тех или иных элементов здания сохранять прочность при пожаре. Более того, огнестойкость имеет свой предел, который определяется в часах, т.е. конкретными цифрами к пожарной опасности здания. Общепринято степень огнестойкости обозначать римскими значениями: I, II, III, IV, V.

Огнестойкость подразделяется на два вида:

  1. Фактическая (СОФ). Как она определяется? Главным образом по результату технической и пожарной экспертизы строительных сооружений. Также вычисления происходят, отталкиваясь от нормативных документов. Уровень стойкости к огню четко регламентирован и известен. В согласии с официальными сведениями происходит вычисление СОФ.
  2. Требуемая (СОтр). Это понятие включает в себя уровень стойкости к огню в минимальном значении. Чтобы то или иное здание соответствовало всем требованиям по безопасности, сооружение должно им соответствовать. Эта степень огнестойкости определяется на основании нормативных документов, которые имеют отраслевые и специализированные значения. При этом ключевую роль играет непосредственное назначение здания, его площадь, наличие средств пожаротушения, количества этажей и прочее.

Чтобы все это закрепить, рассмотрим пример. Для придания зданию соответствия требованию ПБ СОФ должно быть больше или равное СОтр. Предел стойкости к пламени наступает в тот момент, когда здание полностью или частично не выполняет свою функциональность при пожаре. Это случается, когда в здании образовываются отсеки или трещины. Непосредственно через них проникает пламя в соседние помещения, поверхность нагревается до 140–180°С, а также если полностью ликвидированы несущие части здания.

Метод определения огнестойкости

Чтобы определить пределы охвата огнем, а также нанесенный ущерб при горении проводятся надлежащие испытания. Это реализовывается на практике следующим образом: в специально оборудованных печах устраивается пожар. Печь обрабатывается исключительно огнеупорным кирпичом. Внутри печи сжигается керосин при помощи специальных форсунок. Используя термические пары, осуществляется контроль за температурой внутри печи. При всем этом, работа форсунок должна выполняться так, чтобы они не соприкасались с термическими парами и не контактировали с поверхностью конструкции. Так, если основываться на базовых правилах, то вычисление степени огнестойкости имеет две задачи:

  1. Теплотехническая.
  2. Статистическая.

Чтобы произвести определения степени огнестойкости, важно в первую очередь получить архитекторский проект. Далее, нужно придерживаться стандартной схемы.

Что касается схемы, то она выглядит следующим образом:

  • Обратившись к пожарным, они проведут экспертизу по огнестойкости. При обнаружении недочетов, следует незамедлительно их устранить.
  • Уже на этапе составления эскизов будет указана степень огнестойкости. И для этого следует обращаться только к грамотным архитекторам, которые учтут все эти нюансы.

На практике, весь этот процесс, по определению огнестойкости, выглядит так:

  • В часах или минутах вычисляется предел огнестойкости. Отсчет времени следует начинать с момента критической ситуации, когда конструкция не выдерживает испытания, а именно рушится или нарушается целостность.
  • Для вычисления берется одна из пяти ступеней.
  • В эти вычисления/расчеты включается уровень воспламеняемости разных материалов, которые использовались при строительстве здания.
  • Для точного определения огнестойкости недостаточно иметь поверхностной информации. Здесь важно иметь полную картину даже по таким конструкциям, как: дополнительные лестничные клетки, лестничные пролеты, перегородки и все другие конструкции. В расчет берется даже материал, из которого сделаны эти конструкции.
  • Также нелишним будет изучить дополнительные и обязательные материалы, которые касаются правил обеспечения огнестойкости ЖБИ конструкций. За основу, например, можно взять пособие к СНиП от 21 января 1997 г. «Предотвращение возникновения пожара» .
  • Таким образом, для определения огнестойкости учитывается широкий спектр планировочных и технологических аспектов. Но при этом не следует забывать и про первичные средства пожаротушения – огнетушители.

В итоге вам необходимо составить список требований к зданию, которые выясняются в процессе определения огнестойкости. За основу берется документация и проект здания.

СНиП

В большинстве случаев сооружения и здания имеют стены 1 типа, т.е. пожарный отсек. Что касается минимального порога устойчивости к огню здания, то он равен 25. Как следствие допускается применять незащищенные металлические конструкции.

Строительные нормы допускают использовать гипсокартон в качестве облицовочного материала. Это в какой-то степени увеличивает огнестойкость здания.

Если говорить о строительных материалах и степени их сгораемости, то они делятся на 3 группы:

  1. Негорючие.
  2. Трудносгораемые.
  3. Несгораемые.

Если вы сооружаете каркас, то лучше, чтобы он был из негорючего материала. Для зданий с 1 по 5 степень можно использовать горючие материалы, но только не в вестибюлях. Это важно, ведь плюс ко всему стройматериалы подразделяются на такие классификации, как:

  • Образующие дым.
  • Токсичные.

Ниже рассмотрим алгоритм вычисления степени огнестойкости здания и помещения разных типов. Отталкиваясь от этого, вы сможете узнать основные требования к тем или иным постройкам.

Жилые здания

Показатель огнестойкости дома имеет 5 степеней. По этим степеням дается характеристика для каждого стройматериала, из которого был построен дом. Ниже приводятся конструктивные характеристики жилых домов:

  • Для жилых домов преимущество отдается негорючим материалам.
  • Строительство лучше выполнять из бетонных блоков, камня или кирпича.
  • Для утепления стен, крыши и других конструкций использовать огнеустойчивый материал.
  • Изготовление кровли должно выполняться из материалов, которые устойчивы к огню, а именно: шифер, профнастил, металлочерепица или черепица.
  • Перекрытия изготавливать из железобетонных плит.
  • Если перекрытия деревянные, то их следует покрыть негорючими материалами, например, негорючие плиты или штукатурка.
  • Деревянная стропильная система должна обрабатываться пропитками, препятствующими распространению огня.

Для утепления необязательно применять негорючие материалы. Можно использовать предметы, которые отличаются устойчивостью к огню категории Г1 и Г2.

Общественные здания

Степень огнестойкости общественных зданий подразделяется на 5 групп: I, II, III, IV, V. Так, по классу конструктивной пожарной опасности здания определяются:

  • I-C0.
  • II-С0.
  • III-С0.
  • IV-С0.
  • V- не нумеруется.

Что касается допустимой высоты помещения в метрах и площади для пожарного отсека, то здесь имеются такие данные:

  • I-75м;
  • II-С0-50, С1-28;
  • III-C0-28, С1-15;
  • IV-CO-5-1000 м 2 ;
  • С1-3м-1400 м 2 ;
  • С2-5м-800 м 2 .

Если говорить за клубы, пионерские лагеря, больницы, дошкольные заведения и школы, то в них часто используются деревянные перегородки, потолки и стены. Их обработка должна осуществляться огнестойкими материалами.

Производственные здания

  • Металлургическое.
  • Инструментальное.
  • Химическое.
  • Ткацкое.
  • Ремонтное и прочие.

И для таких заведений, степень огнестойкости как никогда важна. Плюс ко всему на некоторых осуществляется работа с ядовитыми и взрывоопасными веществами, которые могут оказать негативное влияние человека и окружающую среду.

Производственные здания также подразделяются на 5 ступеней. Огнестойкость определяется, исходя от используемых строительных материалов. Отсюда вывод: степень пожарной безопасности производственного здания напрямую зависит от огнестойкости используемых стройматериалов.

Складские помещения

Как правило, наиболее уязвимыми считаются те складские помещения, которые изготовлены из деревянных материалов. Однако если они обработаны штукатуркой и специальными пропитками, то их степень огнестойкости увеличивается. Также для этой цели используется бетонная или керамическая плитка.

Для складских помещений наиболее эффективным считаются вспучившиеся краски или полимерная пена. Их действие продлевается срок поднятия критической температуры.

В целом предпринимается ряд мер, для увеличения степени огнестойкости помещений, построенных из дерева. В них также могут устанавливаться алюминиевые двери, а вместо деревянных окон стеклоблоки.

Итак, стоит отметить, что перед тем, как определять огнестойкость здания важно учитывать характеристики и предназначение каждого строения, а также методы и материалы, имеющие разные специфики.

Огнестойкость зданий — Справочник химика 21


    При рассмотрении чертежей архитектурно-строительной части проекта необходимо проверять, обеспечены ли требования огнестойкости здания, нет ли подвалов в зоне производственных цехов и установок, соблюдены ли требования о максимальном выносе технологического оборудования на наружные площадки, как взаимно расположены здания и сооружения цехов и соблюдены ли противопожарные разрывы между ними обеспечена ли огнестойкость металлоконструкций наружных этажерок, несущих конструкций под аппаратами внутри цеха, а также юбок колонных аппаратов, газонепроницаемость стен, отделяющих взрывоопасные помещения от смежных помещений каковы типы полов, их соответствие требованиям искробезопасности, способ защиты от агрессивных продуктов устройство поддонов под аппаратами с агрессивными продуктами обеспечен ли обслуживающий персонал вспомогательными и бытовыми помещениями, комнатами отдыха, гигиены женщин, санитарными помещениями, столовыми и правильно ли они расположены по отношению к взрывоопасным помещениям и наружным установкам запроектированы ли в открытых насосных утепленные полы, легкие навесы и съемные щиты для защиты насосных агрегатов от атмосферных осадков, солнечной радиации, а также снежных и песчаных заносов есть ли отапливаемые помещения [c.52]

    Степень огнестойкости зданий и сооружений характеризуется группой возгораемости и пределом огнестойкости их основных ограждающих и несущих конструкций. Степень огнестойкости зданий данного производства принимается не ниже II, а для складов аммиака — I. [c.107]

    При определении степени огнестойкости здания и его элементов, а также при планировке зданий учитывают вероятность возникновения и распространения пожара или взрыва, размеры и характер последствий аварий. [c.396]

    Огнестойкость зданий и. сооружений, возводимых на территории складов нефти и нефтепродуктов, должна быть не ниже П степени. [c.105]

    Постоянные электросварочные работы в зданиях должны производиться в специально для этого отведенных вентилируемых помещениях. Огнестойкость зданий и помещений для электросварочных работ должна соответствовать требованиям СНиП. [c.208]

    Приведенные данные показывают, что эффективность работы установки тушения должна зависеть от огнестойкости здания. Это особенно важно при использовании легких стальных конструкций, а также листовых конструкций из стали, алюминия и стеклопластиков. [c.133]


    Распределение производств по категориям пожарной опасности имеет большое значение для создания безопасных условий труда, особенно на стадии проектирования. В зависимости от категории определяются требования к огнестойкости зданий и сооружений, конструкциям здания, противопожарным разрывам, отоплению, вентиляции, эвакуационным выходам и другим условиям безопасности. [c.45]

    Расстояние между зданиями и сооружениями, м, при степени огнестойкости зданий или сооружений [c.61]

    Пределы огнестойкости строительных конструкций подобраны в соответствии со степенью огнестойкости зданий и сооружений нефтебазы (см. п. 2 раздела)  [c.50]

    Степень огнестойкости зданий и сооружений [c.404]

    Расстояния от наружных установок с взрывоопасными зонами класса В-1г и помещений с взрывоопасными зонами классов В-1, В-1а и В-П до отдельно стоящих РУ, ТП и ПП должны удовлетворять требованиям табл. 5.21, а от помещений с взрывоопасными зонами классов В-16 и В-Па не нормируются и принимаются в соответствии со СНиП по проектированию генеральных планов промышленных предприятий в зависимости от степени огнестойкости зданий и сооружений. [c.516]

    СНиП П-90-81 Производственные здания промышленных предприятий устанавливают зависимость между степенью огнестойкости зданий, площадью этажа между противопожарными [c.633]

    Степень огнестойкости зданий [c.634]

    Здания и сооружения ио огнестойкости подразделяются на пять степеней — в зависимости от пределов огнестойкости (в часах) основных строительных конструкций. Чем длительнее предел огнестойкости применяемых строительных конструкций, тем ниже степень огнестойкости здания. Так, здание I степени огнестойкости является наиболее устойчивым к воздействию огня при пожаре. [c.634]

    Зависимости пределов огнестойкости основных строительных конструкций от степени огнестойкости зданий и сооружений. Требования к путям и способам эвакуации людей из зданий в помещений [c.641]

    При назначении категорий А и Б строительными нормами и правилами предусматриваются ограничение этажности зданий и производственных площадей между противопожарными стенами в зависимости от степени огнестойкости зданий, требования к лифтам и к их размещению, к эвакуации людей, устройство легкосбрасываемых конструкций (ЛСК) площадью, рассчитываемой по СН 502—77, но не менее [c.112]

    Площадь помещений между противопожарными стенами и соответственно число противопожарных стен в зданиях устанавливают в зависимости от категории производства, степени огнестойкости зданий, числа этажей и т. д. [c.213]

    При эвакуации людей соблюдают следующие основные требования расстояние от наиболее удаленного рабочего места до выхода наружу или на лестницу должно быть кратчайшим пути движения людских потоков не должны пересекаться или встречаться. Расстояния от наиболее удаленного рабочего места до ближайшего эвакуационного выхода определяют по СНиП в зависимости от категории производства, степени огнестойкости зданий, числа этажей в них. Наименьшие расстояния (40 м) установлены для многоэтажных зданий I и II степеней огнестойкости, в которых размещены производства категории А для про- [c.214]

    Степень огнестойкости зданий и сооружений нефтебазы (по СНиП), категории производств по взрывопожарной и пожарной опасности и классификация взрыво- и пожароопасных установок (помещений) по ПУЭ, сведенные в таблицу. [c.49]

    Расход воды при наружном пожаротушении должен соответствовать СНиП, он зависит от категории взрыво- и пожароопасности процесса, степени огнестойкости зданий, их объема и т.д. [c.223]

    Огнестойкость зданий и сооружений определяется пределом огнестойкости их основных строительных конструкций стен, колонн, перекрытий, покрытий и внутренних перегородок. Предел огнестойкости конструкций зависит от их возгораемости (несгораемые, трудносгораемые и сгораемые) и минимального размера сечения конструкции. [c.216]

    ОГНЕСТОЙКОСТЬ ЗДАНИЙ, СООРУЖЕНИИ И КОНСТРУКЦИЙ [c.34]

    Здания и сооружения по огнестойкости подразделяются на пять степеней. Степень огнестойкости зданий и сооружений характеризуется группой возгораемости и пределом огнестойкости основных строительных конструкций. [c.36]

    Степень огнестойкости зданий или сооружений [c.61]

    Степень огнестойкости зданий, площадь этажа между противопожарными стенами и число этажей следует принимать согласно табл. 2. [c.72]

    Степень огнестойкости зданий должна приниматься  [c.326]

    Степень огнестойкости здания Наибольшее расстояние (в м) до выходов наружу или до лестничных клеток от дверей  [c.339]

    И, Л/, /V, 1/ —степень огнестойкости зданий А, Б, В, Г, Д, —категория производств по взрывной, взрывопожарной и пожарной опасности [c.78]

    Степень огнестойкости зданий и количество этажей в зависимости от категории производства (см. табл. 8.1) следует принимать в соответствии с табл. 7.1. Производства, более опасные по взрыву или ргожару, надо по возможности располагать в одноэтажных зданиях— V наружр ых стен, а в многоэтажных — на верхних этажах. В ие[)ск зытнях многоэтажных зданий с производствами категорий. А, Б и Е следует предусмотреть проемы. [c.225]


    Прц разработке ген ра 1 ,ного плана предприятия вопросы санИтЬрнЬй и пожарной безЙПарности, технологической последовательности и экойомической целесообразности решаются комплексно. Так, при определении разрывов между зданиями ц сооружениями сопоставляют требования санитарной и пожарной безопасности. Если санитарные разрывы ока о/тся большими по сравнению с противопожарными, то принимают требуемый санитарный разрыв. Если установленный разрыв окажется очень большим по технологическим или другим соображениям, то принимают такой вариант, при котором обеспечивается безопасность п )и меньших разрывах (снижение этажности, повышение степени огнестойкости здания, устройство противопожарных стен, защитных валов, подземное хранение опасных жидкостей и др.)- [c.181]

    Разрывы от газгольдерных станций и отдельно стоящих газгольдеров для хранения горючих газов емкостью 1000 и более до жилых зданий, базисных складов топлива, печей и других сооружений установлены в пределах 100—150 м, до расходных складов топлива 30—50 м, до производственных и вспомогательных зданий 20—60 м, до путей сообщения и внутризаводских дорог 20—80 м. Величина разрыва зависит от типа газгольдера и стелени огнестойкости зданий Наибольшие разрывы принимают для наиболее опасных порп1невых газгольдеров. [c.405]

    На иромытилеиных предприятиях расчетный расход воды принимают в зависимости от степени огнестойкости зданий, их объема и категории иожарной опасности (см. табл. 34.1). Пожарный расход воды принимается по зданию (нли его части, выделенной про-тивоиожариьшн стенами), требующему наибольший расход волы. При илошади территории предприятия 150 га и более в расчет принимаются два пожара в зданиях, для которых необходимы наибольшие пожарные расходы воды. [c.439]

    Точечная схема, применяющаяся сейчас некоторыми страховыми компаниями, была первоначально предложена в работе [Gjetener,1968], При этом риск определяется как произведение вероятности возникновения пожара и способности здания распространять пожар, деленное на произведение некоторой меры пожарной безопасности и огнестойкости здания. [c.149]

    От категории производства зависят огнестойкость зданий, взаимное расположение оборудования и отдельных производственных объектов, допустимые системы отопления, вентнляции и т. д. [c.576]

    По огнестойкости здания и сооружения делятся на пять степеней. Степень огнестойкости назначается в зависимости от категории взрывопожароопасности производства, размещаемого в здании. [c.216]

    Группы возгораемости и минимальные пределы огнестойкости основных строительных конструкций в зависимости от требуемой степени огнестойкост зданий и сооружений следует принимать согласно табл. 2.  [c.36]

    Степень огнестойкости здания Количество этажей Наибольшие дол устимые площади этажа между противопожарными стенами, м- [c.339]

    По огнестойкости здан,ия и сооружения подразделяются на [c.169]


Современные методики повышения огнестойкости зданий и сооружений, расчет огнезащиты

Главная — Статьи — Современные методики повышения огнестойкости зданий и сооружений, расчет огнезащиты

Журнал «Стройпрофиль» № 6 2010

Заочный круглый стол

Прокомментировали текущую ситуацию:
М. В. ГРАВИТ, к. т. н., заместитель генерального директора по научно-техническому сопровождению особо сложных и уникальных объектов ООО «Научный инновационный центр строительства и пожарной безопасности» (Санкт-петербург),
М. И. КЛЕЙМЕНОВ, заместитель руководителя ИЦ «Огнестойкость» (Москва),
В. М. РОЙТМАН, д. т. н., профессор кафедры технического регулирования Института строительства и архитектуры МГСУ (Москва)

М. В. ГРАВИТ:

— Фактические пределы огнестойкости конструкций, в том числе и с использованием средств огнезащиты для повышения этих пределов, определяются как интервал времени от начала испытания строительной конструкции на огнестойкость в состоянии, нагруженном нормативной нагрузкой, до наступления первого предельного состояния конструкции по огнестойкости:

• потеря несущей способности в результате обрушения или достижения предельных деформаций (R),
• потеря целостности в результате образования в конструкции сквозных трещин или отверстий, через которые на не обогреваемую поверхность проникают продукты горения или пламя (Е),
• потеря теплоизолирующей способности вследствие повышения температуры на не обогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от не обогреваемой поверхности конструкции (W).

Способы повышения пределов огнестойкости и снижения класса пожарной опасности несущих строительных конструкций за счет использования так называемой пассивной огнезащиты остаются в настоящее время традиционными. Применение конструктивных материалов обязательно в высотных зданиях, тоннельных сооружениях, атомных станциях и других технически сложных объектах, где нормируются высокие значения данного параметра — 150, 180, 240 мин.

В случае, когда требуемые пределы ниже (R90 и менее), приоритет остается за тонкослойными вспучивающимися покрытиями, преимуществом которых, бесспорно, является их декоративность и высокая производительность выполнения работ по нанесению таких составов. Согласно п. 10 ст. 87 ФЗ-123, пределы огнестойкости и классы пожарной опасности, аналогичные по форме, материалам и конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчетно-аналитическими методами, установленными нормативными документами по пожарной безопасности.

Метод расчета предела огнестойкости несущей конструкции состоит в решении сначала статической части задачи огнестойкости (с целью определения величины критической температуры конструкции, при которой ее несущая способность уменьшится при нагреве до величины нормативной нагрузки на конструкцию), а затем второй части расчета — теплотехнической, где определяют время прогрева с учетом применяемого средства огнезащиты до наступления критической температуры конструкции. Для конструктивных материалов уже порядка 40 лет используется известная в пожарно-технической практике методика, разработанная во ВНИИПО МЧС России д. т. н., профессором Яковлевым А. И.

Что касается тонкослойных вспучивающихся материалов, то у каждого производителя таких средств огнезащиты имеется своя методика расчета пределов огнестойкости конструкций — в зависимости от их определенных типоразмеров (сортамента), нагрузок, толщины слоя покрытия и т. д. Все эти методики имеют несколько «слабых мест», одно из которых — сложность определения в нестационарном режиме огневых испытаний коэффициента теплопроводности образующегося пенококса (вспученного слоя). Как правило, этот параметр определяется из экспериментальных данных, полученных при огневых испытаниях. Понятно, что чем больше будет статистика таких испытаний, тем точнее будет применяемая расчетная методика, при этом количество экспериментов ограничивается экономическим фактором — испытания такого плана достаточно дороги.

Инженерные таблицы, составленные на основе таких расчетов, лежат в основе проектирования толщины слоя огнезащитного состава, соответствующей принятой группе огнезащитной эффективности состава (по сертификату пожарной безопасности), и определяют зависимости толщины слоя покрытия от приведенной толщины элемента конструкции.

М. И. КЛЕЙМЕНОВ:

— В качестве несущих элементов в строительстве часто применяются металлоконструкции. В соответствии с требованиями ФЗ-123 от 22 июля 2008 г. «Технический регламент о требованиях пожарной безопасности», предел огнестойкости несущих элементов должен составлять от R15 до R120 (в зависимости от степени огнестойкости здания). В некоторых случаях требования к пределу огнестойкости несущих элементов могут быть и выше (при проектировании особо ответственных объектов). Известно, что предел огнестойкости незащищенных стальных несущих элементов составляет менее 15 мин. В связи с этим для увеличения предела огнестойкости стальных несущих элементов необходимо предусматривать огнезащиту.

Как правило, для стальных конструкций могут быть использованы следующие типы огнезащитных покрытий:
• лакокрасочные термореактивные покрытия,
• штукатурные покрытия,
• конструктивная огнезащита — плитные материалы (волокнистые, листовые и т. д.).

Выбор огнезащитного покрытия зависит от удобства применения и условий эксплуатации. Для выбора огнезащитного покрытия и необходимой его толщины следует провести температурно-деформационный расчет исходного несущего элемента. Для этого надо знать марку стали, технические характеристики, в т. ч. температурные, а также условия нагружения несущего элемента. На основании расчета специалисты будут рекомендовать огнезащитное покрытие определенной группы огнезащитной эффективности и укажут толщину этого покрытия.

Выбор требуемого огнезащитного покрытия можно провести без дополнительных испытаний — при наличии сертификата на огнезащитное покрытие, с установленной группой огнезащитной эффективности и рекомендуемой толщиной.

Пределы огнестойкости несущих элементов, в т. ч. металлических, устанавливают в соответствии с требованиями ГОСТ 30247.0-94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования» и ГОСТ 30247.1-94 «Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции». Испытания покрытий на огнезащитную эффективность проводят в соответствии с ГОСТ Р 53295-2009 «Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности».

При выборе огнезащитного покрытия необходимо также учесть условия эксплуатации несущего элемента с огнезащитным покрытием, которое должно обеспечивать устойчивость к воздействию окружающей среды. В документации на огнезащитное покрытие должно быть указание на возможность его применения на открытом воздухе, а также гарантийный срок эксплуатации.

Все необходимые характеристики покрытий должны быть указаны в сопроводительных документах на эти материалы (ТУ, Инструкция по применению, Технологические регламенты и т. д.). При проектировании огнезащитных мероприятий необходимо предусмотреть возможность восстановления или замены огнезащитного покрытия по истечении гарантийного срока эксплуатации.

В. М. РОЙТМАН:

— С учетом проходящей реформы технического регулирования пожарной безопасности, появления новых, прогрессивных строительных материалов и конструктивно-планировочных решений, строительства уникальных высотных многофункциональных комплексов проблема оценки огнестойкости зданий и сооружений является в нашей стране весьма актуальной. В этой области знаний накопилось много вопросов, требующих разрешения. Представляется важным решение вопроса о целесообразности использования такой характеристики, используемой при определении требуемой степени огнестойкости, как класс конструктивной опасности здания. Как показывает практика, эта характеристика малопонятна, дублирует ряд нормируемых показателей пожарной опасности строительных материалов, необоснованно усложняет и удорожает процесс проектирования объектов. Целесообразно для этих целей использовать уже имеющиеся нормируемые показатели пожарной опасности объектов,такие, как класс функциональной пожарной опасности объектов и категория помещений и зданий по взрывопожарной и пожарной опасности.

Требует рассмотрения проблема оценки огнестойкости эксплуатируемых и реконструируемых зданий и сооружений. Эта проблема имеет важное практическое значение в связи с массовой реконструкцией зданий различного назначения в городах и населенных пунктах, а также с учетом изменения функциональных, эксплуатационных санитарно-бытовых и других требований. В МГСУ разработаны теоретические основы, методы и средства для решения такого рода задач.

Одной из основных трудностей для проектировщиков и инженеров, занимающихся решением вопросов огнестойкости зданий и сооружений, является отсутствие пособия, в котором содержались бы систематизированные, соответствующим образом обобщенные и приведенные к виду, удобному для использования в практических целях, современные данные о фактических пределах огнестойкости строительных конструкций. Последний вариант такого рода пособия был издан в 1985 г. и нуждается в срочном обновлении, дополнении и переиздании.

Из актуальных новых научных направлений выделю Оценку стойкости объектов при комбинированных особых воздействиях (СНЕ) с участием пожара. Сейчас в МГСУ совместно с Академией ГПС МЧС России проводятся исследования в этой области. Результаты уже проведенных исследований свидетельствуют об особой опасности СНЕ (с учетом террористической угрозы) для высотных и многофункциональных объектов, а также о необходимости учета этой опасности при оценках устойчивости зданий в этих условиях.

1. Какие способы повышения огнестойкости и снижения класса пожарной опасности несущих строительных конструкций (сталь, дерево, ЖБ и прочие) использует ваше предприятие?

Н. В. АКУЛОВА:

— По статистике МЧС, за год в России при пожарах гибнет порядка 15 тыс. человек, пострадавших насчитывается сотни тысяч. Поэтому в мае 2009 г. вступил в силу новый Федеральный закон «Технический регламент о требованиях пожарной безопасности» (далее ФЗ ТР), положениям которого должны соответствовать все без исключения строительные объекты на территории России. Одними из важнейших разделов ФЗ ТР являются статьи, определяющие требования к огнестойкости и пожарной опасности строительных конструкций зданий и сооружений. Очень часто при возникновении пожара здание рушится, и люди, не успевая эвакуироваться, оказываются погребенными под завалами. Чтобы несущие конструкции здания выстояли во время пожара, сохранилась возможность для безопасной эвакуации людей и работы пожарных расчетов, необходимо проводить комплекс мер по повышению огнестойкости несущих строительных конструкций — т. е. одним из сертифицированных материалов должна быть выполнена огнезащита строительных конструкций.

Специалистами нашей фирмы разработаны, сертифицированы и серийно производятся высокоэффективные огнезащитные материалы и составы для различных элементов строительных конструкций (металлических, железобетонных и деревянных, а также для воздуховодов систем вентиляции и кабельных коробов). Выпускаемые материалы обеспечивают огнестойкость от 30 до 240 мин. и отвечают современным нормативным требованиям по пожарной безопасности зданий и сооружений. В ассортименте продукции имеются рулонные и плитные, мастичные и комбинированные материалы, различные по ценовой категории и технологическим свойствам.

В. Н. КАПРАЛОВ:

— Значение повышения огнестойкости строительных конструкций огромно: в случае пожара жизнь людей напрямую зависит от качества огнезащитных систем. На рынке представлен широкий спектр огнезащитных материалов как импортного, так и отечественного производства. Практика последних лет показала преимущества именно конструктивных способов огнезащиты строительных конструкций и инженерных сетей, так как они наиболее отвечают повышенным требованиям Федерального закона №123-ФЗ от 22 июля 2008 г. В работах по повышению огнестойкости наша компания с 2004 г. использует тонкослойные конструктивные системы огнезащиты (как железобетонных, так и металлических конструкций) Уральского завода ОАО «ТИЗОЛ».

В. В. ПОПЛАВСКИЙ:

— В арсенале известной компании КНАУФ имеется достаточно большое количество технических и конструктивных решений по повышению огнестойкости и снижению класса пожарной опасности строительных конструкций (как стальных и железобетонных, так и деревянных). Однако их всемерное использование в России затруднено из-за различия в проведении экспериментальных исследований опытных образцов у нас и на Западе, а также из-за отсутствия единой методики адаптации ранее полученных за рубежом результатов к условиям их использования в России. Поэтому с первых шагов начала инвестиционной деятельности КНАУФ в России (1993 г.) были начаты широкомасштабные испытания материалов и конструкций КНАУФ на полигоне ФГУ ВНИИПО МЧС России. Первоначально были получены сертификаты пожарной безопасности на листовые гипсовые материалы — гипсокартон (ГКЛ) и гипсоволокно (ГВЛ). Затем была продолжена работа по проведению огневых испытаний конструкций различных перегородок с обшивками из ГКЛ и ГВЛ, мансардных перекрытий и покрытий с обшивками из ГВЛ, огнезащитных облицовок стальных колонн листами ГВЛ. С появлением новых листовых материалов (таких, как внутренняя и наружная аквапанель) были также проведены соответствующие огневые испытания как материала, так и конструкций на его основе. В прошлом году компания КНАУФ начала производство в России листовых негорючих строительных материалов (НГ) класса пожарной опасности КМ (0) — плиты «Файерборд». Результаты огневых испытаний подтвердили их высокие показатели.

Р. А. ХАЙДАРОВ:

— Основными способами огнезащиты несущих строительных конструкций считаются конструктивный способ и применение тонкослойный лакокрасочных покрытий. Конструктивные способы повышения огнестойкости и снижения класса пожарной опасности несущих строительных конструкций подразумевают под собой устройство дополнительных конструктивных элементов, что приводит к увеличению нагрузки на несущие металлоконструкции. Также у конструктивной защиты есть такие недостатки, как необходимость нанесения толстых слоев, а иногда возникают и технические сложности в устройстве необходимого покрытия. В большинстве случаев немаловажным фактором является неэстетичный внешний вид готового покрытия.

Я бы хотел отметить использование специальных покрытий, так называемых огнезащитных вспучивающихся красок композиций. Какие плюсы у этого способа? Во-первых, удобство в нанесении, во-вторых, малый вес, в-третьих, декоративность; есть и другие достоинства.

Для защиты металлоконструкций от воздействия огня наше предприятие выпускает материалы серии ПЛАМКОР. Вспучивающиеся покрытия ПЛАМКОР — на сегодняшний день единственные огнезащитные материалы, прошедшие огневые испытания в системе ССПБ не только с традиционной грунтовкой типа ГФ-021, но и с цинконаполненными грунтовками, такими, как: ЦИНЭП, ЦВЭС, ЦИНОТАН. Технология ПЛАМКОР рекомендована для комплексной долговременной защиты металлоконструкции от коррозии и огня. Также возможно применение ряда высокоэффективных укрывных материалов, способных длительное время противостоять агрессивным средам в условиях промышленной атмосферы.

2. Помогают ли расчетные методы при определении фактических пределов огнестойкости различных строительных конструкций (стальных, железобетонных, деревянных и т. д.)?

Н. В. АКУЛОВА:

— Фактические пределы огнестойкости строительных конструкций должны подтверждаться результатами огневых испытаний конструкций. Однако, наряду с экспериментальными методами их огнестойкость также может быть оценена на основе расчетных методов. Тем более что расчетный метод определения пределов огнестойкости конструкций имеет ряд преимуществ перед экспериментальным, в частности, он более экономичен и дает возможность проверить различные варианты решений, а также провести оценку огнестойкости конструкций, огневые испытания которых выполнить практически невозможно (например, элементы монолитных железобетонных каркасов зданий и др.). Поэтому, расчетные методы могли бы существенно облегчить и упростить жизнь как производителям огнезащитных работ, так и производителям огнезащитных материалов. Однако до настоящего времени не разработаны и официально не утверждены методики экспериментальной оценки эффективности огнезащиты строительных конструкций. Поэтому вслед за принятием Федерального закона «Технический регламент о требованиях пожарной безопасности» на государственном уровне должны быть разработаны и утверждены единые методики расчета огнестойкости строительных конструкций, чтобы исключить разночтения между различными методиками, которые существуют сегодня.

В. Н. ДЕМЕХИН, Н. В. ДЕМЕХИН

— При разработке проектов на строительство (реконструкцию, капитальный ремонт, перепланировку) зданий необходимо обосновать соответствие фактических пределов огнестойкости основных конструктивных элементов и строительных конструкций здания противопожарным требованиям нормативных документов (ст. 87123-ФЗ). Часто при этом возникает проблема — как эффективно решить такую задачу при ограниченных материальных возможностях. Данная тема приобретает наиболее актуальный характер, когда идет речь о применении нетрадиционных конструктивных решений. Это связано с тем, что проверка их пожарно-технических характеристик требует проведения весьма дорогостоящих и длительных огневых испытаний. Необходимость в проведении стандартных испытаний на огнестойкость строительных конструкций может во многих случаях отпасть при использовании расчетных методов. Со вступлением в силу СНиП 21-01-97* стало возможным применение расчетных методов для определения не только фактических пределов огнестойкости строительных конструкций, но и классов их пожарной опасности (п. 5.20*). В п. 10 ст. 87 Технического регламента также указано: «Класс пожарной опасности строительных конструкций, аналогичных по форме материалам и конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, может определяться расчетно-аналитическими методами, установленными нормативными документами по пожарной безопасности».

Определение классов пожарной опасности строительных конструкций, полностью выполненных из негорючих материалов (НГ) либо из горючих материалов группы Г4, не представляет сложностей, поскольку п. 10.6 ГОСТ 30403-96 допускает принимать их К0 и К3, соответственно, без проведения испытаний. А как быть, если строительная конструкция (либо конструктивный элемент здания) выполнены с применением и тех и других материалов? Можно, конечно, провести натурные огневые испытания, но для этого, во-первых, не всегда есть возможность (например, как испытать на пожарную опасность перекрытие реконструируемого здания?), во-вторых, такие испытания трудоемки, требуют значительных затрат времени и материальных ресурсов. В подобных случаях целесообразно применять расчетные методы.

Например, при переводе первых этажей жилых зданий в нежилой фонд зачастую возникает проблема по соблюдению противопожарных требований в части отделения нежилой от жилой части здания противопожарным перекрытием (особенно, если существующее перекрытие — деревянное). Если п. 3.2 ранее действующих СНиП 2.01.02-85* совсем не допускал наличие в противопожарных преградах горючих материалов, то п. 5.14* СНиП 21-01-97* уже содержал положение о том, что противопожарная преграда должна обладать классом пожарной опасности К0; допускается в специально оговоренных случаях применять противопожарные преграды 2–4 типов класса К1.

Это же требование было подтверждено п. 5.3.3 СП 2.13130-2009. Следовательно, конструктивный элемент здания (строительная конструкция класса К0) в течение всего времени проведения огневого испытания (согласно п. 9.5 ГОСТ 30403-96 — 45 мин.) не только не должен распространять огонь по поверхности, но даже не должны гореть материалы, из которых он состоит (в данном случае — древесина, при испытании перекрытия снизу). В противном случае придется учесть и три показателя пожарной опасности горящего материала (группы материала по горючести, воспламеняемости и дымообразующей способности). Если древесина будет гореть под слоем огнезащитного материала, т. е. нагреется до температуры самовоспламенения (начала процесса тления) в течение времени испытания перекрытия на класс пожарной опасности, то учет отмеченных показателей пожарной опасности древесины (а они очень высокие) приведет к тому, что анализируемый конструктивный элемент здания будет соответствовать лишь самому высокому классу пожарной опасности — К3, что не позволит его использовать в качестве противопожарной преграды. Если же древесина будет защищена от нагрева слоями огнезащитных материалов достаточной толщины, чтобы она за все время испытания на класс пожарной опасности не успела нагреться до указанной температуры, то самовоспламенение ее не произойдет (или беспламенное горение — тление не начнется), не будет необходимости учитывать и показатели ее пожарной опасности, т. е. перекрытие будет обладать классом пожарной опасности К0, что отвечает нормативному требованию к противопожарному перекрытию.

В последние годы часто возникает необходимость в решении аналогичной задачи, связанной с надстраиванием существующего здания мансардным этажом. Ведь при условии отделения его от существующего верхнего этажа противопожарным перекрытием 2-го типа противопожарные нормы в зданиях I–III степеней огнестойкости допускают для устройства мансардных этажей применять несущие деревянные конструкции, подвергнутые конструктивной огнезащите, обеспечивающей требуемый предел огнестойкости и класс пожарной опасности К0 (45). Применение расчетных методов в данном случае может позволить определить, до какой температуры успеет нагреться поверхность деревянного элемента конструкции под слоем предлагаемого в проекте огнезащитного материала, и тем самым сделать вывод о достаточности его толщины. Либо можно будет решить обратную задачу: расчетом определить необходимую толщину огнезащитного слоя (из одного либо нескольких видов материалов), которая не позволит в течение 45 мин. стандартных испытаний нагреться поверхности деревянного элемента до температуры самовоспламенения (тления) древесины. Для указанных целей можно использовать, например, известные методы решения тепло-технической задачи огнестойкости строительных конструкций, разработанные ФГУ ВНИИПО МЧС России.

В. Н. КАПРАЛОВ:

— Расчетные методы в частных случаях просто необходимы, так как позволяют определить фактическую огнестойкость конструкции. Особенно важно это для конструкций, испытывающих нагрузку на изгиб и растяжение (балки перекрытия, связи, фермы). Сертификационные образцы испытываются в основном без нагрузки (определение огнезащитной эффективности средств огнезащиты для стальных конструкций по ГОСТ Р 532905-2009). В реальных условиях конструкция под нагрузкой может не обеспечить в условиях пожара заявленный предел огнестойкости. Кроме того, расчетный метод позволяет построить на основании проведенных испытаний по крайним точкам зависимость огнестойкости конструкции от толщины слоя огнезащитного покрытия и от приведенной толщины металла. Это позволяет, избегая дополнительных испытаний, экономить на толщине огнезащитного слоя при защите конструкций с большой приведенной толщиной.

В. В. ПОПЛАВСКИЙ:

— Существующие расчетные методы для определения фактических пределов огнестойкости, например, перегородок, предполагают использование эмпирических зависимостей с известными допущениями и отклонениями. В итоге получаемые результаты можно считать условно приближенными, и их можно использовать только для ориентировочной оценки той или иной конструкции.

Пока в России, на наш взгляд, база экспериментальных данных для уточнения методики расчета еще мала, к тому же законодатели в области огнезащиты (ФГУ ВНИИПО МЧС России) неохотно отдают предпочтение расчетным данным и всегда требуют проведения натурных огневых испытаний предлагаемых конструкций. А это дорого и, главное, требует больших затрат времени, в том числе на согласования. Хотя современные методы и программное обеспечение, накопленный экспериментальный и практический опыт позволяют довольно квалифицированно и методически верно смоделировать огневое воздействие на материал и поведение конструкции.

Р. А. ХАЙДАРОВ:

— Расчеты нам не только помогают при определении фактических пределов огнестойкости элементов металлоконструкций, они являются для нас неотъемлемой частью работы при определении необходимой толщины покрытия. При проведении расчетов также определяется теоретический и фактический расход материалов и стоимостное выражение как на квадратный метр, так и на всю конструкцию. Все строительные конструкции состоят из множества элементов. При проведении расчетов специалисты определяют величины по каждому элементу, что очень удобно для заказчика.

3. Насколько важно использовать экспериментальную базу и проводить испытания на пожарную опасность и огнестойкость конструкций, по каким методикам?

Н. В. АКУЛОВА:

— Согласно Федеральному закону «Технический регламент о требованиях пожарной безопасности» (статьи 146–150), сертификация продукции проводится органами, аккредитованными в соответствии с порядком, установленным Правительством РФ. Организация, претендующая на аккредитацию в качестве испытательной лаборатории, осуществляющей сертификацию, должна быть оснащена соответствующим оборудованием, средствами измерений, а также расходными материалами (химическими реактивами и веществами) для правильного проведения испытаний. Испытательное оборудование и средства измерений должны соответствовать требованиям, установленным законодательством Российской Федерации, методики измерений должны отвечать требованиям нормативных документов на методы испытаний.

Поскольку наше предприятие производит выпуск огнезащитных материалов с 2000 г., у нас есть собственная научно-производственная лаборатория, в которой производятся все промежуточные испытания строительных конструкций на огнестойкость. При разработке новых материалов специалисты нашего предприятия (кандидаты и доктора технических наук) проводят множество экспериментальных испытаний с построением зависимости прогрева строительных конструкций в зависимости от вида применяемого материала, его технических характеристик и толщины огнезащитного покрытия. Эти данные ложатся в основу сертификационных испытаний каждого материала. Методики, по которым проводятся испытания, также регламентируются ФЗ ТР, и отступление от них незаконно.

В. Н. КАПРАЛОВ:

— Использование экспериментальной базы и накопленного опыта позволяет предсказать, как поведет себя аналогичная конструкция в условиях пожара. Особенно это актуально для конструкций, которые невозможно испытать в лабораторных условиях.

В. В. ПОПЛАВСКИЙ:

— В связи с вышеизложенным очень важно не только проводить экспериментальные исследования по существующим методикам, но и обобщать полученные результаты, а также корректировать ранее известные данные с целью их уточнения и повышения достоверности. Известно, что ежегодно, например во ВНИИПО и его филиалах, проводится большой объем испытаний, результаты которых обобщаются, анализируются и распространяются на аналогичные конструкции. Назрела необходимость использовать результаты испытаний типовых конструкций, например, перегородок и колонн, при их последующей реализации в строительной практике без изменения первоначальных параметров в течение длительного срока, не прибегая к периодическому продлению срока действия протоколов испытаний. Ведь никто не заставляет, например, дипломированного специалиста периодически подтверждать полученные в вузе знания и умения — как известно, выданный диплом действителен в течение всей жизни специалиста.

4. Какие рекомендации по применению огнезащитных материалов (веществ) для повышения огнестойкости несущих конструкций зданий и сооружений из различных материалов Вы могли бы дать?

Н. В. АКУЛОВА:

— При выборе того или иного материала для огнезащиты строительных конструкций, как правило, руководствуются необходимым пределом огнестойкости и конструктивными особенностями объекта строительства. Каждый материал, который производится нашей компанией, имеет пожарный сертификат, который подтверждает его огнезащитные свойства. При приобретении материалов все клиенты получают инструкцию по монтажу огнезащитного покрытия. В этом документе пошагово расписан не только способ монтажа того или иного покрытия, но и такие важные особенности, как проходка через ограждающие конструкции, способы защиты элементов крепления строительной конструкции (например, воздуховода или кабельного короба) к несущим конструкциям здания и т. п. Поэтому производителям работ по огнезащите строительных конструкций эту инструкцию нужно строго соблюдать. Мы, как производители огнезащитной продукции, гарантируем своим потребителям заявленные свойства огнезащитных материалов при строгом соблюдении инструкции по монтажу покрытий.

В. Н. ДЕМЕХИН, Н. В. ДЕМЕХИН:

— Отдельного внимания требует тема повышения фактического предела огнестойкости несущих стальных конструкций, что, как правило, достигается посредством применения огнезащитных составов (материалов). Однако не все понимают, как правильно подобрать огнезащитный состав (материал) для повышения предела огнестойкости металлических конструкций конкретного здания, а самое главное, как верно определить необходимую толщину огнезащитного слоя. Такая ситуация приводит к значительным перерасходам финансовых средств заказчика либо понижает пожарную безопасность здания (при строительстве зданий с несущим металлическим каркасом). При разработке методики расчетного определения минимально необходимой толщины огнезащитного слоя для несущих стальных конструкций надо исходить из следующих предпосылок.

1. В нашей стране нормируют пределы огнестойкости строительных конструкций, огнезащитную эффективность как лишь сравнительный показатель различных средств огнезащиты не нормируют (п. 3 НПБ 236-97).

2. Результат огневого испытания огнезащитного средства для несущей металлической конструкции, приведенный в Сертификате пожарной безопасности, не являются фактическим пределом огнестойкости конструкции (п. 1 НПБ 236-97), как и указанный в Сертификате соответствия (п. 1 ГОСТ Р 53295-2009), т. к. испытанию подвергают стандартный образец из двутавра длиной 1,7 м, № 20 НПБ 236-97 или № 20Б1 ГОСТ Р 53295-2009 (а не реальную конструкцию; марка стали наиболее распространенная — С 245, а не та, из которой может быть изготовлена конструкция), испытывают его в ненагруженном состоянии до момента прогрева огнезащитного слоя до условной критической температуры конструкции 500 °С.
Этот результат устанавливает лишь условную группу эффективности огнезащитного средства при определенной толщине его высохшего слоя, предварительно нанесенного на стандартный образец конструкции, при стандартном значении приведенной толщины стального профиля этого образца — 3,4 мм (применительно к четырехстороннему обогреву его поперечного сечения) к эквивалентной расчетной толщине стальной пластины (иные значения этого параметра, встречающиеся в Сертификатах пожарной безопасности, по существу являются отступлением от нормативных требований п. 6.3.2 НПБ 236-97 и п.5.3.2 ГОСТ Р 53295-2009).

3. Встречающиеся в Сертификатах пожарной безопасности записи о том, что огнезащитное средство соответствует требованиям пожарной безопасности, установленным в НПБ 236-97, а также в ГОСТ 30247.0-94 — некорректны, поскольку ни НПБ ни ГОСТ требования к пожарной безопасности огнезащитных средств не устанавливают (огнезащитные средства по определению должны быть пожаробезопасными), а регламентируют метод определения группы эффективности огнезащитного средства и метод испытания конструкции на огнестойкость, соответственно.

4. Те величины толщины сухого огнезащитного слоя вспучивающейся краски, которые приведены в Сертификатах пожарной безопасности и таблицах, разработанных на их основе применительно к нормативным временным интервалам для пределов огнестойкости конструкций (30, 45, 60, 90, 120 мин.), практически не имеют отношения к нормируемым пределам огнестойкости для реальных конструкций, поскольку основаны лишь на сравнительных условных лабораторных испытаниях огнезащитных средств применительно к абстрактной величине критической температуры 500 °С. Однако на практике огнезащиту стальных конструкций, преимущественно, осуществляют по сертификационным (табличным) величинам огнезащитного слоя. Сертификационные величины толщин огнезащитного слоя можно использовать лишь для сравнительной оценки эффективности огнезащитных средств, а в проектах огнезащиты строительных конструкций зданий следует указывать требуемые величины слоев огнезащитного средства, рассчитанных для каждой конкретной конструкции здания (это также указывалось в Заключении нормативно-технического совета УГПН МЧС России, Протокол № 11 от 20.09.2007 г., и письме ГУ ГПС МВД России от 28.02.2002 г. за № 20/9/521).

5. Величина критической температуры прогрева реальных стальных конструкций при стандартном испытании на огнестойкость может колебаться в широких пределах, которые зависят от многих факторов, основные из которых: величина нормативной (рабочей) нагрузки на конструкцию, характер ее приложения, марка стали (предел текучести), площадь поперечного сечения конструкции, величина статического момента сопротивления изгибу профиля конструкции (для изгибаемых конструкций).

6. Фактические пределы огнестойкости,в частности, несущих стальных строительных конструкций (в том числе и стальных с огнезащитой) как интервал времени от начала стандартного испытания строительной конструкции на огнестойкость (в состоянии, нагруженном нормативной нагрузкой) по ГОСТ 30247.0-94 до наступления первого предельного состояния конструкции по огнестойкости R (потеря несущей способности в виде обрушения либо деформации, превышающей допустимую) определяют путем проведения стандартных испытаний конструкций на огнестойкость по ГОСТ 30247.0-94 и ГОСТ 30247.1-94; при этом ст. 35 Федерального закона № 87123-ФЗ и п. 11 ГОСТ 30247.0-94 (п. 5.20* СНиП 21-01-97*) разрешают определять фактические пределы огнестойкости конструкций с применением расчетных методов.

7. О разрешении применения расчетных методов для оценки параметров огнестойкости конструкций, защищенных огнезащитными покрытиями, разработанными организациями, имеющими лицензию на проведение работ по огнезащите, также говорилось в письмах ГУ ГПС МВД России от 15.12.1998 г. за № 20/2.2/3024 и от 28.02.2002 г. за № 20/9/521.

В. Н. КАПРАЛОВ:

— Исходя из собственного опыта, для повышения огнестойкости строительных конструкций мы рекомендуем использовать продукцию, разработанную отечественным производителем ОАО «ТИЗОЛ». Для железобетонных конструкций мы предлагаем «ЕТ БЕТОН» — систему конструктивной огнезащиты многопустотных и полнотелых железобетонных конструкций с пределом огнестойкости REI 240 при толщине всего лишь 30 мм благодаря высокоэффективному огнезащитному материалу «EURO ЛИТ». Для огнезащиты стальных конструкций мы предлагаем несколько систем — в зависимости от планировки интерьера: «ЕТ МЕТАЛЛ» — с пределами огнестойкости R 90–240 мин., «ЕТ ПРОФИЛЬ» — с пределами огнестойкости R 45–120 мин., «ЕТ КОМПОЗИТ» — с пределами огнестойкости R 90–180 мин. Для повышения огнестойкости воздуховодов и систем дымоудаления мы рекомендуем тонкослойные системы огнезащиты ET Vent с пределами огнестойкости 30–150 мин. В состав упомянутых систем конструктивной огнезащиты входят экологически чистые негорючие материалы на основе базальтовых горных пород, что и обеспечивает их высокие эксплуатационные свойства.

В. В. ПОПЛАВСКИЙ:

— Проведенные на полигонах ФГУ ВНИИПО МЧС России и ЦНИИСК им. В. А. Кучеренко испытания позволили получить апробированные и рекомендованные для практического применения следующие огнезащитные конструкции:
• наружные стеновые панели с каркасом из термопрофилей «ИНСИ» с наружной обшивкой из цементно-минеральных плит «Аквапанель наружная» для малоэтажных зданий различного назначения,
• межкомнатные перегородки (пустотные и с минераловатным утеплителем) на металлическом и деревянном каркасах с одно- и многослойными обшивками из гипсокартонных (ГКЛ) и гипсоволокнистых (ГВЛ) листов,
• каркасно-обшивные наружные стены с каркасом из термопрофилей «Сталдом» с применением различных листовых материалов КНАУФ для многоэтажных зданий различного назначения с несущим каркасом,
• перегородки с применением армированных цементно-минеральных плит «Аквапанель внутренняя»,
• каркасно-обшивные конструкции поэлементной сборки с применением гипсовых негорючих плит «КНАУФ-Файерборд» для зданий различного назначения,
• покрытия и перекрытия мансардных этажей на деревянном каркасе,
• теплая стена с утеплителем из пенополистирольных плит,
• огнезащитные каркасные и бескаркасные облицовки из ГВЛ для металлических колонн.

В последнее время в связи с ужесточением пожарного надзора в проектировании и строительстве участились запросы на получение этих материалов с целью их применения на практике, что придает результатам испытаний особенную весомость и актуальность.

Р. А. ХАЙДАРОВ:

— Предел огнестойкости металлоконструкций, окрашенных вспучивающимися огнезащитными красками серии ПЛАМКОР, достигает 90 мин. ПЛАМКОР-1 — водно-дисперсионная огнезащитная краска. Ее преимуществами являются нетоксичность, взрыво- и пожаробезопасность. Она незаменима для применения в закрытых и плохо проветриваемых помещениях. ПЛАМКОР-2 — органо-разбавляемая полимерная огнезащитная композиция. Материал можно наносить как при положительных, так и при отрицательных температурах. ПЛАМКОР-1 и ПЛАМКОР-2 были применены при защите таких объектов, как: модульные здания ЦПС Ванкорского нефтегазового месторождения, ангары Западно-Таркосалинского газоконденсатного месторождения, механический цех Уфимского НПЗ, Большой киноконцертный зал и и др.

В качестве грунтовок под огнезащитные краски мы допускаем использование 2-х типов материалов: традиционной грунтовки ГФ-021 и цинкнаполненных грунтовок для «холодного» цинкования стали. ГФ-021 является наиболее распространенным и дешевым материалом для грунтования металлоконструкций при огнезащите. Однако мы рекомендуем ее использование только в условиях минимального технологического разрыва между грунтованием металлоконструкции и нанесением огнезащитного покрытия. Обусловлено это тем, что срок службы грунтовки ГФ-021 в открытой атмосфере не превышает 1 года, а временной разрыв между грунтованием конструкций, их монтажом и нанесением на них огнезащитной краски зачастую достигает нескольких месяцев, иногда он растягивается и на несколько лет. В такой ситуации к моменту нанесения огнезащитной краски очень часто на металлоконструкциях уже наблюдаются коррозионные повреждения, что противоречит технологическим условиям нанесения огнезащитного покрытия и снижает его эффективность. Для предотвращения подобной ситуации в качестве грунтовки под огнезащитное покрытие целесообразнее использовать цинкнаполненные материалы.

Скачать статью в формате pdf

Как определить требуемую степень огнестойкости защитного проема?

В зависимости от типа конструкции и назначения, здания могут быть спроектированы и построены с огнестойкими стенами, полами и потолками для обеспечения структурной целостности, а также для предотвращения распространения огня и дыма по всему зданию. Тем не менее, отверстия в этих огнестойких узлах необходимы для выхода, связи, безопасности, повседневных перемещений по зданию, а также для обслуживания и оборудования здания.Отверстия в огнестойких узлах должны быть соответствующим образом защищены, чтобы не снижать огнестойкость узла, в котором они расположены. Незащищенные или неправильно защищенные отверстия могут аннулировать рейтинг стены, пола или потолка, оставляя пути для непреднамеренного распространения огня и дыма в соседние противопожарные отсеки.

Огнестойкие компоненты в зданиях имеют либо рейтинг огнестойкости, либо рейтинг огнестойкости. Важно понимать разницу между двумя рейтингами и понимать, как определить требуемые рейтинги сборок как при проектировании здания, так и при определении соответствия существующих установок.Хотя эти термины часто используются взаимозаменяемо, они различаются.

Класс огнестойкости и класс огнестойкости

Когда требуется, чтобы строительный элемент, такой как противопожарный барьер, был огнестойким, он должен быть достаточно воздухонепроницаемым при повышенном давлении воздуха на стороне пожара из-за расширения нагретого воздуха и должен препятствовать прохождению тепла и пламени в течение заданного времени. Противопожарные барьеры также должны выдерживать прямое воздействие огня, как это определено крупномасштабными испытаниями, либо ASTM E119, либо ANSI/UL 263.Стандарты испытаний ASTM E119 и ANSI/UL 263 определяют рейтинги огнестойкости в часах на основе воздействия стандартной кривой время-температура и обеспечивают оценку конструкции конкретной сборки и фактическое испытание сборки в испытательной печи. .

Узлы, защищающие проемы, такие как двери и окна, расположенные в узлах с рейтингом огнестойкости, должны быть способны выдерживать воздействие огня, что определяется крупномасштабными испытаниями, такими как NFPA 252, NFPA 257, ANSI UL10B, ANSI/UL 10C. или ANSI/UL 9.Критерии приемлемости для этих конструкций с классом огнестойкости отличаются от критериев для конструкций с классом огнестойкости, таких как стены или пол/потолок. Ограничение повышения температуры через противопожарную дверь обычно не является приемлемой мерой, хотя это является приемлемой мерой для узла с классом огнестойкости, такого как стена.

Некоторые проемы также могут быть защищены продуктами, имеющими класс огнестойкости, если они были испытаны и соответствуют критериям, предъявляемым к стенам, полам или потолкам.Класс огнестойкости, остекление, является примером этого. В некоторых случаях его можно установить и использовать в качестве стены, если это разрешено и проверено соответствующим образом.

Определение требуемой степени пожарной безопасности

Для надлежащей защиты отверстия в сборке с классом огнестойкости требуется соответствующий класс огнестойкости. При определении соответствующего класса огнестойкости защитного ограждения необходимо выполнить следующие шаги:  

Шаг 1: Определите требуемый класс огнестойкости оцениваемого компонента.Компоненты включают, помимо прочего, вертикальные шахты, горизонтальные выходы, коридоры выхода и дымозащитные экраны. Такие нормы, как NFPA 101, , Кодекс безопасности жизнедеятельности , NFPA 5000, , Строительный кодекс и Кодекс безопасности , требуют, чтобы строительный элемент имел огнестойкость.

Шаг 2: Используйте таблицы «Минимальные классы огнестойкости для открытия средств защиты в узлах с классом огнестойкости и маркировки огнестойких стекол», содержащиеся в главе 8 стандартов NFPA 101 и NFPA 5000, чтобы определить минимальный класс огнестойкости защитный проем на основе класса огнестойкости, определенного на шаге 1.Следует обратить внимание на то, что эта таблица НЕ ОБЯЗАТЕЛЬНО указывает классы огнестойкости компонентов, это требуется в других положениях Кодекса.

Шаг 3: Подтвердите с помощью сносок, другого текста кода, связанного с компонентом, и специальных положений о размещении, что дальнейшие изменения общих классов противопожарной защиты не допускаются. В некоторых случаях могут быть исключения для некоторых открывающихся защитных устройств в существующих установках или для определенных условий в некоторых помещениях.

Пример

Рассмотрим пример: каков требуемый класс противопожарной защиты двери коридора в коридоре выходного входа в новом офисном здании без полива?

В соответствии с NFPA 101 большинство новых коммерческих помещений без дождевания требуют, чтобы коридоры доступа к выходу имели рейтинг огнестойкости не менее 1 часа (шаг 1). Затем, перейдя к таблице, указанной в NFPA 101 (таблица 8.3.3.2.2), можно определить, что для коридора выхода с оценкой огнестойкости в течение 1 часа требуется минимум 1/3 часа или 20 минут огнестойкости. — защитная дверь.Затем можно подтвердить, что дальнейшие модификации не разрешены (шаг 3).

Почему класс огнестойкости может быть меньше класса огнестойкости?

Требуемые минимальные классы огнестойкости открывающихся защитных ограждений иногда могут быть ниже, чем класс огнестойкости противопожарного барьера, в котором они расположены. Например, 2-часовой противопожарный барьер, ограждающий выходную лестницу, может иметь противопожарные двери, защищенные 1,5-часовыми дверными узлами с классом противопожарной защиты.Процедуры тестирования, на которых основаны рейтинги, рассмотренные выше, отличаются. Несмотря на то, что горючие материалы, размещенные у стены с классом огнестойкости, подвергают стену серьезной пожарной опасности, в дверном блоке с рейтингом огнестойкости горючие материалы обычно не размещаются напротив него, потому что проем должен быть свободен для использования двери и не должно быть препятствий. для правильной работы двери. Такой сценарий предполагает, что, если дверь не будет использоваться, а в дверном проеме будет размещен горючий склад, дверь следует снять, а проем заменить прочной конструкцией, чтобы восстановить требуемую степень огнестойкости стены.

Противопожарные компоненты являются важным элементом комплексной стратегии защиты, которую используют здания для защиты людей и самого здания от воздействия огня. Успех пассивных методов противопожарной защиты, таких как использование отсеков, требует тщательного соблюдения требований при проектировании и установке, а также эффективных и последовательных проверок, испытаний и технического обслуживания, чтобы гарантировать, что система будет работать должным образом во время пожара.

С какими трудностями вы столкнулись при проектировании зданий с использованием огнестойких компонентов? В какой роли вы работали с применением требований кода для открытия средств защиты? Пожалуйста, поделитесь своим мнением в комментариях ниже!

Важное примечание: Любое мнение, выраженное в этой колонке (блог, статья), является мнением автора и не обязательно отражает официальную позицию NFPA или ее технических комитетов.Кроме того, эта статья не предназначена и не должна использоваться для предоставления профессиональных консультаций или услуг.

Как определить класс огнестойкости

Вверху: двухчасовое испытание на огнестойкость остекления Safti First SuperLite II-XLB с каркасом серии GPX Architectural. Фото Сафти Ферст.

Строительные нормы и правила требуют, чтобы определенные компоненты здания имели огнестойкость. Степень огнестойкости может варьироваться от 20 минут до 4 часов и указывает на способность стены, двери или пола уменьшать распространение огня или степень защиты, обеспечиваемую конструктивным элементам, чтобы обеспечить безопасный выход людей, находящихся в здании.Эти требования имеют непосредственное отношение к окнам и дверям, установленным внутри здания, поскольку существуют определенные ограничения на остекление в огнестойких установках.

Четыре типа огнестойких стен

Здания имеют четыре типа огнестойких стен.

  1. Противопожарные стены разделяют два соседних здания.

  2. Противопожарные барьеры обычно используются для отделения выходов из жилых помещений здания.

  3. Противопожарные перегородки

     используются в стенах коридоров, где зона доступа к выходу требует огнестойкости.

  4. Наружные стены являются огнестойкими только в том случае, если расстояние между наружной стеной здания составляет 30 футов или менее до линии участка, центральной линии проезжей части или другого здания на том же участке.

Внутри четырех типов огнестойких стен огнестойкое остекление может быть установлено как окно, проем в двери или как стеклянная огнестойкая стена.Требования к огнестойкому стеклу приведены в главе 7 Международного строительного кодекса.

Противопожарная защита и огнестойкость

Строительные нормы и правила признают два типа огнестойкого остекления: огнестойкое и огнестойкое.

  • Противопожарное остекление  установлено с целью локализации огня и предотвращения распространения пламени и дыма. Противопожарное остекление не предназначено для блокировки передачи тепла.Противопожарное остекление тестируется в соответствии со Стандартным методом испытаний UL9/NFPA 257 для испытаний на огнестойкость оконных и стеклянных блоков.

  • Огнестойкое остекление  устанавливается с целью локализации огня и предотвращения распространения пламени и дыма, а также предназначено для блокировки передачи лучистого и теплопроводного тепла. Остекление с классом огнестойкости тестируется в соответствии со Стандартным методом испытаний строительных конструкций и материалов UL 263/ASTM E119.

Как определить класс огнестойкости  

Шаги по определению класса огнестойкости для конкретного приложения можно проиллюстрировать на примере. Представьте себе, что на строительных чертежах указано, что в нескольких дверях в стене противопожарного барьера, отделяющего внутреннюю лестницу, являющуюся частью выхода, от остальной части занятого пространства в здании требуется огнестойкое стекло.

  1. Определить тип огнестойкой стены. См. Главу 7 IBC для конкретного типа стены: 

  1. Например, в Разделе 707 для противопожарных барьеров указано, что класс огнестойкости противопожарных барьеров, разделяющих внутренние лестницы выхода, должен соответствовать требованиям главы 10 IBC «Средства эвакуации».

  1. Глава 10 Средства эвакуации обозначают

  • Если выходная лестница соединяет четыре или более этажей, она должна иметь предел огнестойкости не менее 2 часов.

  • Если он соединяет менее четырех этажей, он должен иметь предел огнестойкости не менее 1 часа.

  1. Вернитесь в Главу 7 IBC к таблице огнестойкости остекления для противопожарных дверей , Таблица 716.1(2), приведенной ниже для справки.

  • В таблице указано, что если выходная лестница соединяет 4 этажа или более, то для стены с огнестойкостью 2 часа требуется использовать огнестойкую дверь 1 ½ часа.

  • В таблице также указано, что 1,5-часовая противопожарная дверь может включать до 100 кв. дюймов смотровой панели из огнестойкого остекления, обеспечивающего 1,5-часовую защиту.

  • Таблица также допускает, чтобы площадь стекла в двери превышала 100 кв. дюймов, если используется огнестойкое стекло.

  • В таблице указано, что противопожарная дверь в сборе на 1,5 часа может также включать в себя боковые окна и фрамуги из огнестойкого стекла, но они также должны быть изготовлены из огнестойкого, а не противопожарного стекла.

  • Если выходная лестница соединяет менее 4 этажей, в другом разделе таблицы указано, что для требуемой противопожарной стены на 1 час требуется только противопожарная дверь на 1 час. Смотровая панель площадью 100 кв. дюймов с использованием огнезащитного остекления и использование любого стекла большего размера в дверном полотне, а также любое стекло, используемое в фрамугах и боковых окнах в дверном блоке, остается прежним, а именно, что только огнестойкость разрешено использование стекла с номинальным рейтингом.

 Один и тот же процесс можно использовать для всех типов огнестойких стен, следуя описанным выше шагам.Чтобы получить помощь в этом процессе, проконсультируйтесь с производителями или изготовителями огнестойких стекол или с органами власти, в ведении которых находится строительный проект.

Открытие узлов противопожарной защиты, параметры и маркировка

Рисунок 1 | Противопожарный стол для остекления противопожарных дверей

2-часовые противопожарные барьеры

 Таблица противопожарных остеклений для противопожарных дверей, IBC 2021 года, глава 7, таблица 716.1(2). Стрелка указывает соответствующую строку таблицы для 2-часовых противопожарных барьеров.  

CE Center — CE Center Library

Все курсыТемаСтатьиМультимедиаВебинарыNano CreditsСпонсорыПодкасты

22 марта 2022 г., 11:00 по восточноевропейскому времени

23 марта 2022 г., 14:00 по восточноевропейскому времени

24 марта 2022 г., 14:00 по восточноевропейскому времени

29 марта 2022 г., 14:00 по восточноевропейскому времени

30 марта 2022 г., 14:00 по восточноевропейскому времени

12 апреля 2022 г., 14:00 по восточноевропейскому времени

14 апреля 2022 г., 14:00 по восточноевропейскому времени

20 апреля 2022 г., 14:00 по восточноевропейскому времени

20 апреля 2022 г., 14:00 по восточноевропейскому времени

26 апреля 2022 г., 14:00 по восточноевропейскому времени

26 апреля 2022 г., 14:00 по восточноевропейскому времени

27 апреля 2022 г., 14:00 по восточноевропейскому времени

Как выявить потери и заткнуть дыры

4 мая 2022 г., 14:00 по восточноевропейскому времени

Устранение влияния качества воздуха в помещении (IAQ) на самочувствие жильцов и творческие подходы…

Определение типов систем, компонентов и элементов управления для обеспечения производительности конкретного проекта

Встроенная оболочка является ключевым компонентом

Контрольные вопросы по строительству Карточки

Term
Кто входит в состав типичной группы, проектирующей крупное здание? Каковы их соответствующие роли?
Определение

 

Затем команда расширяется за счет руководителя строительства, группы архитекторов, инженеров и дизайнеров.В состав команды

входят опытные инженеры по фундаменту, несущей конструкции, механическим, электрическим и коммуникационным услугам.

 

Владелец здания вносит предложение по зданию. Владелец собирает группу архитекторов, чтобы разработать видение и свое представление о проекте. Команда инженеров изучает осуществимость проекта, и с помощью инженеров-специалистов в здании устанавливаются концепция и детали фундаментов, несущих конструкций, а также механических, электрических и коммуникационных услуг.Команда дизайнеров работает с владельцем, а затем разрабатывает схему здания, постепенно увеличивая детализацию.

 

Срок

Каковы основные ограничения, при которых

дизайнера здания должны работать?

Определение

Основными ограничениями, с которыми должны работать проектировщики зданий, являются правовые ограничения, которые необходимо соблюдать при проектировании и строительстве здания

.

 

              Некоторые юридические ограничения, которые должны соблюдать разработчики

 

·        Постановления о зонировании

 

·        Строительные нормы и правила

 

·        Закон об американцах-инвалидах

 

·        Закон о справедливом жилищном обеспечении

 

·        Стандарты доступа

 

·        Управление по безопасности и гигиене труда (OSHA)

 

·        Летучие органические соединения (ЛОС)

 

Срок

Какие типы субъектов охватываются зонированием

таинства? По строительным нормам?

Определение

Юридические ограничения, подпадающие под действие постановления о зонировании, включают: Тип деятельности, которая может осуществляться на данном участке земли, Площадь земли, которая должна быть покрыта зданием, Расстояние от здания до прилегающих границ собственности, Площадь, которую необходимо предоставить для парковки, Общая площадь для строительства и, Высота здания, которое может быть построено на желаемом земельном участке.

Строительные нормы, качество строительства, структурная целостность, долговечность, благоустроенность, доступность, особенно пожарная безопасность.

 

Термин

В каких единицах измеряется огнестойкость? Как определяется огнестойкость строительных конструкций?

Определение

Огнестойкость здания измеряется в часах.Огнестойкость строительного узла определяется типом стены и тем, насколько близко эта стена находится к другим зданиям. С помощью таблицы можно определить класс огнестойкости большинства элементов здания.

 

При определении уровня свободного сопротивления выше будет стоимость. Поэтому здание спроектировано с самым низким уровнем огнестойкости, разрешенным строительными нормами

.

 

Срок

 

Сравните и сопоставьте проектирование/заявку/строительство/ и проектирование/строительство.В чем разница между руководителем строительства и генеральным подрядчиком? В чем разница между единовременной выплатой и стоимостью плюс компенсация? Что такое ускоренное строительство, и с какими типами контрактов и компенсаций оно чаще всего связано?

 

Определение
Проектирование/заявка/строительство – это архитекторы и инженеры, создающие проект. Строительная компания предлагает сумму, а владелец платит за строительство.Дизайн/Строительство — владелец обращается в строительную компанию, которая проектирует здание и строит его. Единовременная сумма – это то, что контактор получает фиксированную сумму денег. Компенсация вознаграждения — это когда владелец платит за все, что подрядчик покупает для проекта. Fast track Construction позволяет сократить время за счет совмещения процессов проектирования и строительства.

Огнестойкость | СпрингерЛинк

‘) переменная голова = документ.getElementsByTagName(«голова»)[0] var script = document.createElement(«сценарий») script.type = «текст/javascript» script.src = «https://buy.springer.com/assets/js/buybox-bundle-52d08dec1e.js» script.id = «ecommerce-scripts-» ​​+ метка времени head.appendChild (скрипт) var buybox = document.querySelector(«[data-id=id_»+ метка времени +»]»).parentNode ;[].slice.call(buybox.querySelectorAll(«.вариант-покупки»)).forEach(initCollapsibles) функция initCollapsibles(подписка, индекс) { var toggle = подписка.querySelector(«.цена-варианта-покупки») подписка.classList.remove(«расширенный») var form = подписка.querySelector(«.форма-варианта-покупки») если (форма) { вар formAction = form.getAttribute(«действие») документ.querySelector(«#ecommerce-scripts-» ​​+ timestamp).addEventListener(«load», bindModal(form, formAction, timestamp, index), false) } var priceInfo = подписка.querySelector(«.Информация о цене») var PurchaseOption = toggle.parentElement если (переключить && форма && priceInfo) { toggle.setAttribute(«роль», «кнопка») toggle.setAttribute(«tabindex», «0») переключать.addEventListener(«щелчок», функция (событие) { var expand = toggle.getAttribute(«aria-expanded») === «true» || ложный toggle.setAttribute(«aria-expanded», !expanded) form.hidden = расширенный если (! расширено) { покупкаOption.classList.add(«расширенный») } еще { покупкаOption.classList.удалить («расширить») } priceInfo.hidden = расширенный }, ложный) } } функция bindModal (форма, formAction, метка времени, индекс) { var weHasBrowserSupport = window.fetch && Array.from функция возврата () { var Buybox = EcommScripts ? EcommScripts.Buybox : ноль var Modal = EcommScripts ? EcommScripts.Модальный: ноль if (weHasBrowserSupport && Buybox && Modal) { var modalID = «ecomm-modal_» + метка времени + «_» + индекс var modal = новый модальный (modalID) modal.domEl.addEventListener («закрыть», закрыть) функция закрыть () { form.querySelector(«кнопка[тип=отправить]»).фокус() } вар корзинаURL = «/корзина» var cartModalURL = «/cart?messageOnly=1» форма.установить атрибут ( «действие», formAction.replace(cartURL, cartModalURL) ) var formSubmit = Buybox.interceptFormSubmit( Buybox.fetchFormAction(окно.fetch), Buybox.triggerModalAfterAddToCartSuccess(модальный), функция () { форма.removeEventListener («отправить», formSubmit, false) форма.setAttribute( «действие», formAction.replace(cartModalURL, cartURL) ) форма.отправить() } ) form.addEventListener («отправить», formSubmit, ложь) документ.body.appendChild(modal.domEl) } } } функция initKeyControls() { document.addEventListener («нажатие клавиши», функция (событие) { if (document.activeElement.classList.contains(«цена-варианта-покупки») && (event.code === «Пробел» || event.code === «Enter»)) { если (document.activeElement) { мероприятие.предотвратить по умолчанию () документ.activeElement.click() } } }, ложный) } функция InitialStateOpen() { вар buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(«.опция покупки»)).forEach(функция (опция, индекс) { var toggle = option.querySelector(«.цена-варианта-покупки») вар форма = вариант.querySelector(«.форма-варианта-покупки») var priceInfo = option.querySelector(«.Информация о цене») если (buyboxWidth > 480) { переключить.щелчок() } еще { если (индекс === 0) { переключить.щелчок() } еще { toggle.setAttribute («ария-расширенная», «ложь») форма.скрытый = «скрытый» priceInfo.hidden = «скрытый» } } }) } начальное состояниеОткрыть() если (window.buyboxInitialized) вернуть window.buyboxInitialized = истина initKeyControls() })()

Требования к огнестойким зданиям

🕑 Время чтения: 1 минута

Строительство полностью пожаробезопасной конструкции может оказаться несколько затратным, но всегда можно построить конструкции со значительной огнестойкостью при приемлемом бюджете.Этого можно добиться, учитывая требования огнестойкости зданий. Например, выбор подходящих строительных материалов, принятие определенных мер предосторожности при строительстве зданий и установка систем пожарной сигнализации и огнетушителей там, где это необходимо.

Показано, что эти требования могут существенно снизить влияние пожарной нагрузки на здание, т. е. свести пожарную нагрузку к минимуму. Термин «пожарная нагрузка» означает количество тепла, выделяемое в килоджоулях на квадратный метр (кДж/м2) площади пола любого помещения при сгорании содержимого здания, включая его собственную горючую часть.Он определяется путем умножения веса всех горючих материалов на их соответствующую теплотворную способность и деления на площадь пола.

1. Использование подходящих материалов

Свойства огнестойкости Материалы
  1. Не должен распадаться под воздействием тепла.
  2. Он не должен расширяться при нагревании, чтобы не создавать ненужных напряжений в здании.
  3. Материал не должен легко воспламеняться.
  4. Не должен терять свою прочность при воздействии огня.

Характеристики огнестойкости обычных строительных материалов

Есть несколько материалов, которые обычно используются в строительстве зданий. Характеристики огнестойкости этих материалов рассмотрены ниже:

Камень

Плохой проводник тепла. Песчаники с огненными зернами могут умеренно сопротивляться огню; Гранит распадается под огнем; Известняк легко крошится, и большинство других камней распадаются в период охлаждения после нагревания огнем.

Кирпич

Кирпичи выдерживают нагрев до 1200°C. Во время строительства, если для скрепления кирпичей используется раствор хорошего качества, огнестойкость конструкции повышается в разы.

Рис. 1: Кирпичи
Древесина

Любая конструкция из дерева быстро разрушается под действием огня. Древесина усиливает интенсивность огня. Применение в постройках тяжелых секций из бруса нежелательно.

Чтобы сделать древесину более огнестойкой, поверхность древесины покрывают химическими веществами, такими как фосфат и сульфат аммония, борная кислота и бура.Иногда на деревянную поверхность, используемую в здании, наносят огнестойкую краску для повышения сопротивления.

Рис. 2: Огнеупорная древесина
Бетон

Бетон имеет очень хорошую огнестойкость. Фактическое поведение бетона в случае пожара зависит от качества цемента и заполнителей, используемых при строительстве.

В случае железобетона и предварительно напряженного бетона положение стали также влияет на огнестойкость.Чем больше покрытие бетона, тем выше огнестойкость элемента.

Бетон практически не теряет своей прочности до температуры 250°С. Снижение его прочности начинается, когда температура превышает 250°С. Обычно железобетонные конструкции могут противостоять огню около одного часа при температуре 1000°C. Следовательно, цементобетон идеально подходит в качестве огнеупорного материала.

Сталь

Является хорошим проводником тепла. Стальные прутки теряют прочность на растяжение и начинают поддаваться при температуре около 600°С.Они полностью плавятся при 1400°С. Стальные колонны становятся небезопасными при длительном воздействии огня. Под постоянным действием огня стальная арматура ослабляет железобетонные конструкции.

Следовательно, стальные колонны обычно защищают кирпичной кладкой или заливают их бетоном. Арматура в бетоне защищена бетонным покрытием, а стальные решетки и балки покрыты огнеупорной краской.

Стекло

Плохой проводник тепла.При нагревании он расширяется, а при остывании в стекле начинают образовываться трещины. Стекло, армированное стальной проволокой, более устойчиво к огню и в процессе охлаждения, даже если оно разобьется, треснутые стекла останутся на прежнем месте.

Рис. 4: Огнестойкое стекло
Алюминий

Отличный проводник тепла. Обладает повышенной устойчивостью к огню.

Асбестоцемент

Является негорючим материалом и обладает высокой огнестойкостью.

2. Меры предосторожности при строительстве зданий
  • Размеры компонентов здания
  • Отсек
  • Противопожарные материалы
  • Требования к выходу в соответствии с NBC Индии, которые включают обеспечение достаточного количества выходов в каждое здание для обеспечения безопасного выхода в случае пожара, выходы должны быть свободны от препятствий, и обеспечение адекватного освещения (освещения).
Рис. 4: Отсек Рис. 5: Наличие выходов и огнетушителя

3.Предоставление систем пожарной сигнализации и огнетушителей

Это активные меры, которые включают в себя системы пожарной сигнализации и обнаружения или спринклеры, которые требуют либо вмешательства человека, либо автоматического включения. Они помогают контролировать распространение огня и его воздействие по мере необходимости во время пожара.

Подробнее:

Классы огнестойкости бетонных и каменных строительных элементов

Взрывное выкрашивание бетонных конструктивных элементов во время пожара

Системы пожарной безопасности и защиты имущества для зданий

Противопожарная защита высотных зданий

Поведение бетона при сильном пожаре

Оценка повреждений зданий от пожара

Огнеупорный бетон

Что такое огнестойкая стена? — Тренажер строительных норм

Нет, я не говорю о системах сетевой безопасности ваших компьютеров.

Я имею в виду противопожарные стены внутри здания, которые ограничивают распространение огня в течение определенного периода времени. Эти противопожарные стены дают зданию возможность ограничивать воздействие огня.

Пожар может привести к повреждению структурных компонентов здания и поставить под угрозу жителей здания . Таким образом, противопожарная стена будет действовать как разделение, которое будет препятствовать столь быстрому распространению огня, давая обитателям здания достаточно времени для безопасного выхода из здания.

Однако противопожарная стена — это всего лишь одна из форм защиты. Требования строительных норм и правил, относящиеся к тому, насколько большим или высоким может быть здание, его компоненты эвакуации, пожарные спринклеры , тип конструкции , ограничения открывания и защита — все вместе работает для установления разумного уровня безопасность жизни и имущества от пожара.

И противопожарная стена — это лишь одна из тех очень важных конструктивных особенностей, которые необходимы для обеспечения некоторой степени огнестойкости.Но знаете ли вы, что в Международном строительном кодексе существует 3 категории «огнестойких стен»? Каждый с разной целью.

Глава 7 Международного строительного кодекса (IBC) подробно описывает требования к огнестойким строительным конструкциям, таким как противопожарная стена, противопожарный барьер и противопожарная перегородка.

ПРОТИВОПОЖАРНАЯ СТЕНА

Первый тип противопожарной стены в сборе — противопожарная стена.Давайте посмотрим, как Строительный кодекс определяет противопожарную стену:

.

Противопожарная стена – Противопожарная стена с защищенными проемами, которая ограничивает распространение огня и простирается непрерывно от фундамента до или через крышу, с достаточной структурной устойчивостью в условиях пожара, чтобы допустить обрушение конструкции на любой стороны без обрушения стены.

Требования к строительству противопожарной стены приведены в Разделе 706 Международного строительного кодекса.Противопожарная стена накладывает более строгие ограничения, чем противопожарный барьер или противопожарная перегородка, из-за цели, которой она служит.

В отличие от двух других, Огненная Стена должна быть построена таким образом, чтобы она оставалась на месте, если конструкция с любой стороны рухнет.

Противопожарная стена предназначена для разделения конструкции на отдельные здания для достижения соответствия допустимым ограничениям площади застройки для конструкции, как указано в главе 5 Строительного кодекса.

Концепция, которую следует понимать здесь, заключается в том, что противопожарные стены можно использовать для создания небольших зданий внутри более крупного, чтобы код можно было применять к каждой «области» или меньшему зданию в отдельности.Это достигается с помощью вертикального разделения, такого как противопожарная стена.

Также материалы, используемые для строительства противопожарной стены, должны быть негорючими для каждого типа строительства здания, кроме типа V.

Минимальный рейтинг противопожарной стены

Минимальный требуемый класс огнестойкости противопожарной стены определяется таблицей 706.4.

Group Рейтинг пожарного сопротивления (часы)
A, B, E, H-4, I, R-1, R-2, U 3 A
Ф-1, Н-3, Н-5, М, С-1 3
Н-1, Н-2 4 б

9 9, S-2, R-3, R-4

2
Примечания: а.В конструкциях типа II или V допускается, чтобы стены имели предел огнестойкости в течение 2 часов.
б. Для зданий групп H-1, H-2 или H-3 см. также разделы 415.7 и 415.8.

Например, если посмотреть на приведенную выше таблицу, противопожарная стена, разделяющая людей группы S-2, потребует двухчасовой противопожарной стены.

Этот рейтинг выражается в часах и представляет собой период времени, в течение которого блок противопожарной стены может сохранять способность противостоять огню, продолжая выполнять заданную структурную функцию, как это определено стандартными методами испытаний, как предписано в нормах.

Поскольку противопожарная стена используется для создания отдельных зданий, также важно отметить, что требуемый класс огнестойкости стенового узла должен соответствовать более строгому показателю в таблице. Если две группы помещений разделены противопожарной стеной и для каждого помещения требуется разный рейтинг, применяется наиболее ограничивающее значение.

ПРОТИВОПОЖАРНАЯ ПЕРЕГОРОДКА

Вторым типом огнеупорной стеновой конструкции является противопожарный барьер. Давайте посмотрим, как Строительные нормы и правила определяют противопожарный барьер:

.

Противопожарный барьер – Стеновой блок из материалов с классом огнестойкости, предназначенный для ограничения распространения огня при сохранении непрерывности.

Требования к конструкции противопожарной преграды приведены в Разделе 707 Международного строительного кодекса. Противопожарные барьеры используются для нескольких целей, например, для разделения смешанных помещений, выходов, случайного использования, шахт, зон контроля опасных материалов и зон возгорания.

Несмотря на то, что противопожарный барьер обеспечивает более высокую степень защиты, чем противопожарная перегородка, ему не хватает структурной целостности по сравнению с противопожарной стеной.

Блок стены противопожарного барьера должен быть непрерывным от верхней части пола или фундамента до нижней части настила крыши или узла пола, расположенного выше.

Что касается материалов, используемых для создания противопожарной преграды, то это должен быть любой материал, разрешенный Типом конструкции для здания, в котором расположен противопожарный барьер.

Минимальный класс огнестойкости

Что касается обеспечения противопожарного разделения между зонами возгорания, таблица 707.3.10 используется для определения минимально необходимого класса огнестойкости огнезащитного барьера.

Воспроизведение Группа Рейтинг пожарного сопротивления (часы)
H-1, H-2 4
F-1, H-3, S-1 3
A, B, E, F-2, H-4, H-5, I, M, R, S-2 2
U 1

4

9 Например, если посмотреть на приведенную выше таблицу, для противопожарного барьера, разделяющего людей группы А, потребуется 2-часовая противопожарная стена (барьер), в то время как для противопожарного барьера, разделяющего людей группы U, потребуется 1-часовая огнестойкая стена (барьер).

Также важно отметить, что участки, разделенные противопожарными барьерами, не считаются отдельными зданиями. Вместо этого они считаются отдельными зонами возгорания и по-прежнему являются частью единого здания. Когда две области разделены противопожарной стеной, они считаются отдельными зданиями.

ПРОТИВОПОЖАРНАЯ ПЕРЕГОРОДКА

Третий тип противопожарной стены в сборе — противопожарная перегородка. Давайте посмотрим, как Строительный кодекс определяет противопожарную перегородку:

.

Противопожарная перегородка – Вертикальная сборка материалов, предназначенная для ограничения распространения огня, в которой защищаются проемы.

Требования к конструкции противопожарных перегородок приведены в Разделе 708 Международного строительного кодекса. Противопожарные перегородки отделяют смежные жилые помещения как в крытых, так и в открытых торговых центрах, отдельные жилые помещения, спальные комнаты, ограждают коридоры и вестибюли лифтов.

Противопожарная перегородка обычно является наименее ограничивающей из трех категорий противопожарных стен, упомянутых здесь.

Подобно противопожарному барьеру, общие требования к противопожарной перегородке должны простираться от пола до верхнего настила крыши.Тем не менее, противопожарным перегородкам разрешено использовать альтернативные методы строительства, которые не требуют, чтобы стена заканчивалась на кровельном настиле выше, с учетом различных условий.

Эти условия или различные исключения описаны в Разделе 708.4 .

Что касается материалов, используемых для создания противопожарной перегородки, это должен быть любой материал, разрешенный Типом конструкции для здания, в котором расположена противопожарная перегородка.

Минимальная противопожарная защита

Минимальный требуемый рейтинг огнестойкости для противопожарной перегородки прост, он должен иметь рейтинг не менее 1 часа.

Здесь таблица не нужна.

Однако есть только два исключения.

  1. Стены коридора спроектированы в соответствии с требованиями Противопожарные перегородки могут быть рассчитаны только на 1/2 часа, если это разрешено Таблицей 1020.1.
  2. Жилые и спальные блоки, разделенные в зданиях типа IIB, IIIB и VB, могут иметь противопожарные перегородки не менее чем на 1/2 часа, если здание полностью оборудовано автоматической спринклерной системой.

На этом противопожарные перегородки заканчиваются.

Наконец, важно еще раз отметить, что противопожарные стены — это всего лишь одна из форм противопожарной защиты внутри здания. Противопожарные стены обычно называют пассивной защитой, поскольку они обеспечивают сопротивление, не позволяя огню распространяться так быстро.

Это отличается от других форм защиты, таких как автоматические спринклерные системы пожаротушения , которые активно пытаются подавить пожар. Таким образом, эту форму противопожарной защиты обычно называют активной защитой.

Итак, в заключение, Глава 7 Международного строительного кодекса (IBC) подробно описывает требования к огнестойким строительным конструкциям, таким как противопожарная стена, противопожарный барьер и противопожарная перегородка.

В частности, требования к строительству противопожарных стен указаны в , раздел 706 , противопожарные барьеры указаны в , раздел 707 , а противопожарные перегородки указаны в , раздел 708 Международного строительного кодекса.

* Источник ссылки — Международные строительные нормы и правила 2018 г. — [Купить на Amazon]


Похожие статьи для чтения:

.

Добавить комментарий

Ваш адрес email не будет опубликован.

© 2011-2022. Mkada.ru | Cтроительная доска бесплатных объявлений.