Шаговый двигатель принцип работы википедия: Шаговый двигатель

Содержание

Шаговый двигатель

Дмитрий Левкин

Шаговый электродвигатель — это вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигнала управления [1].

Предшественником шагового двигателя является серводвигатель.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.

Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Гибридный шаговый электродвигатель

Шаговые двигатели надежны и недороги, так как ротор не имеет контактных колец и коллектора. Ротор имеет либо явно выраженные полюса, либо тонкие зубья. Реактивный шаговый двигатель — имеет ротор из магнитомягкого материала с явно выраженными полюсами. Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Гибридный шаговый двигатель имеет составной ротор включающий полюсные наконечники (зубья) из магнитомягкого материала и постоянные магниты. Определить имеет ротор постоянные магниты или нет можно посредством вращения обесточенного двигателя, если при вращении имеется фиксирующий момент и/или пульсации значит ротор выполнен на постоянных магнитах.

Статор шагового двигателя имеет сердечник с явно выраженными полюсами, который обычно делается из ламинированных штампованных листов электротехнической стали для уменьшения вихревых токов и уменьшения нагрева. Статор шагового двигателя обычно имеет от двух до пяти фаз.

Так как шаговый двигатель не предназначен для непрерывного вращения в его параметрах не указывают мощность. Шаговый двигатель — маломощный двигатель по сравнению с другими электродвигателями.

Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления. Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов. С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.

Реактивный шаговый двигатель — синхронный реактивный двигатель. Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор — четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам. В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.

Трехфазный реактивный шаговый двигатель
(шаг 30°)

Четырехфазный реактивный шаговый двигатель

(шаг 15°)

Ниже представлены осциллограммы управления для трехфазного шагового двигателя.

Униполярное волновое управление

Биполярное полношаговое управление

Биполярное 6-шаговое управление

Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:

,

  • где NR — количество полюсов ротора;
  • NS – количество полюсов статора.

Осциллограммы управления 4-х фазным реактивным шаговым двигателем

Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор [2].

Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.

    Отличительные черты:
  • ротор из магнитомягкого материала с явно выраженными полюсами;
  • наименее сложный и самый дешевый шаговый двигатель;
  • отсутствует фиксирующий момент в обесточенном состоянии;
  • большой угол шага.

Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Статор обычно имеет две фазы.

По сравнению с реактивными, шаговые двигатели с активным ротором создают большие вращающие моменты, обеспечивают фиксацию ротора при снятии управляющего сигнала. Недостаток двигателей с активным ротором — большой угловой шаг (7,5—90°). Это объясняется технологическими трудностями изготовления ротора с постоянными магнитами при большом числе полюсов. Если угол фиксации находится в диапазоне от 7,5 до 90 градусов скорее всего это шаговый двигатель с постоянными магнитами нежели гибридный шаговый двигатель.

Обмотки могут иметь ответвление в центре для работы с однополярной схемой управления. Двухполярное управление требуется для питания обмоток без центрального ответвления.

Униполярный (однополярный) шаговый двигатель

Униполярный шаговый двигатель с постоянными магнитами имеет одну обмотку на фазу с ответвлением в центре. Каждая секция обмотки включается отдельно.

Таким образом расположение магнитных полюсов может быть изменено без изменения направления тока, а схема коммутации может быть выполнена очень просто (например на одном транзисторе) для каждой обмотки. Обычно центральное ответвление каждой фазы делается общим, в результате получается три вывода на фазу и всего шесть для обычного двухфазного двигателя.

Легкое управление однополярными двигателями сделало их популярными для любителей, они возможно являются наиболее дешевым способом чтобы получить точное угловое перемещение.

Схема униполярного двухфазного шагового двигателя

Схема биполярного двухфазного шагового двигателя

Биполярный шаговый двигатель

Двухполярные двигатели имеют одну обмотку на фазу. Для того чтобы изменить магнитную полярность полюсов необходимо изменить направление тока в обмотке, для этого схема управления должна быть более сложной, обычно с H-мостом. Биполярный шаговый двигатель имеет два вывода на фазу и не имеет общего вывода. Так как пространство у биполярного двигателя используется лучше, такие двигатели имеют лучший показатель мощность/объем чем униполярные. Униполярный двигатель имеет двойное количество проводников в том же объеме, но только половина из них используется при работе, тем не менее биполярный двигатель сложнее в управление.

Управление шаговым двигателем с постоянными магнитами

Для управления шаговым двигателем на постоянных магнитах к его обмоткам прикладывается сфазированный переменный ток. На практике это почти всегда прямоугольный сигнал сгенерированный от источника постоянного тока. Биполярная система управления генерирует прямоугольный сигнал изменяющийся от плюса к минусу, например от +2,5 В до -2,5 В. Униполярная система управления меняет направление магнитного потока катушки посредством двух сигналов, которые поочереди подаются на противоположные выводы катушки относительно ее центрального ответвления.

Волновое управление

Простейшим способом управления шаговым двигателем является волновое управление. При таком управлении в один момент времени возбуждается только одна обмотка. Но такой способ управления не обеспечивает максимально возможного момента.

Положение ротора шагового двигателя при волновом управлении

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора.

Волновое управление биполярным шаговым двигателем

На рисунке выше представлены схема биполярного шагового двигателя и двухполюсные осциллограммы управления. При таком управлении обе полярности («+» и «-«) подаются на двигатель. Магнитное поле катушки поворачивается за счет того, что полярность токов управления меняется.

Волновое управление униполярным шаговым двигателем

На рисунке выше представлены схема униполярного шагового двигателя и однополюсные осциллограммы управления.Так как для управления униполярным шаговым двигателем требуется только одна полярность это существенно упрощает схему системы управления. При этом требуется генерация четырех сигналов так как необходимо два однополярных сигнала для создания переменного магнитного поля катушки.

Необходимое для работы шагового двигателя переменное магнитное поле может быть создано как униполярным так и биполярным способом. Однако для униполярного управления катушки двигателя должны иметь центральное ответвление.

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора. Схемы соединения шагового двигателя показаны на рисунке ниже.

Схема 4 выводного биполярного шагового двигателя

Схема 5 выводного униполярного шагового двигателя

Схема 6 выводного униполярного шагового двигателя

Схема 8 выводного шагового двигателя

Шаговый двигатель с 4 выводами может управляться только биполярным способом. 6-выводной двигатель предназначен для управления униполярным способом, несмотря на то, что он также может управляться биполярным способом если игнорировать центральные выводы. 5-выводной двигатель может управляться только униполярным способом, так как общий центральный вывод соединяет обе фазы. 8-выводная конфигурация двигателя встречается редко, но обеспечивает максимальную гибкость. Такой двигатель может быть подключен для управления также как 6- или 5- выводной двигатель. Пара обмоток может быть подключена последовательно для высоковольтного биполярного управления с малыми токами или параллельно для низковольтного управления с большими токами.

    8-выводные двигатели могут быть соединены в нескольких конфигурациях:
  • униполярной;
  • биполярной с последовательным соединением. Больше индуктивность, но ниже ток обмотки;
  • биполярной с параллельным соединением. Больше ток, но ниже индуктивность;
  • биполярной с одной обмоткой на фазу. Метод использует только половину обмоток двигателя при работе, что уменьшает доступный момент на низких оборотах, но требует меньше тока.
Полношаговое управление

Полношаговое управление обеспечивает больший момент, чем волновое управление так как обе обмотки двигателя включены одновременно. Положение ротора при полношаговом управлении показано на рисунке ниже.

Положение ротора шагового двигателя при полношаговом управлении

Полношаговое биполярное управление шаговым двигателем

Полношаговое биполярное управление показанное на рисунке выше имеет такой же шаг как и при волновом управлении. Униполярное управление (не показано) потребует два однополярных управляющих сигнала для каждого биполярного сигнала. Однополярное управление требует менее сложной и дорогой схемы управления. Дополнительная стоимость биполярного управления оправдана когда требуется более высокий момент.

Полушаговое управление

Шаг для данной геометрии шагового двигателя делится пополам. Полушаговое управление обеспечивает большее разрешение при позиционировании вала двигателя.

Положение ротора шагового двигателя при полушаговом управлении

Полушаговое управление — комбинация волнового управления и полношагового управления с питанием по очереди: сначала одной обмотки, затем с питанием обоих обмоток. При таком управлении количество шагов увеличивается в двое по сравнению с другими методами управления.

Полушаговое биполярное управление шаговым двигателем

Гибридный шаговый двигатель был создан с целью объединить лучшие свойства обоих шаговых двигателей: реактивного и с постоянными магнитами, что позволило добиться меньшего угла шага. Ротор гибридного шагового двигателя представляет из себя цилиндрический постоянный магнит, намагниченный вдоль продольной оси с радиальными зубьями из магнитомягкого материала.

Конструкция гибридного шагового двигателя (осевой разрез)

Статор обычно имеет две или четыре фазы распределенные между парами явно выраженных полюсов. Обмотки статора могут иметь центральное ответвление для униполярного управления. Обмотка с центральным ответвлением выполняется с помощью бифилярной намотки.

Гибридный шаговый двигатель (радиальный разрез)

Заметьте что 48 зубьев на одной секции ротора смещены на половину зубцового деления λ относительно другой секции (рисунок ниже). Из-за этого смещения ротор фактически имеет 96 перемежающихся полюсов противоположной полярности.

Ротор гибридного шагового двигателя

Зубья на полюсах статора соответствуют зубьям ротора, исключая отсутствующие зубья в пространстве между полюсами. Таким образом один полюс ротора, скажем южный полюс, можно выровнять со статором в 48 отдельных положениях. Однако зуб южного полюса ротора смещен относительно северного зуба на половину зубцового деления. Поэтому ротор может быть выставлен со статором в 96 отдельных положениях.

Соседние фазы статора гибридного шагового двигателя смещены друг относительно друга на одну четверть зубцового деления λ. В результате ротор перемещается с шагом в четверть зубцового деления во время переменного возбуждения фаз. Другими словами для такого двигателя на один оборот приходится 2×96=192 шага.

    Шаговый гибридный двигатель имеет:
  • шаг меньше, чем у реактивного двигателя и двигателя с постоянными магнитами;
  • ротор — постоянный магнит с тонкими зубьями. Северные и южные зубья ротора смещены на половину зубцового деления для уменьшения шага;
  • полюсы статора имеют такие же зубья как и ротор;
  • статор имеет не менее чем две фазы;
  • зубья соседних полюсов статора смещены на четверть зубцового деления для создания меньшего шага.

Шаговые двигатели выбор и расчет основных параметров.
     Шаговый двигатель — это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические движения. Вал шагового двигателя вращается с дискретным шагом, когда на него подаются управляющие импульсы в правильной последовательности. Вращение двигателей напрямую зависит от входящих импульсов, так же они напрямую управляют направлением и скоростью вращения вала двигателя.

Преимущества и  недостатки шагового двигателя:
Преимущества:
— угол поворта двигателя пропорционален входным импульсам;
— фиксация положения при остановке током удержания;
— точное позиционирование и повторяемость движения, так как большинство шаговых двигателей имеют точность 3-5% шага, и эта ошибка не суммируется от одного шага к следующему;
— низкая инертность при запуске, остановке и реверсе;
— высокая надежность, поскольку в двигателе отсутствуют контактные щетки, поэтому срок службы двигателя в основном зависит от срока службы подшипников;
— реакция двигателя на цифровые входные импульсы обеспечивает управление без обратной связи, что делает систему более простой и, следовательно, более экономичной;
— можно достичь очень низкой скорости синхронного вращения с нагрузкой, которая напрямую связана с валом;
— можно реализовать широкий диапазон скоростей вращения, так как скорость пропорциональна частоте входных импульсов;
— шаговые двигатели дешевле серводвигателей.

Недостатки:
— может возникнуть явление резонанса, при некорректном расчете узла или системы управления;
— двигатель непрост вэксплуатации наочень высоких скоростях, 3000+ об/мин;
— сложность системы управления;
— падение мощности с ростом скорости вращения;
— отсутствие обратной связи;
— невысокая удельная мощность;
— низкая скорость вращения;
— шум.

Выбор шагового двигателя.
     Шаговый двигатель можно использовать когда требуется контролируемое движение. Они могут использоваться в приложениях, где необходимо контролировать угол поворота, скорость, положение и синхронизацию. Из-за присущих выше преимуществ, шаговые двигатели нашли свое место в различных устройствах: принтеры, плоттеры, лазерные резаки, гравировальные станки, устройства захвата и так далее.
При выборе шагового двигателя для вашего устройства необходимо учитывать несколько факторов:
Как двигатель будет связан с нагрузкой?
Какие скорость и ускорения необходимо реализовать?
Какой крутящий момент необходим для перемещения исполнительного механизма?
Какая степень точности требуется при позиционировании?

Количество полюсов (однополюсный/биполярный)
     Обычно шаговые двигатели имеют две фазы, но также существуют трех- и пятифазные двигатели. Биполярный двигатель с двумя фазами имеет одну обмотку/фазу, а однополярный двигатель имеет одну обмотку с центральным отводом на фазу. Иногда шаговый двигатель называют  четырехфазным двигателем, хотя он имеет только две фазы. Двигатели с двумя отдельными обмотками на фазу могут приводиться в двухполярный или однополярный режим. Желательно, чтобы количество проводов на двигателе соответствовало количеству контактов на драйвере, чтобы не заниматься различными ухищрениями при подключения. 

Номинальный ток 
     Обычно указывается максимальный ток, который подается одновременно на обе обмотки. Максимальный ток через одну обмотку (который действительно имеет значение при использовании микрошагов) указывается достаточно редко. При подаче номинального тока на одну обмотку происходит нагрев двигателя, из-за этого обычно ограничивают ток двигателя не более 85% от номинального тока. Для достижения максимального крутящего момента двигателя без перегрева, необходимо выбрать двигатель с номинальным током не более чем на 25% выше, чем рекомендуемый максимальный ток привода шагового двигателя.

Крутящий момент
     Выходной крутящий момент и мощность шагового двигателя зависят от размера двигателя, теплоотвода, рабочего цикла, обмотки двигателя и типа используемого привода. Если шаговый двигатель работает без нагрузки во всем диапазоне частот, одна или несколько точек собственных колебаний резонанса могут быть обнаружены либо по звуку, либо по датчикам вибрации. Полезный крутящий момент от шагового двигателя может быть резко уменьшен за счет резонансов. Работы на резонансных частотах следует избегать. Внешнее демпфирование, дополнительная инерция или применение микрошагов используются для уменьшения эффекта резонанса. 

Удерживающий момент
     Это максимальный крутящий момент, который может обеспечить двигатель, когда обе обмотки находятся под напряжением при полном токе. Крутящий момент пропорционален току (за исключением очень малых токов), поэтому, например, если вы установите драйверы на 85% от номинального тока двигателя, то максимальный крутящий момент будет 85% * 0,707 = 60% от указанного удерживающего момента. 
    Крутящий момент возникает, когда угол ротора отличается от идеального угла, который соответствует току в его обмотках. Когда шаговый двигатель ускоряется, возникает крутящий момент для преодоления собственной инерции ротора и массы нагрузки, приводимой в движении. Чтобы создать этот крутящий момент, угол ротора должен отставать от идеального угла. 
     Известно, что использование микрошага снижает крутящий момент. На самом деле это означает, что угол запаздывания равен углу, соответствующему одному микрошагу (поскольку вы хотите, чтобы положение было с точностью до одного микрошага), более высокое значение микрошага предполагает уменьшение угла, а значит и уменьшение крутящего момента. Крутящий момент на единицу угла (что действительно имеет значение) не уменьшается при увеличении микрошага. Иными словами, отправка импульса на двигатель на один микрошаг 1/16 приводит к точно таким же фазовым токам (и, следовательно, к тем же силам), что и к отправке двух 1/32 микрошагов или четырех 1/64 микрошагов и так далее. 

Размер 
     Шаговые двигатели также классифицируются в соответствии с размерами корпуса, которые соответствуют размеру рамы двигателя. Например, шаговый двигатель NEMA11 имеет размер рамы приблизительно 1,1 дюйма (28 мм). Аналогично, шаговый двигатель NEMA23 имеет размер корпуса 2,3 дюйма (57 мм) и т. д.  Однако длина корпуса может изменяться от двигателя к двигателю в рамках одной и той же классификации размеров, при этом крутящий момент двигателя с определенным размером рамы будет увеличиваться с увеличением длины корпуса. 

 NEMA8: 

— габарит рамы 20х20 мм; 
— диапазон длин: 30-42 мм; 
— крутящий момент: 0,18-0,3 кг*см. 

NEMA11

— габарит рамы 28х28 мм;
— диапазон длин: 32-51 мм;
— крутящий момент: 0,43-0,9 кг*см.

NEMA14

— габарит рамы 35х35 мм;
— диапазон длин: 28 мм;
— крутящий момент: 1,0 кг*см.

NEMA16

— габарит рамы 39х39 мм;
— диапазон длин: 20-38 мм;
— крутящий момент: 0,65-2,0 кг*см.

NEMA17

—  габарит рамы 42х42 мм;
— диапазон длин: 25-60 мм;
— крутящий момент: 1,7-6,5 кг*см.

NEMA23

— габарит рамы 56х56 мм;
— диапазон длин: 41-76 мм;
— крутящий момент: 2,88-18,9 кг*см.

NEMA34

— габарит рамы 86х86 мм;
— диапазон длин: 65-156мм;
— крутящий момент: 34-122 кг*см.

NEMA43

— габарит рамы 110х110 мм;
— диапазон длин: 99-201 мм;
— крутящий момент: 112-280 кг*см.

NEMA51

— габарит рамы 130х130 мм;
— диапазон длин: 165-270 мм;
— крутящий момент: 270-500 кг*см.

Угол шага.
     Существует два распространенных угла шага: 0,9 и 1,8 градуса на полный шаг, что соответствует 400 и 200 шагам/оборот. Большинство устройств используют двигатели с шагом 1,8 град/шаг.
     При заданной скорости вращения 0,9-градусный двигатель производит вдвое больше индуктивной обратной эдс, чем 1,8-градусный двигатель, из-за этого возможно будет необходимо использовать питание 24 В для достижения высоких скоростей с двигателями 0,9 градуса. 
     Для двигателей 0,9 градуса необходимо подавать шаговые импульсы драйвера с удвоенной скоростью по сравнению с двигателями 1,8 градуса. Если вы используете высокий микрошаг, тогда скорость может быть ограничена скоростью, с которой электроника может генерировать шаговые импульсы. 

Разрешение и точность позиционирования.
     На разрешение и точность позиционирования системы шагового двигателя влияют несколько факторов: угол шага (длина полного шага шагового двигателя), выбранный режим движения (полный шаг, полшага или микрошаг) и скорость передачи. Это означает, что есть несколько различных комбинаций, которые можно использовать для получения желаемого разрешения,  из-за этого проблема разрешения обычно может быть решена после того, как были определены размер двигателя и тип привода.

 Самоиндукция .
     Индуктивность двигателя влияет на скорость, с которой драйвер шагового двигателя может приводить двигатель в действие до падения крутящего момента. Если мы временно игнорируем обратную эдс  из-за  вращения, а номинальное напряжение двигателя намного меньше, чем напряжение питания привода, то максимальные обороты в секунду перед падением крутящего момента составляют: 

оборотов_в_секунду=(2*напржение_БП)/(шагов_на оборот*3,14* индуктивность* ток)

Если двигатель приводит ремень GT2 через шкив, это дает максимальную скорость в мм/с как:

скорость=(4*кол-во_зубьев_шкива*напряжение_БП)/(шагов_на_оборот*3,14* индуктивность*ток)

Например:
двигатель 1,8 град/шаг ( т. е.  200 шагов/об) с индуктивностью 4 мГн работает при 1,5, А при напряжении питания 12 В, и привод ремня GT2 с  20-зубчатым шкивом начинает терять крутящий момент со скоростью около 250 мм/с. 
     На практике крутящий момент начинает падать раньше, чем это  из-за обратной эдс, вызванной движением, потому что не учитывается сопротивление обмоток. Моторы с низкой индуктивностью также имеют низкую ЭДС  из-за  вращения. Для достижения высоких скоростей, необходимо выбирать двигатели с низкой индуктивностью и высоким напряжением питания. 

Сопротивление и номинальное напряжение
     Это сопротивление на фазу и падение напряжения на каждой фазе, когда двигатель неподвижен, и фаза передает свой номинальный ток (который является результатом сопротивления и номинального тока). Это важно когда номинальное напряжение значительно ниже напряжения питания для шаговых драйверов. 

Обратный ЭДС из-за вращения 
     Когда шаговый двигатель вращается, то создается обратная эдс. При идеальном нулевом угле запаздывания на 90 градусов не в фазе с напряжением возбуждения, а в фазе с обратной ЭДС  из-за индуктивности. Когда двигатель выдает максимальный крутящий момент и находится на грани пропуска шага, он находится в фазе с током. 
Обратный ЭДС из-за поворота обычно не указывается в спецификации, но мы можем оценить его по следующей формуле: 

 ЭДС= 1,414*3,14*момент_удержания*оборотов_в_секунду/номинальный_ток 

      Формула предполагает, что удерживающий момент указан для обеих фаз, находящихся под напряжением при номинальном токе. Если это указано только с одной фазой под напряжением, замените 1,414 на 2. 
 Пример: рассмотрим 200-шаговый двигатель, приводящий каретку через шкив с 20 зубцами и ремень GT2. Это 40-миллиметровое движение за оборот. Для достижения скорости 200 мм/сек нам нужно 5 об/сек. Если мы используем двигатель с удерживающим моментом 0,55 Нм, когда обе фазы работают при 1,68, А, пиковая обратная эдс из-за  вращения составляет 

1,414 * 3,142 * 0,55 * 5 / 1,68 = 7,3 В. 

Как вбрать необходимое напряжение питания 
     Если заранее известна необходимая скорость движения для вашего устройства, можно предварительно определить, какое напряжение питания вам потребуется для драйверов двигателя. 
Пример: определим необходимую скорость движения. Для этого примера будем использовать 200 мм/сек, передача шкив 20 зубьев GT2.
Исходя из необходимой скорости движения, определим максимальную скорость ремня. 
Прикинем обратную ЭДС от индуктивности: 

напряжение=шагов_в_сек*3,14*ток_двигателя*ЭДС_двигателя*N/2 

 где N — число полных шагов на оборот (200 для двигателей с 1,8 градусами или 400 для двигателей с 0,9 градусами).
Возьмем для примера двигателя со следующими параметрами: 0,9 градуса с индуктивностью 4,1 мГн, и токе 1А. Таким образом, обратная эдс из-за индуктивности составляет: 

5*3,142*1,0*4,1e-3*400/2 = 12,87 В 

Вычислим обратную ЭДС из-за вращения по приведенной ранее формуле. 
Двигатели для примера имеют номинальный ток 1,68А и момент удержания 0,44 Нм, поэтому результат равен: 

1,414*3,142*0,44*8,7/1,68 = 10,1 В 

     Предпочтительно, чтобы напряжение питания драйвера составляло по меньшей мере сумму этих двух обратных эдс, плюс еще несколько вольт запаса. При использовании двух двигателей последовательно требуемое напряжение удваивается. 

 Алгоритм выбора шагового двигателя 
1. Определение компонента механизма привода .
     Определите механизм и необходимые входные данные, вариант механизма, приблизительные размеры, расстояния перемещения и время позиционирования. 
2. Рассчитайте необходимое разрешение.
     Найдите разрешение, необходимое для двигателя. Исходя из требуемого разрешения, определите, будет ли использоваться только двигатель или мотор-редуктор . Тем не менее, благодаря использованию технологии микрошагов, достичь требуемого разрешения стало гораздо легче. 
3. Определите схему работы 
     Определите схему работы, которая соответствует требуемым данных. Рассчитайте значения ускорения (замедления) и скорость рабочего импульса, чтобы рассчитать момент ускорения. 
4. Рассчитайте необходимый крутящий момент.
     Рассчитайте момент нагрузки и момент ускорения и найдите требуемый момент, требуемый двигателем. 
5. Выберите двигатель.
     Сделайте предварительный выбор двигателя на основе требуемого крутящего момента. Определите используемый двигатель по характеристикам скорости и крутящего момента. 
6. Проверьте выбранный двигатель.
     Подтвердите скорость ускорения / замедления и коэффициент инерции. 

Общие рекомендации:
— если не планируется использовать внешние драйверы шаговых двигателей, выбирайте двигатели с номинальным током не менее 1,2, А и не более 2,0 А. 
— рассчитывайте на рабочий ток шагового двигателя 50-85% от номинального. 
— размер: 
Nema 17- самый популярный размер, используемый в домашних проектах. 
Nema 23 необходимо использовать если не хватает крутящего момента от длинных двигателей Nema 17. 
— старайтесь не использовать двигатели с номинальным напряжением (или произведением номинального тока и фазового сопротивления)> 4 В или индуктивности> 4 мГн. 
— выборйте двигатель с 0,9 град/шаг, если необходима дополнительная точность позиционирования, для стандартных решений используйте двигатели 1,8 град/шаг. 
— при использовании 0,9 градусных шаговых двигателей или двигателей с высоким крутящим моментом, необходимо применение блоков питания с напряжением 24 В, чтобы поддерживать крутящий момент на более высоких скоростях. 

Шаговые двигатели. Создаем робота-андроида своими руками [litres]

Читайте также

Советские ядерные двигатели

Советские ядерные двигатели В Советском Союзе работы над ядерными ракетными двигателями начались в середине 50-х годов. В НИИ-1 (научный руководитель — Мстислав Келдыш) инициатором и руководителем работ по ЯРД был Виталий Иевлев. В 1957 году он сделал по этой теме сообщение

Электротермические двигатели

Электротермические двигатели Нам уже известно, что одним из способов увеличения эффективности двигателей для космических кораблей является повышение температуры (а значит и скорости) истекающих газов. Но эту температуру можно поднимать не только с помощью химической

2. Вечные двигатели XVI и XVII столетий

2. Вечные двигатели XVI и XVII столетий Ранние искатели вечного движения редко доверяли бумаге свои мысли и изобретения, и хотя большинство первых печатных книг касалось наук и ремесел, лишь в некоторых из них можно найти упоминание о перпетуум мобиле.Вечный двигатель описан

Двигатели постоянного тока

Двигатели постоянного тока Двигатели постоянного тока для любительского конструирования могут использоваться для движения и перемещения конструкций роботов (см. рис. 4.13). Для большинства таких двигателей характерны высокая частота вращения ротора и небольшой крутящий

Шаговые двигатели

Шаговые двигатели B качестве ходовых двигателей платформы лучше всего использовать шаговые двигатели. Рассмотрим некоторые преимущества таких двигателей. Поскольку шаговый двигатель поворачивается на каждом шаге на строго определенный угол, микроконтроллер может

Шаговые двигатели

Шаговые двигатели На рис 10.11. изображена эквивалентная электрическая схема используемого нами двигателя. Двигатель имеет шесть проводников, выходящих из его корпуса. Рис. 10.11. Схема выводов однополярного шагового двигателяПредположим, что мы только что взяли двигатель

Двигатели заставляют мир вращаться

Двигатели заставляют мир вращаться Вентиляторами и насосами дело не кончается. Они приводятся в движение электродвигателями. Институт Рокки Маунтин в 1989 г. показал, как объединить 35 усовершенствований на участке между электрическим счетчиком и входным валом

Двигатели «МОТОР СИЧ» для российских вертолетов

Двигатели «МОТОР СИЧ» для российских вертолетов Вячеслав БОГУСЛАЕВ, председатель совета директоров ОАО «Мотор Сич»Ни для кого не секрет, что подавляющее большинство российских вертолетов сегодня оснащается двигателями производства запорожского ОАО «Мотор Сич».ОАО

§ 46. Двигатели внутреннего сгорания

§ 46. Двигатели внутреннего сгорания Двигатели внутреннего сгорания (ДВС) являются поршневыми тепловыми двигателями, в которых топливо сгорает непосредственно внутри рабочего цилиндра. Образующаяся при сгорании смесь газов, расширяясь, перемещает поршень, совершающий

Часть первая. Двигатели фантастических скоростей

Часть первая. Двигатели фантастических скоростей Глава I. На дальних подступах В этой главе рассказывается о последних успехах поршневых авиационных двигателей и закате их славы, о том, почему они не смогли преодолеть «звуковой барьер» и навсегда потеряли свое былое

Глава V. Двигатели-гибриды

Глава V. Двигатели-гибриды Эта глава знакомит читателя с некоторыми новыми двигателями, представляющими разнообразные сочетания уже известных двигателей и обладающими замечательными свойствами, что позволяет думать об их почетном месте в авиации будущего.Времена,

2.10.1. ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ

2.10.1. ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ Важнейшими научными предпосылками электромеханики послужили достижения в области электродинамики и открытие электромагнитной индукции. Свою положительную роль при разработке первых конструкций электрических машин и электромагнитных

6.2.12. АСИНХРОННЫЕ ДВИГАТЕЛИ

6.2.12. АСИНХРОННЫЕ ДВИГАТЕЛИ Массовое применение асинхронных двигателей потребовало их серийного выпуска как в предвоенные, так и в послевоенные годы. В 70-х годах наиболее широкое распространение получили короткозамкнутые асинхронные двигатели общего назначения серии

Включай двигатели, железный человек, будем пробиваться через заторы Полноприводный Audi R8 5.2 FSI S Tronic

Включай двигатели, железный человек, будем пробиваться через заторы Полноприводный Audi R8 5.2 FSI S Tronic Интересно, а критик Э. Гилл пишет ресторанные обзоры, если у него простуда? Потому что, конечно, если у вас в глазах слезы, голова заполнена жидкой ртутью, а из носа капает,

Подключение шагового двигателя: схема подключения

Шаговый двигатель, биполярный или униполярный, представляет собой электрическое устройство постоянного тока, разделяющее оборот на определённое количество шагов. Количество и величина шагов задаётся специальным устройством, именуемым контроллер шагового двигателя. Схема шаговый двигатель + контроллер шагового двигателя широко применяется в самых различных механизмах, от бытовой техники до ЧПУ. ШД обеспечивает стабильную и бесперебойную работу оборудования, частью которого он является, однако прежде чем начать работу, его необходимо правильно подключить.

Подключение шагового двигателя

В общем и целом процесс подключения шагового двигателя не является затруднительным. В первую очередь нужно определить, какой тип ШД используется. Для этого следует обратить внимание на то, сколькими проводами снабжён электропривод.  В зависимости от типа, шаговый двигатель может иметь 4, 5, 6 или 8 проводов.

Шаговый двигатель с 4 проводами может использоваться совместно только с биполярными устройствами. Каждая из двух фазных обмоток такого электродвигателя имеет пару проводов с непрерывной связью. Драйвер ШД в данном случае подключается пошагово.

Шаговый двигатель, оснащённый 6-ю или 8-ю проводами, помимо пары проводов для каждой из обмоток имеет также центр-кран для каждой из них. Такой электродвигатель считается униполярным и может быть подключён как к биполярным, так и к униполярным устройствам. Для разделения провода при подключении униполярного ШД рекомендуется использовать измерительный прибор. Если униполярный шаговый двигатель подключается к однополярному элементу, допускается использование всех проводов. Если же подключение необходимо произвести к биполярному оборудованию, используются один конец провода и один центральный кран для каждой из обмоток.

Шаговый двигатель с 5-ю проводами схож с шестипроводным, однако центральные клеммы такого электродвигателя соединяются внутри сплошным кабелем, после чего выводятся к одному проводу. Разделение проводов в таком механизме – довольно трудоёмкий процесс, который очень сложно произвести без разрывов. Наиболее безопасным и эффективным выходом из ситуации при подключении такого прибора является определение центра провода с последующим соединением его с другими проводниками.

Стандартной схемой, использующейся для подключения 4-выводного биполярного ШД к драйверу или контроллеру является подключение первой обмотки к разъёмам А и А*, а второй – непосредственно к контроллеру через разъёмы B и B*. Разъёмы контроллера Dir и Step при таком методе подключения не используются; программное управление осуществляется при помощи генератора импульсов.


ВНИМАНИЕ – всегда проверяйте цветовую схему выводов, шаговый двигатель от конкретного производителя отличается от абсолютно аналогичного ШД другого производителя, а значит, может иметь другую цветовую схему выводов!

По вопросу подключения шагового двигателя, вы всегда можете обратиться к нашим специалистам по телефону по России (звонок бесплатный) 8 800 5555 068 либо по электронной почте.

какие они бывают / Хабр

В прошлых статьях был рассмотрен принцип работы синхронного и асинхронного электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.

В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро?

Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые… Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».


С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи.

Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.

Почему ДПТ не делают мощнее? Главная проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5МВт).
В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.

Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения. Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря. Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ. Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.


Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ. При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся.

Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря. А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится. Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться. Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но… прекрасно работает как от переменного, так и от постоянного тока.

Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.


Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана

отдельная статья

. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле. Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.

Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым). ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев.

Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения. Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле. Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да. Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение. А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.


Про принцип работы синхронного двигателя также

была отдельная статья

. Синхронных приводов бывает несколько подвидов – с магнитами (PMSM) и без (с обмоткой возбуждения и контактными кольцами), с синусоидальной ЭДС или с трапецеидальной (бесколлекторные двигатели постоянного тока, BLDC). Сюда же можно отнести некоторые шаговые двигатели. До эры силовой полупроводниковой электроники уделом синхронных машин было применение в качестве генераторов (почти все генераторы всех электростанций – синхронные машины), а также в качестве мощных приводов для какой-либо серьезной нагрузки в промышленности.


Все эти машины выполнялись с контактными кольцами (можно увидеть на фото), о возбуждении от постоянных магнитов при таких мощностях речи, конечно же, не идет. При этом у синхронного двигателя, в отличие от асинхронного, большие проблемы с пуском. Если включить мощную синхронную машину напрямую на трехфазную сеть, то всё будет плохо. Так как машина синхронная, она должна вращаться строго с частотой сети. Но за время 1/50 секунды ротор, конечно же, разогнаться с нуля до частоты сети не успеет, а поэтому он будет просто дергаться туда-сюда, так как момент получится знакопеременный. Это называется «синхронный двигатель не вошел в синхронизм». Поэтому в реальных синхронных машинах применяют асинхронный пуск – делают внутри синхронной машины небольшую асинхронную пусковую обмотку и закорачивают обмотку возбуждения, имитируя «беличью клетку» асинхронника, чтобы разогнать машину до частоты, примерно равной частоте вращения поля, а уже после этого включается возбуждение постоянным током и машина втягивается в синхронизм.

И если у асинхронного двигателя регулировать частоту ротора без изменения частоты поля хоть как-то можно, то у синхронного двигателя нельзя никак. Он или крутится с частой поля, или выпадает из синхронизма и с отвратительными переходными процессами останавливается. Кроме того, у синхронного двигателя без магнитов есть контактные кольца – скользящий контакт, чтобы передавать энергию на обмотку возбуждения в роторе. С точки зрения сложности, это, конечно, не коллектор ДПТ, но всё равно лучше бы было без скользящего контакта. Именно поэтому в промышленности для нерегулируемой нагрузки применяют в основном менее капризные асинхронные привода.

Но все изменилось с появлением силовой полупроводниковой электроники и микроконтроллеров. Они позволили сформировать для синхронной машины любую нужную частоту поля, привязанную через датчик положения к ротору двигателя: организовать вентильный режим работы двигателя (автокоммутацию) или векторное управление. При этом характеристики привода целиком (синхронная машина + инвертор) получились такими, какими они получаются у двигателя постоянного тока: синхронные двигатели заиграли совсем другими красками. Поэтому начиная где-то с 2000 года начался «бум» синхронных двигателей с постоянными магнитами. Сначала они робко вылезали в вентиляторах кулеров как маленькие BLDC двигатели, потом добрались до авиамоделей, потом забрались в стиральные машины как прямой привод, в электротягу (сегвей, Тойота приус и т.п.), всё больше вытесняя классический в таких задачах коллекторный двигатель. Сегодня синхронные двигатели с постоянными магнитами захватывают всё больше применений и идут семимильными шагами. И все это – благодаря электронике. Но чем же лучше синхронный двигатель асинхронного, если сравнивать комплект преобразователь+двигатель? И чем хуже? Этот вопрос будет рассматриваться в конце статьи, а сейчас давайте пройдемся еще по нескольким типам электродвигателей.


У него много названий. Обычно его коротко называют вентильно-индукторный двигатель (ВИД) или вентильно-индукторная машина (ВИМ) или привод (ВИП). В английской терминологии это switched reluctance drive (SRD) или motor (SRM), что переводится как машина с переключаемым магнитным сопротивлением. Но чуть ниже будет рассматриваться другой подвид этого двигателя, отличающийся по принципу действия. Чтобы не путать их друг с другом, «обычный» ВИД, который рассмотрен в этом разделе, мы на кафедре электропривода в МЭИ, а также на фирме ООО «НПФ ВЕКТОР» называем «вентильно-индукторный двигатель с самовозбуждением» или коротко ВИД СВ, что подчеркивает принцип возбуждения и отличает его от машины, рассмотренной далее. Но другие исследователи его также называют ВИД с самоподмагничиванием, иногда реактивный ВИД (что отражает суть образования вращающего момента).


Конструктивно это самый простой двигатель и по принципу действия похож на некоторые шаговые двигатели. Ротор – зубчатая железка. Статор – тоже зубчатый, но с другим числом зубцов. Проще всего принцип работы поясняет вот эта анимация:


Подавая постоянный ток в фазы в соответствии с текущим положением ротора можно заставить двигатель вращаться. Фаз может быть разное количество. Форма тока реального привода для трех фаз показа на рисунке (токоограничение 600А):


Однако за простоту двигателя приходится платить. Так как двигатель питается однополярными импульсами тока, напрямую «на сеть» его включать нельзя. Обязательно требуется преобразователь и датчик положения ротора. Причем преобразователь не классический (типа шестиключевой инвертор): для каждой фазы у преобразователя для SRD должны быть полумосты, как на фото в начале этого раздела. Проблема в том, что для удешевления комплектующих и улучшения компоновки преобразователей силовые ключи и диоды часто не изготавливаются отдельно: обычно применяются готовые модули, содержащие одновременно два ключа и два диода – так называемые стойки. И именно их чаще всего и приходится ставить в преобразователь для ВИД СВ, половину силовых ключей просто оставляя незадействованной: получается избыточный преобразователь. Хотя в последние годы некоторые производители IGBT модулей выпустили изделия, предназначенные именно для SRD.

Следующая проблема – это пульсации вращающего момента. В силу зубчатой структуры и импульсного тока момент редко получается стабильным – чаще всего он пульсирует. Это несколько ограничивает применимость двигателей для транспорта – кому хочется иметь пульсирующий момент на колесах? Кроме того, от таких импульсов тянущего усилия не очень хорошо себя чувствуют подшипники двигателя. Проблема несколько решается специальным профилированием формы тока фазы, а также увеличением количества фаз.

Однако даже при этих недостатках двигатели остаются перспективными в качестве регулируемого привода. Благодаря их простоте сам двигатель получается дешевле классического асинхронного двигателя. Кроме того, двигатель легко сделать многофазным и многосекционным, разделив управление одним двигателем на несколько независимых преобразователей, которые работают параллельно. Это позволяет повысить надежность привода – отключение, скажем, одного из четырех преобразователей не приведет к остановке привода в целом – трое соседей будут какое-то время работать с небольшой перегрузкой. Для асинхронного двигателя такой фокус выполнить так просто не получается, так как невозможно сделать несвязанные друг с другом фазы статора, которые бы управлялись отдельным преобразователем полностью независимо от других. Кроме того, ВИД очень хорошо регулируются «вверх» от основной частоты. Железку ротора можно раскручивать без проблем до очень высоких частот.
Мы на фирме ООО «НПФ ВЕКТОР» выполнили несколько проектов на базе этого двигателя. Например, делали небольшой привод для насосов горячего водоснабжения, а также недавно закончили разработку и отладку системы управления для мощных (1,6 МВт) многофазных резервируемых приводов для обогатительных фабрик АК «АЛРОСА». Вот машинка на 1,25 МВт:

Вся система управления, контроллеры и алгоритмы были сделаны у нас в ООО «НПФ ВЕКТОР», силовые преобразователи спроектировала и изготовила фирма ООО «НПП «ЦИКЛ+». Заказчиком работы и проектировщиком самих двигателей являлась фирма ООО «МИП «Мехатроника» ЮРГТУ (НПИ)».

Это совсем другой тип двигателя, отличающийся по принципу действия от обычного ВИД. Исторически известны и широко используются вентильно-индукторные генераторы такого типа, применяемые на самолетах, кораблях, железнодорожном транспорте, а вот именно двигателями такого типа почему-то занимаются мало.


На рисунке схематично показана геометрия ротора и магнитный поток обмотки возбуждения, а также изображено взаимодействие магнитных потоков статора и ротора, при этом ротор на рисунке установлен в согласованное положение (момент равен нулю).

Ротор собран из двух пакетов (из двух половинок), между которыми установлена обмотка возбуждения (на рисунке показана как четыре витка медного провода). Несмотря на то, что обмотка висит «посередине» между половинками ротора, крепится она к статору и не вращается. Ротор и статор выполнены из шихтованного железа, постоянные магниты отсутствуют. Обмотка статора распределенная трехфазная – как у обычного асинхронного или синхронного двигателя. Хотя существуют варианты такого типа машин с сосредоточенной обмоткой: зубцами на статоре, как у SRD или BLDC двигателя. Витки обмотки статора охватывают сразу оба пакета ротора.

Упрощенно принцип работы можно описать следующим образом: ротор стремится повернуться в такое положение, при котором направления магнитного потока в статоре (от токов статора) и роторе (от тока возбуждения) совпадут. При этом половина электромагнитного момента образуется в одном пакете, а половина – в другом. Со стороны статора машина подразумевает разнополярное синусоидальное питание (ЭДС синусоидальна), электромагнитный момент активный (полярность зависит от знака тока) и образован за счет взаимодействия поля, созданного током обмотки возбуждения с полем, созданного обмотками статора. По принципу работы эта машина отлична от классических шаговых и SRD двигателей, в которых момент реактивный (когда металлическая болванка притягивается к электромагниту и знак усилия не зависит от знака тока электромагнита).

С точки зрения управления ВИД НВ оказывается эквивалентен синхронной машине с контактными кольцами. То есть, если вы не знаете конструкцию этой машины и используете её как «черный ящик», то она ведет себя практически неотличимо от синхронной машины с обмоткой возбуждения. Можно сделать векторное управление или автокоммутацию, можно ослаблять поток возбуждения для повышения частоты вращения, можно усиливать его для создания большего момента – всё так, как будто это классическая синхронная машина с регулируемым возбуждением. Только ВИД НВ не имеет скользящего контакта. И не имеет магнитов. И ротор в виде дешевой железной болванки. И момент не пульсирует, в отличие от SRD. Вот, например, синусоидальные токи ВИД НВ при работе векторного управления:

Кроме того, ВИД НВ можно создавать многофазным и многосекционным, аналогично тому, как это делается в ВИД СВ. При этом фазы оказываются несвязанными друг с другом магнитными потоками и могут работать независимо. Т.е. получается как будто бы несколько трехфазных машин в одной, к каждой из которых присоединяется свой независимый инвертор с векторным управлением, а результирующая мощность просто суммируется. Координации между преобразователями при этом не требуется никакой – только общее задание частоты вращения.

Минусы этого двигателя тоже есть: напрямую от сети он крутиться не может, так как, в отличие от классических синхронных машин, ВИД НВ не имеет асинхронной пусковой обмотки на роторе. Кроме того, он сложнее по конструкции, чем обычный ВИД СВ (SRD).

На основе данного двигателя мы также сделали несколько успешных проектов. Например, один из них – это серия приводов насосов и вентиляторов для районных теплостанций г. Москвы мощностью 315-1200кВт (ссылка на проект). Это низковольтные (380В) ВИД НВ с резервированием, где одна машина «разбита» на 2, 4 или 6 независимых трехфазных секций. На каждую секцию ставится свой однотипный преобразователь с векторным бездатчиковым управлением. Таким образом можно легко наращивать мощность на базе однотипной конструкции преобразователя и двигателя. При этом часть преобразователей подключено к одному вводу питания районной теплостанции, а часть к другому. Поэтому если происходит «моргушка питания» по одному из вводов питания, то привод не встает: половина секций кратковременно работают в перегрузке, пока питание не восстановится. Как только оно восстанавливается, на ходу в работу автоматически вводятся отдыхавшие секции. Вообще, наверное, этот проект заслуживал бы отдельной статьи, поэтому пока про него закончу, вставив фото двигателя и преобразователей:

К сожалению, двумя словами здесь не обойтись. И общими выводами про то, что у каждого двигателя свои достоинства и недостатки – тоже. Потому что не рассмотрены самые главные качества – массогабаритные показатели каждого и типов машин, цена, а также их механические характеристики и перегрузочная способность. Оставим нерегулируемый асинхронный привод крутить свои насосы напрямую от сети, тут ему конкурентов нет. Оставим коллекторные машины крутить дрели и пылесосы, тут с ними в простоте регулирования тоже потягаться сложно.

Давайте рассмотрим регулируемый электропривод, режим работы которого – длительный. Коллекторные машины здесь сразу исключаются из конкуренции по причине ненадежности коллекторного узла. Но остались еще четыре – синхронный, асинхронный, и два типа вентильно-индукторных. Если мы говорим о приводе насоса, вентилятора и чего-то похожего, что используется в промышленности и где масса и габариты особо не важны, то здесь из конкуренции выпадают синхронные машины. Для обмотки возбуждения требуются контактные кольца, что является капризным элементом, а постоянные магниты очень дороги. Конкурирующими вариантами остаются асинхронный привод и вентильно-индукторные двигатели обоих типов.

Как показывает опыт, все три типа машин успешно применяются. Но – асинхронный привод невозможно (или очень сложно) секционировать, т.е. разбить мощную машину на несколько маломощных. Поэтому для обеспечения большой мощности асинхронного преобразователя требуется делать его высоковольтным: ведь мощность – это, если грубо, произведение напряжения на ток. Если для секционируемого привода мы можем взять низковольтный преобразователь и наставить их несколько, каждый на небольшой ток, то для асинхронного привода преобразователь должен быть один. Но не делать же преобразователь на 500В и ток 3 килоампера? Это провода нужны с руку толщиной. Поэтому для увеличения мощности повышают напряжение и снижают ток. А высоковольтный преобразователь – это совсем другой класс задачи. Нельзя просто так взять силовые ключи на 10кВ и сделать из них классический инвертор на 6 ключей, как раньше: и нет таких ключей, а если есть, они очень дороги. Инвертор делают многоуровневым, на низковольтных ключах, соединенных последовательно в сложных комбинациях. Такой инвертор иногда тянет за собой специализированный трансформатор, оптические каналы управления ключами, сложную распределенную систему управления, работающую как одно целое… В общем, сложно всё у мощного асинхронного привода. При этом вентильно-индукторный привод за счет секционирования может «отсрочить» переход на высоковольтный инвертор, позволяя сделать привода до единиц мегаватт от низковольтного питания, выполненные по классической схеме. В этом плане ВИПы становятся интереснее асинхронного привода, да еще и обеспечивают резервирование. С другой стороны, асинхронные привода работают уже сотни лет, двигатели доказали свою надежность. ВИПы же только пробивают себе дорогу. Так что здесь надо взвесить много факторов, чтобы выбрать для конкретной задачи наиболее оптимальный привод.

Но всё становится еще интереснее, когда речь заходит о транспорте или о малогабаритных устройствах. Там уже нельзя беспечно относиться к массе и габаритам электропривода. И вот там уже нужно смотреть на синхронные машины с постоянными магнитами. Если посмотреть только на параметр мощности деленной на массу (или размер), то синхронные машины с постоянными магнитами вне конкуренции. Отдельные экземпляры могут быть в разы меньше и легче, чем любой другой «безмагнитный» привод переменного тока. Но здесь есть одно опасное заблуждение, которое я сейчас постараюсь развеять.

Если синхронная машина в три раза меньше и легче – это не значит, что для электротяги она подходит лучше. Всё дело в отсутствии регулировки потока постоянных магнитов. Поток магнитов определяет ЭДС машины. На определенной частоте вращения ЭДС машины достигает напряжения питания инвертора и дальнейшее повышение частоты вращения становится затруднительно. Тоже самое касается и повышения момента. Если нужно реализовать больший момент, в синхронной машине нужно повышать ток статора – момент возрастет пропорционально. Но более эффективно было бы повысить и поток возбуждения – тогда и магнитное насыщение железа было бы более гармоничным, а потери были бы ниже. Но опять же поток магнитов повышать мы не можем. Более того, в некоторых конструкциях синхронных машин и ток статора нельзя повышать сверх определенной величины – магниты могут размагнититься. Что же получается? Синхронная машина хороша, но только лишь в одной единственной точке – в номинальной. С номинальной частотой вращения и номинальным моментом. Выше и ниже – всё плохо. Если это нарисовать, то получится вот такая характеристика частоты от момента (красным):

На рисунке по горизонтальной оси отложен момент двигателя, по вертикальной – частота вращения. Звездочкой отмечена точка номинального режима, например, пусть это будет 60кВт. Заштрихованный прямоугольник – это диапазон, где возможно регулирование синхронной машины без проблем – т.е. «вниз» по моменту и «вниз» по частоте от номинала. Красной линией отмечено, что можно выжать из синхронной машины сверх номинала – небольшое повышение частоты вращения за счет так называемого ослабления поля (на самом деле это создание лишнего реактивного тока по оси d двигателя в векторном управлении), а также показана некоторая возможная форсировка по моменту, чтобы было безопасно для магнитов. Всё. А теперь давайте поставим эту машину в легковое транспортное средство без коробки передач, где батарея рассчитана на отдачу 60кВт. Желаемая тяговая характеристика изображена синим. Т.е. начиная с самой низкой скорости, скажем, с 10км/ч привод должен развивать свои 60кВт и продолжать их развивать вплоть до максимальной скорости, скажем 150км/ч. Синхронная машина и близко не лежала: её момента не хватит даже чтобы заехать на бордюр у подъезда (или на поребрик у парадной, для полит. корректности), а разогнаться машина сможет лишь до 50-60км/ч.

Что же это значит? Синхронная машина не подходит для электротяги без коробки передач? Подходит, конечно же, просто надо по-другому её выбрать. Вот так:


Надо выбрать такую синхронную машину, чтобы требуемый тяговый диапазон регулирования был весь внутри её механической характеристики. Т.е. чтобы машина одновременно могла развить и большой момент, и работать на большой частоте вращения. Как вы видите из рисунка… установленная мощность такой машины будет уже не 60кВт, а 540кВт (можно посчитать по делениям). Т.е. в электромобиль с батареей на 60кВт придется установить синхронную машину и инвертор на 540кВт, просто чтобы «пройти» по требуемому моменту и частоте вращения.

Конечно же, так как описано, никто не делает. Никто не ставит машину на 540кВт вместо 60кВт. Синхронную машину модернизируют, пытаясь «размазать» её механическую характеристику из оптимума в одной точке вверх по скорости и вниз по моменту. Например, прячут магниты в железо ротора (делают инкорпорированными), это позволяет не бояться размагнитить магниты и ослаблять поле смелее, а также перегружать по току побольше. Но от таких модификаций синхронная машина набирает вес, габариты и становится уже не такой легкой и красивой, какой она была раньше. Появляются новые проблемы, такие как «что делать, если в режиме ослабления поля инвертор отключился». ЭДС машины может «накачать» звено постоянного тока инвертора и выжечь всё. Или что делать, если инвертор на ходу пробился — синхронная машина замкнется и может токами короткого замыкания убить и себя, и водителя, и всю оставшуюся живой электронику — нужны схемы защиты и т.п.

Поэтому синхронная машина хороша там, где большого диапазона регулирования не требуется. Например, в сегвее, где скорость с точки зрения безопасности может быть ограничена на 30км/ч (или сколько там у него?). А еще синхронная машина идеальна для вентиляторов: у вентилятора сравнительно мало изменяется частота вращения, от силы раза в два – больше особо нет смысла, так как воздушный поток ослабевает пропорционально квадрату скорости (примерно). Поэтому для небольших пропеллеров и вентиляторов синхронная машина – это то, что нужно. И как раз она туда, собственно, успешно ставится.

Тяговую кривую, изображенную на рисунке синим цветом, испокон веков реализуют двигатели постоянного тока с регулируемым возбуждением: когда ток обмотки возбуждения изменяют в зависимости от тока статора и частоты вращения. При увеличении частоты вращения уменьшается и ток возбуждения, позволяя машине разгоняться выше и выше. Поэтому ДПТ с независимым (или смешанным) управлением возбуждением классически стоял и до сих пор стоит в большинстве тяговых применений (метро, трамваи и т.п.). Какая же электрическая машина переменного тока может с ним поспорить?

К такой характеристике (постоянства мощности) могут лучше приблизиться двигатели, у которых регулируется возбуждение. Это асинхронный двигатель и оба типа ВИПов. Но у асинхронного двигателя есть две проблемы: во-первых, его естественная механическая характеристика – это не кривая постоянства мощности. Потому что возбуждение асинхронного двигателя осуществляется через статор. А поэтому в зоне ослабления поля при постоянстве напряжения (когда на инверторе оно закончилось) подъем частоты в два раза приводит к падению тока возбуждения в два раза и моментоообразующего тока тоже в два раза. А так как момент на двигателе – это произведение тока на поток, то момент падает в 4 раза, а мощность, соответственно, в два. Вторая проблема – это потери в роторе при перегрузке с большим моментом. В асинхронном двигателе половина потерь выделяется в роторе, половина в статоре. Для уменьшения массогабаритных показателей на транспорте часто применяется жидкостное охлаждение. Но водяная рубашка эффективно охладит лишь статор, за счет явления теплопроводности. От вращающегося ротора тепло отвести значительно сложнее – путь отвода тепла через «теплопроводность» отрезан, ротор не касается статора (подшипники не в счет). Остается воздушное охлаждение путем перемешивая воздуха внутри пространства двигателя или излучение тепла ротором. Поэтому ротор асинхронного двигателя получается своеобразным «термосом» — единожды перегрузив его (сделав динамичный разгон на машине), требуется долгое время ждать остывания ротора. А ведь его температуру еще и не измерить… приходится только предсказывать по модели.

Здесь нужно отметить, как мастерски обе проблемы асинхронного двигателя обошли в Тесла в своей Model S. Проблему с отводом тепла из ротора они решили… заведя во вращающийся ротор жидкость (у них есть соответствующий патент, где вал ротора полый и он омывается внутри жидкостью, но достоверно я не знаю, применяют ли они это). А вторую проблему с резким уменьшением момента при ослаблении поля… они не решали. Они поставили двигатель с тяговой характеристикой, почти как у меня нарисована для «избыточного» синхронного двигателя на рисунке выше, только у них не 540кВт, а 300кВт. Зона ослабления поля в тесле очень маленькая, где-то два крата. Т.е. они поставили «избыточный» для легкового автомобиля двигатель, сделав вместо бюджетного седана по сути спорт-кар с огромной мощностью. Недостаток асинхронного двигателя обратили в достоинство. Но если бы они попытались сделать менее «производительный» седан, мощностью 100кВт или меньше, то асинхронный двигатель, скорее всего, был бы точно таким же (на 300кВт), просто его искусственно задушили электроникой бы под возможности батареи.

А теперь ВИПы. Что могут они? Какая тяговая характеристика у них? Про ВИД СВ я точно сказать не могу – это по своему принципу работы нелинейный двигатель, и от проекта к проекту его механическая характеристика может сильно меняться. Но в целом он скорее всего лучше асинхронного двигателя в плане приближения к желаемой тяговой характеристике с постоянством мощности. А вот про ВИД НВ я могу сказать подробнее, так как мы на фирме им очень плотно занимаемся. Видите вон ту желаемую тяговую характеристику на рисунке выше, которая нарисована синим цветом, к которой мы хотим стремиться? Это на самом деле не просто желаемая характеристика. Это реальная тяговая характеристика, которую мы по точкам по датчику момента сняли для одного из ВИД НВ. Так как ВИД НВ имеет независимое внешнее возбуждение, то его качества наиболее приближены к ДПТ НВ, который тоже может сформировать такую тяговую характеристику за счет регулирования возбуждения.

Так что же? ВИД НВ – идеальная машина для тяги без единой проблемы? На самом деле нет. Проблем у него тоже куча. Например, его обмотка возбуждения, которая «висит» между пакетами статора. Хоть она и не вращается, от неё тоже сложно отводить тепло – получается ситуация почти как ротором асинхронника, лишь немного получше. Можно, в случае надобности, «кинуть» трубку охлаждения со статора. Вторая проблема – это завышенные массогабаритные показатели. Глядя на рисунок ротора ВИД НВ, можно видеть, что пространство внутри двигателя используется не очень эффективно – «работают» только начало и конец ротора, а середина занята обмоткой возбуждения. В асинхронном двигателе, например, вся длина ротора, всё железо «работает». Сложность сборки – засунуть обмотку возбуждения внутрь пакетов ротора надо еще суметь (ротор делается разборным, соответственно, есть проблемы с балансировкой). Ну и просто массогабаритные характеристики пока получаются не очень-то выдающимися по сравнению с теми же асинхронными двигателями Тесла, если накладывать тяговые характеристики друг на друга.
А также есть еще общая проблема обоих типов ВИД. Их ротор – пароходное колесо. И на высоких частотах вращения (а высокая частота нужна, так высокочастотные машины при той же мощности меньше тихоходных) потери от перемешивания воздуха внутри становятся очень значительными. Если до 5000-7000 об/мин ВИД еще можно сделать, то на 20000 об/мин это получится большой миксер. А вот асинхронный двигатель на такие частоты и гораздо выше сделать вполне можно за счет гладкого статора.

Так что же лучше всего в итоге для электротяги? Какой двигатель самый лучший?
Понятия не имею. Все плохие. Надо изобретать дальше. Но мораль статьи такова – если вы хотите сравнить между собой разные типы регулируемого электропривода, то нужно сравнивать на конкретной задаче с конкретной требуемой механической характеристикой по всем-всем параметрам, а не просто по мощности. Также в этой статье не рассмотрены еще куча нюансов сравнения. Например, такой параметр как длительность работы в каждой из точек механической характеристики. На максимальном моменте обычно ни одна машина не может работать долго – это режим перегрузки, а на максимальной скорости очень плохо себя чувствуют синхронные машины с магнитами – там у них огромные потери в стали. А еще интересный параметр для электротяги – потери при движении выбегом, когда водитель отпустил газ. Если ВИПы и асинхронные двигатели будут крутиться как болванки, то у синхронной машины с постоянными магнитами останутся почти номинальные потери в стали из-за магнитов. И так далее, и так далее…
Поэтому нельзя вот так просто взять и выбрать лучший электропривод.

UPD:
Обобщая замечания в комментариях, необходимо дополнить некоторые важные, как оказалось, вещи, которые я изначально опустил как маловажные.
1. Асинхронные двигатели до эры преобразователей частоты регулировали за счет применения так называемого фазного ротора — когда ротор делался в виде обмотки, а не беличьей клетки, а через контактные кольца (как у синхронной машины) фазы ротора выводились наружу. Включая в цепь ротора резисторы можно было мягко пускать АД и безопасно регулировать частоту вращения, изменяя сопротивление. Проблема в том, что очень много энергии при этом терялось в резисторах — иногда до половины от подводимой к приводу мощности.

2. В статье не упомянуты синхронные реактивные машины и их совмещение с синхронными машинами с постоянными магнитами. Если сделать ротор синхронной машины с магнитами явнополюсным — например таким, как нарисован ротор SRD двигателя на gif анимации, то развиваемый момент может быть не только активным, но и реактивным — как у SRD. Подбирая оптимальное сочетание активного и реактивного момента можно частично исключить проблемы классической синхронной машины с магнитами, значительно расширив диапазон работы с постоянством мощности. Получается некий гибрид реактивной машины и синхронной с магнитами.

3. Шаговые двигатели не рассмотрены, потому что по принципу действия они в первом приближении схожи либо с синхронными машинами с постоянными магнитами, либо с SRD двигателями — зависит от конкретного типа шаговика. Только шаговые двигатели, в отличие от «силовых» приводов, имеют гораздо большее количество пар полюсов (зубцов) для увеличения коэффициента электрической редукции: чтобы одному периоду тока соответствовало меньшее угловое перемещение вала. Управление шаговиками обычно тривиальное — последовательный перебор фаз друг за другом (шаги). Более продвинутые системы дробят шаг, подавая в двигатель «микрошаги» — по сути приближая управление к синусоидальному. Еще более продвинутые используют датчик положения ротора и применяют полноценное векторное управление. Но в таком случае и машину нужно делать более качественную, а называться в сумме это будет уже настоящим сервоприводом.

Управление шаговым двигателем | Электроника для всех

Рано или поздно, при постройке робота, возникнет нужда в точных перемещениях, например, когда захочется сделать манипулятор. Вариантов тут два — сервопривод, с обратными связями по току, напряжению и координате, либо шаговый привод. Сервопривод экономичней, мощней, но при этом имеет весьма нетривиальную систему управления и под силу далеко не всем, а вот шаговый двигатель это уже ближе к реальности.

Шаговый двигатель это, как понятно из его названия, двигатель который вращается дискретными перемещениями. Достигается это за счет хитрой формы ротора и двух (реже четырех) обмоток. В результате чего, путем чередования направления напряжения в обмотках можно добиться того, что ротор будет по очереди занимать фиксированные значения.
В среднем, у шагового двигателя на один оборот вала, приходится около ста шагов. Но это сильно зависит от модели двигателя, а также от его конструкции. Кроме того, существуют полушаговый и микрошаговый режим, когда на обмотки двигателя подают ШИМованное напряжение, заставляющее ротор встать между шагами в равновесном состоянии, которое поддерживается разным уровнем напряжения на обмотках. Эти ухищрения резко улучшают точность, скорость и бесшумность работы, но снижается момент и сильно увеличивается сложность управляющей программы — надо ведь расчитывать напряжения для каждого шага.

Один из недостатков шаговиков, по крайней мере для меня, это довольно большой ток. Так как на обмотки напруга подается все время, а такого явления как противоЭДС в нем, в отличии от коллекторных двигателей, не наблюдается, то, по сути дела, мы нагружаемся на активное сопротивление обмоток, а оно невелико. Так что будь готов к тому, что придется городить мощный драйвер на MOSFET транзисторах или затариваться спец микросхемами.

Типы шаговых двигателей
Если не углубляться во внутреннюю конструкцию, число шагов и прочие тонкости, то с пользовательской точки зрения существует три типа:

  • Биполярный — имеет четыре выхода, содержит в себе две обмотки.
  • Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины.
  • Четырехобмоточный — имеет четыре независимые обмотки. По сути дела представляет собой тот же униполярник, только обмотки его разделены. Вживую не встречал, только в книжках.
Униполярный отличается от биполярного только тем, что ему нужна куда более простая схема управления, а еще у него значительно слабее момент. Так как работает он только половинами обмоток. НО! Если оторвать нафиг средний вывод униполярника, то мы получим обычный биполярный. Определить какой из выводов средний не сложно, достаточно прозвонить сопротивление тестером. От среднего до крайних сопротивление будет равно ровно половине сопротивления между крайних выводов. Так что если тебе достался униполярник, а схема подключения для биполярного, то не парься и отрывай средний провод.

Где взять шаговый двигатель.
Вообще шаговики встречаются много где. Самое хлебное место — пятидюймовые дисководы и старые матричные принтеры. Еще ими можно поживиться в древних винчестерах на 40Мб, если, конечно, рука поднимется покалечить такой антиквариат.
А вот в трехдюймовых флопарях нас ждет облом — дело в том, что там шаговик весьма ущербной конструкции — у него только один задний подшипник, а передним концом вал упирается в подшипник закрепленный на раме дисковода. Так что юзать его можно только в родном креплении. Либо городить высокоточную крепежную конструкцию. Впрочем, тебе может повезет и ты найдешь нетипичный флопарь с полноценным движком.

Схема управления шаговым двигателем
Я разжился контроллерами шаговиков L297 и мощным сдвоенным мостом L298N.

Лирическое отступление, при желании можно его пропустить

Именно на нем был сделан мой первый силовой блок робота. Кроме него там еще два источника питания на 5 и на 3.3 вольта, а также контроллер двух движков на L293 (такой же как и во второй реализации силового блока). В качестве контроллера тогда был выбран АТ89С2051. Это антикварный контроллер архитектуры MSC-51 в котором из периферии только два таймера, порты да UART, но я его люблю нежно и трепетно, так как первая любовь не проходит никогда =). К сожалению исходники его мега прошивки канули в Лету вместе с убившимся винтом, так что я не могу поделиться теми извращенскими алгоритмами, которые были туда засунуты. А там был и двухканальный ШИМ, и I2C Slave протокол, и контроль за положением шаговика с точным учетом его перемещения. Короче, знатный был проект. Ныне валяется трупом, т.к. все лень запустить Keil uVision и написать новую прошивку. Да и ассемблер С51 я стал уже забывать.


Схема включения L298N+L297 до смешного проста — надо тупо соединить их вместе. Они настолько созданы друг для друга, что в даташите на L298N идет прямой отсыл к L297, а в доке на L297 на L298N.

Осталось только подключить микроконтроллер.
  • На вход CW/CCW подаем направление вращения — 0 в одну сторону, 1 — в другую.
  • на вход CLOCK — импульсы. Один импульс — один шаг.
  • вход HALF/FULL задает режим работы — полный шаг/полушаг
  • RESET сбрасывает драйвер в дефолтное состояние ABCD=0101.
  • CONTROL определяет каким образом задается ШИМ, если он в нуле, то ШИМ образуется посредством выходов разрешения INh2 и INh3, а если 1 то через выходы на драйвер ABCD. Это может пригодится, если вместо L298 у которой есть куда подключать входы разрешения INh2/INh3 будет либо самодельный мост на транзисторах, либо какая-либо другая микросхема.
  • На вход Vref надо подать напряжение с потенциометра, которое будет определять максимальную перегрузочную способность. Подашь 5 вольт — будер работать на пределе, а в случае перегрузки сгорит L298, подашь меньше — при предельном токе просто заглохнет. Я вначале тупо загнал туда питание, но потом передумал и поставил подстроечный резистор — защита все же полезная вещь, плохо будет если драйвер L298 сгорит.
    Если же на защиту пофигу, то можешь заодно и резисторы, висящие на выходе sense выкинуть нафиг. Это токовые шунты, с них L297 узнает какой ток течет через драйвер L298 и решает сдохнет он и пора отрубать или еще протянет. Там нужны резисторы помощней, учитывая что ток через драйвер может достигать 4А, то при рекомендуемом сопротивлении в 0.5 Ом, будет падение напряжения порядка 2 вольт, а значит выделяемая моща будет около 4*2=8 Вт — для резистора огого! Я поставил двухваттные, но у меня и шаговик был мелкий, не способный схавать 4 ампера.

Правда на будущее, когда я буду делать роботу шаговый привод, я возьму не связку L297+L293, а микруху L6208 которая может и чуть слабей по току, но зато два в одном! Сразу подключай двигатель и работай. Если же их покупать, то на L6208 получается даже чуть дешевле.

Документация по микросхемам:

О шаговых двигателях и том, как их есть


Что такое шаговый двигатель для ЧПУ станка и для чего нужен?

Шаговый двигатель — это машина, преобразующая электрическую энергию (она поступает из электросети) в механическую. Происходит это благодаря выполнению дискретных перемещений ротора. После каждого действия динамической части ее положение фиксируется.

Все передвижения в отдельности имеют одинаковую величину и образуют полный оборот (цикл).

Какие шаговые двигатели нужны для ЧПУ-станка

Разновидность двигателя не менее важна, чем его технические характеристики. Каждый вид имеет свои особенности.

  • Биполярные. Их чаще всего используют на станках с ЧПУ. Основное преимущество разновидности — возможность установить новый драйвер, если предыдущий вышел из строя. При этом даже на малых оборотах сохранится высокое удельное сопротивление.
  • Трехфазные. Характеризуются высокой скоростью. Их выбирают в том случае, если важна именно скорость.
  • Униполярные. Включают в себя несколько разновидностей биполярных. Двигатели отличаются друг от друга, а их подбор осуществляется в зависимости от вида обмотки.

Типы двигателей

Перед покупкой необходимо определиться с подходящей модификацией. Одними из самых распространенных являются следующие типы устройств:

  • Биполярные. Считаются наиболее популярными моделями для ЧПУ. Отличаются высоким удельным сопротивлением на небольших оборотах. К тому же при поломке старого драйвера можно без проблем подобрать новый;
  • Униполярные. Разновидность биполярных шаговых двигателей. В зависимости от исполнения подключение обмоток может быть разным;
  • Трехфазные. Основное преимущества – большая скорость по сравнению с биполярными аналогами. Использование трехфазных двигателей оптимально в случаях, когда нужна высокая скорость вращения.

При выборе двигателя не лишним будет изучить характеристики готовых станков, близких по характеристикам к разрабатываемому оборудованию.

Как подобрать шаговый двигатель для создания ЧПУ-станка своими руками?

Подбор оптимального двигателя проводится на основании нескольких параметров.

Индуктивность

Первым делом вычисляют квадратный корень из индуктивности обмотки. Полученное число умножается на 32. Итоговое значение сравнивается с напряжением источника, который питает драйвер. Эти показатели не могут значительно отличаться друг от друга.

Мотор будет работать слишком громко и перегреваться в случае разницы более 30 %.

Высокая индуктивность помогает сохранить высокий крутящий момент. Для двигателя с высокой индуктивностью важно подобрать драйвер с большим напряжением. Только так мотор сможет полноценно работать.

Крутящий момент и скорость

Чтобы выбрать идеально подходящий мотор, нужно составить график скорости и крутящего момента (точнее, зависимости одного параметра от другого). Готовый график показывает, соответствует ли выбранный мотор заданным техническим параметрам.

Геометрические параметры

Рекомендуется проанализировать следующие показатели:

  1. Момент инерции роторов.
  2. Номинальный ток внутри фазы.
  3. Максимальное число статического синхронизирующего момента.
  4. Общая характеристика сопротивления фаз омического типа.

ВАЖНО! При выборе двигателя особое внимание уделяется фланцу, диаметру вала и длине самого двигателя.

Шаговые двигатели

Шаговые двигатели относятся к классу бесколлекторных двигателей постоянного тока. Как и любые бесколлекторные двигатели, они имеют высокую надежность и большой срок службы, что позволяет использовать их в критичных, например, индустриальных применениях.

По сравнению с обычными двигателями постоянного тока, шаговые двигатели требуют значительно более сложных схем управления, которые должны выполнять все коммутации обмоток при работе двигателя. Выбор контроллера для управления шаговым двигателем описан в статье Контроллеры ШД. Кроме того, сам шаговый двигатель – дорогостоящее устройство, поэтому там, где точное позиционирование не требуется, обычные коллекторные двигатели имеют заметное преимущество. Справедливости ради следует отметить, что в последнее время для управления коллекторными двигателями все чаще применяют контроллеры, которые по сложности практически не уступают контроллерам шаговых двигателей.

Одним из главных преимуществ шаговых двигателей является возможность осуществлять точное позиционирование и регулировку скорости без датчика обратной связи. Это очень важно, так как такие датчики могут стоить намного больше самого двигателя. Однако это подходит только для систем, которые работают при малом ускорении и с относительно постоянной нагрузкой. В то же время системы с обратной связью способны работать с большими ускорениями и даже при переменном характере нагрузки. Если нагрузка шагового двигателя превысит его момент, то информация о положении ротора теряется и система требует базирования с помощью, например, концевого выключателя или другого датчика. Системы с обратной связью не имеют подобного недостатка.

При проектировании конкретных систем приходится делать выбор между сервомотором и шаговым двигателем. Когда требуется прецизионное позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением. Как и для обычных двигателей, для повышения момента может быть использован понижающий редуктор. Однако для шаговых двигателей редуктор не всегда подходит.

В отличие от коллекторных двигателей, у которых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому же, шаговые двигатели имеют гораздо меньшую максимальную скорость по сравнению с коллекторными двигателями, что ограничивает максимальное передаточное число и, соответственно, увеличение момента с помощью редуктора. Готовые шаговые двигатели с редукторами хотя и существуют, однако являются экзотикой. Еще одним фактом, ограничивающим применение редуктора, является присущий ему люфт. Возможность получения низкой частоты вращения часто является причиной того, что разработчики, будучи не в состоянии спроектировать редуктор, применяют шаговые двигатели неоправданно часто. В то же время коллекторный двигатель имеет более высокую удельную мощность, низкую стоимость, простую схему управления, и вместе с одноступенчатым червячным редуктором он способен обеспечить тот же диапазон скоростей, что и шаговый двигатель. К тому же, при этом обеспечивается значительно больший момент. Приводы на основе коллекторных двигателей очень часто применяются в технике военного назначения, а это косвенно говорит о хороших параметрах и высокой надежности таких приводов. Да и в современной бытовой технике, автомобилях, промышленном оборудовании коллекторные двигатели распространены достаточно сильно. Тем не менее, для шаговых двигателей имеется своя, хотя и довольно узкая, сфера применения, где они незаменимы.

Виды шаговых двигателей:

· двигатели с переменным магнитным сопротивлением

· двигатели с постоянными магнитами

· гибридные двигатели

Определить тип двигателя можно даже на ощупь: при вращении вала обесточенного двигателя с постоянными магнитами (или гибридного) чувствуется переменное сопротивление вращению, двигатель вращается как бы щелчками. В то же время вал обесточенного двигателя с переменным магнитным сопротивлением вращается свободно. Гибридные двигатели являются дальнейшим усовершенствованием двигателей с постоянными магнитами и по способу управления ничем от них не отличаются.

Определить тип двигателя можно также по конфигурации обмоток. Двигатели с переменным магнитным сопротивлением обычно имеют три (реже четыре) обмотки с одним общим выводом. Двигатели с постоянными магнитами чаще всего имеют две независимые обмотки. Эти обмотки могут иметь отводы от середины. Иногда двигатели с постоянными магнитами имеют 4 раздельных обмотки. В шаговом двигателе вращающий момент создается магнитными потоками статора и ротора, которые соответствующим образом ориентированы друг относительно друга.

Статор изготовлен из материала с высокой магнитной проницаемостью и имеет несколько полюсов. Полюс можно определить как некоторую область намагниченного тела, где магнитное поле сконцентрировано. Полюса имеют как статор, так и ротор. Для уменьшения потерь на вихревые токи магнитопроводы собраны из отдельных пластин, подобно сердечнику трансформатора. Вращающий момент пропорционален величине магнитного поля, которая пропорциональна току в обмотке и количеству витков. Таким образом, момент зависит от параметров обмоток. Если хотя бы одна обмотка шагового двигателя запитана, ротор принимает определенное положение. Он будет находится в этом положении до тех пор, пока внешний приложенный момент не превысит некоторого значения, называемого моментом удержания. После этого ротор повернется и будет стараться принять одно из следующих положений равновесия.

Биполярные и униполярные шаговые двигатели В зависимости от конфигурации обмоток двигатели делятся на биполярные и униполярные. Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля должна переполюсовывается драйвером. Для такого типа двигателя требуется мостовой драйвер, или полумостовой с двухполярным питанием. Всего биполярный двигатель имеет две обмотки и, соответственно, четыре вывода.Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера. Драйвер должен иметь только 4 простых ключа. Таким образом, в униполярном двигателе используется другой способ изменения направления магнитного поля.

Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов Иногда униполярные двигатели имеют раздельные 4 обмотки, по этой причине их ошибочно называют 4-х фазными двигателями. Каждая обмотка имеет отдельные выводы, поэтому всего выводов 8. При соответствующем соединении обмоток такой двигатель можно использовать как униполярный или как биполярный. Униполярный двигатель с двумя обмоткими и отводами тоже можно использовать в биполярном режиме, если отводы оставить неподключенными. В любом случае ток обмоток следует выбирать так, чтобы не превысить максимальной рассеиваемой мощности. Если сравнивать между собой биполярный и униполярный двигатели, то биполярный имеет более высокую удельную мощность. При одних и тех же размерах биполярные двигатели обеспечивают больший момент.

6-ти выводные шаговые двигатели

Для подключения 6-ти выводного шагового двигателя к классическому биполярному драйверу может быть выбран один из двух способов — униполярное либо биполярное подключение обмоток двигателя.

Униполярное подключение

Если требуется вращать двигатель на средних и высоких скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать центральный отвод. Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге.

Биполярное подключение

Если требуется вращать двигатель на низких скоростях (из диапазона рабочих скоростей), лучший тип подключения — биполярное. Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге. При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше. Это можно легко понять из следующих рассуждений. Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр.2 * R

При последовательном включении обмоток потребляемая мощность становится Iбиполяр.2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = Iбиполяр.2 * 2* R, откуда

Iбиполяр.= Iуниполяр. / √2, т.е.

Iбиполяр.= 0.707 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tбиполяр. = 1.4 * Tуниполяр.

8-ми выводные шаговые двигатели

Для подключения 8-ми выводного шагового двигателя (то есть двигателя с четырьмя обмотками) к классическому биполярному драйверу может быть выбран один из трех способов — униполярное, последовательное либо параллельное подключение обмоток двигателя.

Если требуется вращать двигатель на средних скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать лишь две из четырех обмоток.

Наиболее эффективно для низкоскоростного диапазона рабочих скоростей двигателя.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр.2 * R

При последовательном включении обмоток потребляемая мощность становится Iпослед.2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = Iпослед.2 * 2* R, откуда

Iпослед.= Iуниполяр. / √2, т.е.

Iпослед.= 0.707 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tпослед. = 1.4 * Tуниполяр.

Наиболее эффективно использование параллельного включения обмоток для высоких скоростей.

При таком типе подключения нужно увеличить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при параллельном включении обмоток требуемый ток — 2.8 А, то есть в 1.4 раза больше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При параллельном включении обмоток сопротивление объединенной обмотки уменьшаетсяв два раза (0.5 R).

Потребляемая мощность при униполярном включении — Iуниполяр.2 * R

При параллельнном включении обмоток потребляемая мощность становится 0.5 * Iбиполяр.2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = 0.5 * Iбиполяр. 2 * R, откуда Iбиполяр..= Iуниполяр. /√2, т.е.

Iбиполяр.= 1.4 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением величины тока, пропускаемого через обмотки. Но так как ток увеличился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tбиполяр. = 1.4 * Tуниполяр.

При выборе шагового двигателя одной из важнейших характеристик является его скоростные качества, то есть зависимость момента на валу от скорости вращения. Сравнить и оценить эту характеристику можно зная значения сопротивления и индуктивности обмоток выбираемого двигателя. Чем больше соотношение R/L тем быстрее нарастает ток в обмотках и тем большую скорость вращения можно достичь без существенного падения момента. Объясняется это тем, что эквивалентная схема представляет собой последовательно соединенные индуктивность и омическое сопротивление, возникающая в цепи ЭДС самоиндукции препятствует изменению тока в цепи, замедляя его возрастание, а также спад тока при размыкании цепи. Ток не может вырасти мгновенно до номинального значения, а следовательно, крутящий момент двигателя тоже нарастает не мгновенно, а по экспоненте. При увеличении скорости вращения не только увеличивается скорость коммутации обмоток, но также уменьшается время, на которое подается напряжение на обмотку. При критической скорости ток в обмотке двигателя еще не успевает вырасти до номинального значения, а напряжение с обмотки уже снимается. Происходит снижение крутящего момента, двигатель начинает пропускать шаги.

Интернет магазин чпу станков хобби класса и комплектации

Расчет шаговых двигателей для ЧПУ

Определение силы

Чтобы определиться с выбором мотора, нужно просчитать его шаговые параметры. Например, определить силу трения (она зависит от тех материалов, которые используются при работе на станке). Для расчета силы трения коэффициент трения умножается на вес системы движения.

СПРАВКА! Для расчета инерции масса стола (она считается вместе с деталью) умножается на необходимый показатель ускорения.

Полная сила сопротивления рассчитывается следующим образом: складываются силы резания, инерции и трения.

Расчет мощности

Мощность мотора рассчитывается по следующей формуле: F = ma. В данной формуле F — сила (ее измеряют в ньютонах), которая прикладывается для приведения объекта в движение; m — масса объекта, a — нужное ускорение.

Расчет редукции оборотов

Эта характеристика высчитывается исходя из начальных оборотов привода и максимального показателя скорости, при которой перемещается стол.

К примеру, скорость равна 2000 мм/мин, а шаг винта передачи — 20 мм. Тогда редукция оборотов будет равняться 100 (2000/20).

Типы шаговых двигателей

Основные виды шаговых двигателей:

• с переменным магнитным сопротивлением

• с постоянными магнитами

• гибридные.

Шаговые двигатели с переменным магнитным сопротивлением

У двигателей с переменным магнитным сопротивлением в роторе нет постоянных магнитов. Их ротор выполнен из магнитомягкого материала и имеет зубчатую форму. Магнитный поток замыкается через ближайшие к полюсам статора зубцы.

Будет интересно➡ Что такое асинхронный двигатель и принцип его действия

Зубцы притягиваются к полюсам. Этим и обеспечивается вращение. При тех же размерах, двигатели с переменным магнитным сопротивлением имеют меньший крутящий момент, чем другие типы шаговых двигателей. Применяются они довольно редко.

Двигатели с постоянными магнитами

У шаговых двигателей этого вида ротор содержит постоянные магниты. Общий принцип действия шагового двигателя идентичен двигателям с постоянным магнитом. Только в реальных двигателях магнитов больше. Вот пример двигателя с тремя парами полюсов ротора. У реальных двигателей с постоянными магнитами число шагов на оборот доходит до 48, что соответствует углу шага 7,5 °.

Гибридные двигатели

Гибридные двигатели обеспечивают меньшую величину шага, больший момент и скорость. Число шагов на оборот для такого типа двигателей доходит до 400 (угол шага 0,9°). При этом они более сложные в изготовлении и более дорогие. Я не хочу забивать читателю голову конструкцией этих двигателей. У них есть и зубчатый ротор, и постоянные магниты.

По принципу действия гибридные двигатели эквивалентны двигателям с постоянными магнитами, но с гораздо большим числом полюсов. Это самый распространенный тип шаговых двигателей.

УНИПОЛЯРНЫЙ ШАГОВЫЙ ДВИГАТЕЛЬ

Униполярные шаговые двигатели, так же как и биполярные, имеют две обмотки, и каждая из них имеет центральный отвод. В зависимости от требуемого направления магнитного поля, в работу включается соответствующая половина обмотки, что достигается простым переключением ключей и существенно упрощает схему драйвера.

Подобный механизм позволяет в качестве управляющей системы использовать простейший униполярный драйвер с четырьмя ключами.

Униполярный двухфазный шаговый двигатель имеет шесть выводов. Но так же бывает, что средние отводы катушек внутри соединены, что позволяет шаговому двигателю иметь только пять выводов.

Благодаря простоте в эксплуатации, данные двигатели имеют широкую популярность среди как новичков любителей, так и во многих промышленных отраслях, поскольку униполярный шаговый двигатель является самым примитивным и дешевым способом получить высокоточные угловые движения.

БИПОЛЯРНЫЕ ШАГОВЫЕ ДВИГАТЕЛИ

С биполярными шаговыми двигателями дело обстоит немного иначе. Данные двигатели имеют только одну обмотку в одной фазе. Управляющая схема биполярного двигателя должна быть намного сложнее, чтобы менять направление магнитного поля с целью изменить направление тока в обмотке. Этого можно достигнуть с помощью схемы H-bridge. К тому же, для упрощения задачи можно приобрести несколько драйверных чипов, которые вам помогут.

Биполярные шаговые двигатели, в отличие от униполярных имеют два вывода на одну фазу, ни один из которых не является общим. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

Униполярные шаговые двигатели, в отличие от биполярных, имеют два вывода за фазу, ни одна из которых не является общей. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

ЛИНЕЙНЫЕ ШАГОВЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ

С целью автоматизации некоторых производственных процессов на предприятии, иногда возникает необходимость перемещения объектов в плоскости. Чтобы это сделать, потребуется использовать специальный преобразователь вращательного движения в поступательное, что достигается путем применения кинематики.

При помощи линейных шаговых двигателей можно преобразовать импульсную команду прямо в линейное перемещение, что значительно упростит кинематическую схему всевозможных электрических приводов.


Принципиальная схема работы линейного шагового двигателя

Статор в данном приводе представлен в виде магнитомягкой плиты, а провода подмагничиваются путем работы постоянного магнита.

Зубцовые деления в статоре и подвижной части одинаковые, при этом они могут быть сдвинуты на половину деления в пределах одного провода ротора. Поток подмагничивания и его магнитное сопротивление, в данном случае, не зависят от того, где находится подвижная часть двигателя.

Чтобы переместить объект в плоскости согласно двум координатам, применяют двигатели двухкоординатного типа.

Также в линейных двигателях используется магнитно-воздушная подвеска. Благодаря силе магнитного притяжения ротор притягивается к статору. Далее под ротор сквозь форсунки нагнетают воздух в сжатом виде, вследствие чего появляется сила, отталкивающая ротор от статора.

Так между ними возникает воздушная подушка и ротор висит над статором с наличием минимально зазора. Это и обеспечивает минимум сопротивления движения ротора и высокоточное позиционирование.

Дополнительные рекомендации по выбору

Кроме всех перечисленных показателей, стоит учитывать еще и следующие параметры:

  • Стоимость. Рекомендуется внимательно изучить цену и характеристики моторов. Иногда при одинаковых параметрах разница в цене значительная. Также не стоит ориентироваться на известную фирму. Зачастую за имя производителя добавляется до 30 % стоимости.
  • Сложность настройки. Для начинающих пользователей станков с ЧПУ лучше выбирать механизм попроще. В сложном двигателе можно запутаться и сломать его.
  • Назначение устройства. От того, с какой целью будет применяться станок, зависит и характеристика двигателя.
  • Схема подключения. Она зачастую определяется от количества проводов.
  • Наличие центр-крана. В этом случае обмотка идет совместно с проводами (3 шт.).

При выборе шагового двигателя стоит учитывать все вышеперечисленные параметры. Тогда и мотор прослужит намного дольше, и работать с таким двигателем будет проще и быстрее. При покупке стоит проверять на наличие заводских браков.

Подключение шаговых двигателей

Выбор схемы подключения шагового двигателя зависит от:

  • количества проводов в приводе;
  • способа запуска механизма.

Будет интересно➡ Малоизвестные факты о двигателях постоянного тока

Существующие модели движков имеют 4, 5, 6 или 8 проводов. Прибор с четырьмя проводами можно подключать только к биполярным устройствам. Он оснащен двумя фазными обмотками, каждая из которых имеет два провода. Для пошагового подключения драйвера необходимо определить пары проводов с непрерывной связью с помощью метра.

В механизме с шестью проводами каждая обмотка имеет два провода и центральный кран. Движки этой модели характеризуются высокой мощностью и подключаются как к биполярным, так и к однополярным исполнительным устройствам.

В первом случае используется один центр-кран каждой обмотки и один конец провода.

Во втором случае используются все шесть проводов. Разделение провода осуществляется с помощью измерительного прибора.

Отличие пятипроводного мотора от шестипроводной модели заключается в том, что соединение центральных клемм представляет собой сплошной кабель, который выходит к центральному проводу.

Поскольку отделение одной обмотки от другой без разрывов не представляется возможным, необходимо определить центр провода, после чего соединять его с другими проводниками. Это будет самым безопасным и максимально эффективным решением. Затем движок подключается к сети и проводится проверка его работоспособности.

Для успешной эксплуатации механизма нужно иметь в виду следующие нюансы:

  • Номинальное напряжение производится первичной обмоткой при постоянном токе.
  • Изменение начальной скорости крутящего момента прямо пропорционально изменению тока.
  • Скорость понижения линейного момента на последующих высоких скоростях зависит от индуктивности обмоток и схемы привода.

Типичные схемы подключения ШД

Схема подключения 6-ти выводного шагового двигателя к драйверу GeckoDrive (биполярное последовательное подключение обмоток)

Схема подключения 8-ми выводного ШД с биполярным параллельным соединением обмоток к драйверу GeckoDrive

Схема подключения 8-ми выводного ШД с биполярным последовательным соединением обмоток к драйверу GeckoDrive

Управление шаговыми электродвигателями

Существуют три режима управления шаговым двигателем:

• полношаговый

• полушаговый

• микрошаговый.

Полношаговый режим управления

Первый способ был описан в примерах выше. Это попеременная коммутация фаз, фазы не перекрываются, в каждый момент времени к источнику напряжения подключена только одна фаза.

Способ называется на английском one phase on full step – одна фаза на полный шаг. Точки равновесия ротора совпадают с полюсами статора. Недостатком этого режима является то, что в один и тот же момент используется половина обмоток для биполярного двигателя, и только четверть для униполярного.

Есть вариант полношагового режима управления при котором в одно и то же время включены две фазы. Называется two-phase-on full step – две фазы на полный шаг. При таком способе ротор фиксируется между полюсами статора за счет подачи питания на все обмотки.

полушаговый режим

Это позволяет увеличить крутящий момент двигателя на 40%. Угол шага не меняется, просто ротор в состоянии равновесия смещен на пол шага. Этот способ позволяет от двигателя получить в два раза больше шагов на оборот ротора.

Каждый второй шаг включается одна фаза, а между ними — включаются сразу две.

В результате такой коммутации угловое перемещение шага уменьшается в два раза, или в два раза увеличивается число шагов. Полный момент получить в полушаговом режиме не удается.

Не смотря на это, полушаговый режим используется часто. Уж очень простыми методами он удваивает число шагов двигателя.

Надо помнить, что для обоих режимов справедливо то, что при остановке двигателя со снятием напряжения со всех фаз, ротор двигателя находится в свободном состоянии и может смещаться от механических воздействий.

микрошаговый режми

Чтобы зафиксировать положение ротора, необходимо формировать в обмотках двигателя ток удержания. Этот ток может быть значительно меньше номинального.

Способность шагового двигателя фиксировать свое положение при остановке позволяет обходиться без механических фиксаторов, тормозных систем и т.п.

Управление безколлекторными шд

Для управления шаговым двигателем требуется контроллер. Контроллер, это схема, подающая напряжение к одной из катушек статора. Контроллер изготовлен на базе интегральной микросхемы типа ULN 2003 включающей в себя комплект составных ключей. Каждый ключ имеет на выходе защитные диоды, которые, позволяют подключать индукционные нагрузки, не требуя дополнительной защиты.

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

Будет интересно➡ Что такое трехфазный двигатель и как он работает

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора.

Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Как правильно выбрать для вашего приложения

Выбор правильного двигателя имеет решающее значение для эффективности и производительности ваших приложений управления движением. Может быть сложно выбрать между серводвигателями и шаговыми двигателями, поскольку существует множество соображений: стоимость, крутящий момент, эффективность, скорость, схема и многое другое.

Это помогает сначала понять, что отличает эти двигатели, а также конкретные плюсы и минусы каждого из них. Затем вы можете согласовать возможности двигателя с потребностями вашего приложения.

Различия между серводвигателями и шаговыми двигателями для приложений управления движением

Основное различие между этими двигателями заключается в общем количестве полюсов. Шаговые двигатели имеют большое количество полюсов, обычно от 50 до 100. Серводвигатели имеют малое количество полюсов — от 4 до 12.

Эта разница в количестве полюсов означает, что шаговые двигатели перемещаются постепенно с постоянным импульсом в замкнутой системе. Серводвигателям требуется энкодер для регулировки импульсов для управления положением.

Шаговые двигатели в управлении движением: плюсы и минусы

Благодаря большому количеству полюсов шаговые двигатели

обеспечивают точное управление приводом для приложений управления движением. У них высокий крутящий момент на низких скоростях, они также относительно недороги и широко доступны.

Однако шаговые двигатели

имеют ограничения. На высоких скоростях они теряют почти весь свой крутящий момент, иногда до 80%. Они производят высокие уровни вибраций и подвержены проблемам с резонансом. Шаговые двигатели также выделяют большое количество тепла, что может быть проблемой в некоторых приложениях.

Серводвигатели в управлении движением: плюсы и минусы

Основным преимуществом серводвигателей является то, что они обеспечивают высокий крутящий момент на высокой скорости, чего не могут сделать шаговые двигатели. Они также работают с КПД 80-90%. Серводвигатели могут работать с приводом переменного или постоянного тока и не страдают от вибрации или резонанса.

Серводвигатели

имеют много преимуществ, но главный недостаток заключается в том, что они дороже шаговых двигателей. Добавьте сюда стоимость энкодера, а часто и редуктора, и вся система может стать весьма дорогостоящей.Кроме того, необходимость в энкодере и редукторе делает систему более сложной с механической точки зрения, что приводит к более частому техническому обслуживанию и более высоким затратам.

У каждого мотора есть свои плюсы и минусы. Знание различий между серводвигателями и шаговыми двигателями может помочь вам согласовать потребности вашего приложения с правильным типом двигателя.

Драйвер шагового двигателя — RepRap

Чтобы запустить шаговый двигатель, необходимо использовать

  1. возможно A4988
  2. или, возможно, DRV8825
  3. или, возможно, Trinamic TMC2130

Вы можете купить любой из них в магазине по вашему выбору.

иначе, читаем дальше,

  1. чип драйвера шагового двигателя или
  2. микроконтроллер и, опционально, один или два полноценных чипа h-bridge.

Привод шаговых двигателей

Драйвер шагового двигателя

Эти чипы отделяют питание двигателей от питания Arduino. Arduino не может обеспечить достаточное количество энергии для прямого питания шаговых двигателей. Вот почему вы должны использовать отдельные микросхемы, которые действуют как клапаны, управляющие вращением двигателя.

Еще одно преимущество, которое обеспечивают микросхемы драйверов шаговых двигателей, заключается в том, что они обеспечивают дробных шагов. Это помогает сгладить движение шагового двигателя. Без дробных шагов шаговые двигатели могут иметь тенденцию вибрировать или резонировать при определенных оборотах.

Драйверы шаговых двигателей на базе микроконтроллера

Драйверы шаговых двигателей на базе микроконтроллера

могут достигать очень высоких скоростей вращения в шаговых двигателях. Используя микроконтроллер, можно полностью контролировать то, как именно каждая отдельная катушка подается под напряжение внутри двигателя.Это абсолютно необходимо для получения высоких скоростей, потому что по мере увеличения скорости время срабатывания катушек должно быть идеально синхронизировано. Цитата из доктора Игуаны:

Если вы когда-нибудь толкали кого-то на качелях, вы знаете, что небольшой, своевременный толчок может заставить этого человека раскачиваться все выше и выше. Пропустите толчок или два даже на небольшую величину, и «передача мощности» будет значительно меньше. Так обстоит дело с шаговыми двигателями на высоких скоростях. Если вы не сопоставите толчки или шаги с фактическим состоянием двигателя, он будет работать плохо.

Чтобы обрабатывать ток выше, чем может позволить микропроцессор, контроллер должен использовать микросхемы полного H-моста.

Обычно Н-мост используется для управления старым добрым двигателем постоянного тока, но в данном случае чипы Н-моста используются для точного управления количеством электричества, поступающего на каждую отдельную катушку шагового двигателя. Таким образом, для биполярных шаговых двигателей требуется 2 микросхемы на двигатель.

Драйверы шаговых двигателей с открытым исходным кодом

АВРСТМД

AVRSTMD — драйвер шагового двигателя с открытым исходным кодом на базе микроконтроллера.Он использует процессор atmega48 и два чипа h-bridge с ограниченным током National Semiconductor LMD18245T.

Доктор Игуана

Драйвер шагового двигателя Dr. Iguana основан на микроконтроллере dsPic33 и двух чипах L298N H-Bridge. Он может развивать скорость до 800 об/мин. Очень хороший источник информации о шаговых драйверах микроконтроллеров можно найти на его веб-сайте здесь вместе со всеми схемами, файлами gerber, исходным кодом и спецификацией шагового драйвера.

Доктор Игуана.«Лучший драйвер шагового двигателя своими руками». Серия страниц (и видео), на которых даны советы по проектированию высокоскоростных драйверов шаговых двигателей.

Драйвер шагового двигателя RepRap v1.x

Первое поколение драйверов шаговых двигателей RepRap. (Примечание: эти платы использовались в коллекции электроники 2-го поколения.) Используется комбинированный драйвер шагового двигателя L297/L298. Полушаг. Выдерживает до 2А. Все сквозное отверстие. Хороший, солидный водитель. Он использует некоторые старые технологии, так что он не такой модный, как более новые драйверы шаговых двигателей, но он выполняет свою работу.Прочтите страницу документации здесь

Драйвер шагового двигателя RepRap v2.x

Второе поколение драйверов шаговых двигателей RepRap. (Примечание: эти платы использовались в коллекции электроники 3-го поколения, но их можно было ретроградировать до поколения 2.)

Использует чип Allegro A3982, который делает кучу полезных вещей и делает плату намного проще. Это также снижает цену на 10 долларов по сравнению с серией v1.x. Он может выдерживать до 2А и работает в полушаге.Единственным недостатком является то, что это SMT, что может немного пугать людей. Это все большие детали SMT, поэтому их довольно просто паять, особенно с помощью паяльной пасты/горячей пластины. Прочтите страницу документации здесь.

Трехосевой драйвер шагового двигателя PSMD имеет все те же разъемы и является совместимой по выводам альтернативой драйверу шагового двигателя RepRap v2.x.

Драйверы шаговых двигателей

и контроллеры шаговых двигателей

Для запуска шагового двигателя обычно требуются две вещи: контроллер для создания сигналов шага и направления (обычно ± 5 В) и схема драйвера, которая может генерировать ток, необходимый для привода двигателя.В некоторых случаях очень маленький шаговый двигатель может управляться напрямую от контроллера, или схемы контроллера и драйвера могут быть объединены на одной плате.

Контроллер шагового двигателя управляет 3 проводами, традиционно помеченными как «шаг», «дир» и «земля», которые передают информацию о движении к драйверу шагового двигателя. (Часто эти 3 линии оптоизолированы на переднем конце драйвера шагового двигателя). Шаговый контроллер обычно представляет собой чисто цифровое логическое устройство и требует относительно небольшой мощности.

Драйвер шагового двигателя подключается к 4 толстым проводам шагового двигателя.Он содержит большие силовые транзисторы и требует толстого силового кабеля для источника питания постоянного тока, потому что вся мощность для привода двигателей проходит через него.

Драйверы ШИМ и шаговых двигателей

Подавляющее большинство драйверов шаговых двигателей подключены к какому-либо контроллеру с 3-проводным интерфейсом: контроллер подает импульс на вывод STEP, чтобы переместить двигатель на один шаг (*), контроллер устанавливает вывод DIR, чтобы выбрать, является ли шаг шагом по часовой стрелке или шаг против часовой стрелки и общий вывод GND.

Из Википедии:Широтно-импульсная модуляция: Широтно-импульсная модуляция (ШИМ) — очень эффективный способ обеспечения промежуточного количества электроэнергии между полностью включенным и полностью выключенным.Простой выключатель питания с типичным источником питания обеспечивает полную мощность только при включении. ШИМ — это сравнительно новый метод, который стал практичным благодаря современным электронным переключателям питания.

Драйверы шаговых двигателей обычно работают, уменьшая напряжение питания с помощью встроенной микросхемы ШИМ. Эти чипы требуют незначительной вспомогательной схемы (это основное, за что вы платите, покупая драйвер шагового двигателя). Сами чипы PWM обычно имеют цену за единицу ниже 10 долларов США, в основном в зависимости от их номинального тока.Драйвер прерывания, также известный как драйвер ограничения тока, поддерживает работу двигателя и ток в двигателе на безопасном уровне, даже при управлении двигателем «3 В» от источника питания «24 В». Все перечисленные здесь микросхемы имеют «тепловое отключение».

(*) Многие микросхемы также имеют встроенный микрошаг. Когда микрошаговый режим включен, каждый импульс на выводе STEP перемещает двигатель на один микрошаг.

Чипы драйвера шагового двигателя

Вот список микросхем драйверов шаговых двигателей (сначала самые новые):

Производитель Модель Пиковый ток Пакет Дополнительные примечания
Тринамик «Шаговый драйвер и контроллер 5041» 1.1 А (?) QFN48 (7×7) управляет осью Z в T-Bone.[1][2]
Тринамик Контроллер движения TMC4361 + драйвер шагового двигателя Trinamic TMC2660 2,6 А (?) QFP44 управляет осями X, Y, E в T-Bone.[3][4]
Аллегро А4989 10 А ЦСОП38 A4989 предназначен для управления N-канальными МОП-транзисторами с внешним питанием. A4989 в Powerlolu (Powerlolu) управляет МОП-транзисторами IRLR024N, которые позволяют ему управлять 10 А.Pin совместим с A3986.
STMicroelectronics Л6470 7 А HTSSOP28 или POWERSO36 Дважды использовался в RepRap. Прошивка RepRap на базе Marlin с поддержкой L6470. Репрап печатная плата. Файл:Шаговый двигатель GE версии 0.8b.sch, Файл:Шаговый двигатель GE версии 0.8b.brd, Файл:Reprap.lbr. Библиотека Arduino

L6470 на Github.

STMicroelectronics Л9942 1,3 А PowerSSO24 SPI.Диагностические флаги для обнаружения опрокидывания, предупреждения о перегреве, отключения при перегреве, открытой нагрузки, перегрузки. Полный, 1/2-, 1/4- и 1/8-шаговый режимы.
Тринамик TMC249A [5][6] 4 А SO28 SPI. Флаги состояния для обнаружения опрокидывания, перегрузки по току, разомкнутой нагрузки, перегрева, предварительного предупреждения о перегреве, пониженного напряжения. измерение нагрузки. Управляет 8 внешними полевыми МОП-транзисторами — в техническом описании приведен список рекомендуемых силовых транзисторов. Сменная замена для TMC239.Полный, 1/2-, 1/4-, 1/8- и 1/16-шаговый режимы (1/64-шаг с дополнительными компонентами).
HHBYtech THB7128 3,3 А ХЗИП19 Рекомендуется для электроники Gen7T. По сравнению с TB6560AHQ лучшее расположение контактов (например, все контакты разъема двигателя с одной стороны, как у TB6600HG) и менее требовательный к дизайну окружающей печатной платы.
Тошиба ТБ6560АХК 3,5 А HZIP25 и HQFP64 Используется в электронике Gen7T, Sanguish и Sanguinoshiba, а также в драйвере шагового двигателя с открытым исходным кодом для экологии с открытым исходным кодом [нужна ссылка] .См. также: Контроллер платы драйвера шагового двигателя с ЧПУ 4 Axis TB6560.
Тошиба ТБ6600ХК; ТБ6600ХГ 4,5 А ХЗИП25-П-1.00Ф Используется в драйвере шагового двигателя PiBot TB6600. Протестировано на GEN7V1.4-1.41 и PiBot для Repetier V1.0-1.4. По сравнению с TB6560AHQ лучшее расположение контактов (например, все контакты разъема двигателя с одной стороны, как у THB7128).
Аллегро А3967 0,75 А СОИК Используется в платах Easy Driver, продаваемых на Sparkfun.Не уверен, что их можно использовать в RepRap, но они хороши для экспериментов. Немного маломощный, всего 750 мА/фаза.
Аллегро А3977 2,5 А ПЛКК или ТССОП Заброшено в драйвере шагового двигателя версии 2.0.
Аллегро А3979 2,5 А ЦСОП Заброшен из-за крошечного размера в версии 2.1.
Аллегро А3982 2 А СОИКВ Улучшено по сравнению с v1.2 в версии 2.2. Также используется в драйвере шагового двигателя версии 2.3.
Аллегро А3992 1,5 А DIL или TSSOP Используется в электронике поколения L.
Аллегро А4984 2 А ТССОП или КФН Используется в Stepsticka4984. Полный, 1/2-, 1/4- и 1/8-шаговый режимы. защита двигателя от короткого замыкания. Почти идентичен A4988, за исключением того, что в нем отсутствует контакт «M3», который указывает на микрошаг 1/16, и некоторые люди предпочитают этот пакет TSSOP пакету QFN.
Аллегро А4983 2 А КФН Продукт снят с производства, заменен на A4988. Используется в коммутационной плате A4983.
Аллегро А4988 2 А КФН Используется в платах драйверов шаговых двигателей Pololu и драйвере G3D. Идентичен и совместим по выводам с A4983, но также имеет подтяжку на M1 и защиту двигателя от короткого замыкания. Полный, 1/2-, 1/4-, 1/8- и 1/16-шаговый режимы.
Техас Инструментс ДРВ8811 2,5 А ХТСОП Используется в электронике 6-го поколения. Вероятно, поэтому прошивка FiveD была изменена.
STMicroelectronics Л297   DIP20 или SO20 Преобразует входы «step, dir» в 6-контактные выходы «последовательности фаз», которые подключаются к двойному полному мосту, такому как L298. Полный и полушаговый режимы. Последним драйвером шагового двигателя, который использовал это, был драйвер шагового двигателя 1.2.
STMicroelectronics Л298 4 А Мультиватт15 или PowerSO20 Двойной полный мост. При правильном подключении к чему-то вроде L6506 или L297, как в Драйвере шагового двигателя 1.2, L298 можно использовать для создания (ограниченного по току) драйвера прерывающего двигателя. Когда его сенсорные выходы напрямую подключены к земле, как в Valkyrie Redux, ограничение тока отсутствует.
Техас Инструментс СН754410 1 А ДИП 16 Двойной полный мост.«Улучшенная функциональная замена … L293». Без ограничения тока (кроме теплового отключения).
STMicroelectronics Л293Д 0,6 А Powerdip 16 или SO20 Двойной полный мост. Множественные могут быть сложены друг на друга, чтобы разделить силу тока. Без ограничения тока.
Техас Инструментс ДРВ8825 2,5 А 28HTSSOP ДРВ8825; используется в Replicape, некоторых платах AZSMZ Mini и некоторых (всех?) платах Azteeg X5.До 1/32 шага.

Столбец «Пиковый ток» дико оптимистичен. (Видеть «Миф о водителе» ).

Корпуса для сквозных отверстий считаются наиболее простыми для пайки вручную («HZIP», «DIL», «DIP», «Powerdip» и т. д.). «SOIC» и «PLCC» — это относительно простые в пайке корпуса для устройств поверхностного монтажа. Корпуса для поверхностного монтажа «TSSOP», «QFP» и «QFN» трудно паять вручную.

В резервной копии веб-архива есть хорошая сравнительная таблица и обзор микросхем драйверов микрошагов: «Обзор драйверов биполярных микрошагов по состоянию на август 2013 года» (через «Альтернативные драйверы шаговых двигателей?»).

Шаговые драйверы

Поиск драйверов шагового двигателя может быть немного сложным. Драйверы шаговых двигателей RepRap V2.3 очень трудно приобрести в предварительно собранном виде. Строители, обладающие небольшими навыками, могут найти детали и собрать контроллеры. Те, у кого нет навыков или материалов для сборки плат, могут купить обычные драйверы шаговых двигателей. В Европе, как правило, более рентабельно получить предварительно собранные платы, чем покупать детали и выполнять сборку своими руками.

Совместимость по выводам
Доступные драйверы шаговых двигателей
Производитель Проверено? Местоположение Максимальный ток Микрошаг Комментарии
Драйвер шагового двигателя 2.3 (с использованием A3982) Да США 2 А 1/2 Внесен в список для сравнения.
Ступенька Да Открытый исходный код 2 А 1/16 и очень похожие характеристики на плату драйвера шагового двигателя Pololu.
СайлентСтепСтик Да Открытый исходный код 1,7 А 1/16 Драйвер Trinamic TMC2100.Аппаратное обеспечение, совместимое с StepStick и платой драйвера шагового двигателя Pololu.
Плата драйвера шагового двигателя Pololu Да США 2 А 1/16 Может сильно нагреваться; требуется активное охлаждение вентилятором или пассивный небольшой радиатор свыше ~0,5 А.
МКС TB6600 (с использованием TB6600) Да Китай 4,5 А 1/1,1/2А,1/2В, 1/4,1/8,1/16 *Это решение, подходящее для вашего фрезерного станка с ЧПУ и 3D-принтера, позволяет легко преобразовать ваш ЧПУ в 3D-принтер.*Предельное входное напряжение: 45 В.
EasyDriver (с использованием A3967) Да США 0,75 А 1/8 Немного слабее по сравнению с другими драйверами, всего 750 мА/фаза. Bothacker использует EasyDriver[7] и сообщает, что его мощности достаточно для Mendel. Рекомендуемые.
… ay.com/autohec 4-осевой контроллер драйвера шагового двигателя (с использованием A3977) Да США 2.5 А 1/8 4 шаговых драйвера на одной плате.
PiBot_TB6600_Stepper_Driver (с использованием Toshiba 6600HQ) Да Китай 0–4,5 А 1/1,1/2А,1/2В, 1/4,1/8,1/16
  • Плата PiBot_Stepper_Driver — это плата драйверов с открытым исходным кодом.
  • предлагает решение, которое подходит для вашего станка с ЧПУ и 3D-принтера, легко превращая ваш ЧПУ в 3D-принтер.
  • Совместимость с шаговыми двигателями
  • NEMA14 и NEMA17.
  • Фотоэлектрическая изоляция
  • , используемая во входном порту, совместима с более высоким уровнем привода.
  • Носите с собой алюминиевый радиатор 60*60*10, датчик внешнего сопротивления 6*1 Вт. Более мощный ток драйвера.
  • Предельное входное напряжение: 45 В.
  • Защита от перегрева (TSD), защита от блокировки при пониженном напряжении (UVLO), защита от обнаружения перегрузки по току (ISD).
ЧПУ своими руками Нет ГБ 2,5 А 1/8 Может управлять 1 шаговым двигателем; скидка при покупке нескольких.
Моторный щит Arduino Нет США 0,6 А ? Требуется Arduino в качестве контроллера. Может управлять 2 сервоприводами, 4 двигателями постоянного тока или 2 (биполярными или униполярными) шаговыми двигателями. Веб-сайт отмечает, что вы можете увеличить максимальный ток, вставив (припаяв чип к чипу) еще один чип L293D поверх первого (и еще один поверх него).
… ay.com/?_from=R40&_trksid=p3907.m38.l1313&_nkw=4+axis+TB6560&_sacat=Просмотреть все категории TB6560AHQ на основе Нет ГБ/кн. 1.5 — 3 А 1, 1/2, 1/8, 1/16 Может управлять от 3 до 5 шаговых двигателей в зависимости от модели; Подробнее.
Клон шагового двигателя 2.3 от kymberlyaandrus Да США 2 А 1/2 Та же схема, но физически меньше оригинальной версии. Подстроечный потенциометр не имеет начальной/конечной точки, поэтому регулировка тока может быть более сложной, чем на других досках. Клеммные колодки хороши тем, что не требуют изготовления специальных разъемов.
Гекко Драйв Да США 3,5 А 1/10 (только) Может управлять 4 шаговыми двигателями
Нанотек SMC11 Да НЕМЕЦКИЙ 1,4 А 1/16 с охлаждением до 2,5 А
LiniStepper от Романа Блэка нет США 3 А 1/18 и «бесступенчатый» Открытый исходный код: принципиальная схема, компоновка печатной платы (платы) и программное обеспечение PIC доступны.
Степпер Tri Duino ??? ??? ??? ??? Открытый исходный код
A3979прорыв ??? ??? ??? ??? ???
грблшилд Нет США 2,5 1/8 3-осевой контроллер подключается к Arduino Uno или аналогичному

Сравнение драйверов шаговых двигателей PMinMo.

Компенсация среднечастотного резонанса

Драйверы

Gecko имеют функцию, называемую компенсацией резонанса средней полосы, которая предотвращает остановку шаговых двигателей из-за проблем с резонансом, которые могут возникнуть, когда двигатель вращается в диапазоне 5-15 об/мин. Это может быть очень полезно, например, при управлении шаговыми двигателями на мельнице Tiag. Однако шаговые двигатели в Mendel никогда не работают вблизи этого диапазона, поэтому компенсация резонанса средней полосы не дает никакой пользы для сборки Mendel.

Модули Pololu

  • Шаговый двигатель «дрожит»
    • Модули Pololu отключаются, когда они слишком горячие.Обеспечить надлежащее охлаждение.
  • Шаговый двигатель потребляет слишком много ампер
    • Модули Pololu имеют небольшой потенциометр SMD для регулировки тока. Подключайте шаговый двигатель по одному и регулируйте силу тока, пока не будете удовлетворены настройкой.
    • Отрегулируйте так, чтобы шаговые двигатели могли удерживать крутящий момент, но не перегревались. Лично я приближаюсь к силе тока, указанной на катушку.

защита

Транзисторы, которые чаще всего выходят из строя в RepRap, — это транзисторы, напрямую подключенные к двигателю.Кажется, в ответ есть три точки зрения:

  • позволяют легко заменить эти транзисторы, когда они неизбежно выходят из строя, или
  • каким-то образом защищает эти транзисторы, так что они вряд ли выйдут из строя, даже в условиях обычной неисправности — Protected Mosfet или
  • .
  • оба.

Современные драйверы шаговых двигателей имеют «термическое отключение» — когда они чувствуют, что им становится слишком жарко, они автоматически все выключают и дают всему остыть. Это может испортить вашу пластиковую печать, но, по крайней мере, не было нанесено необратимого ущерба.(Это не означает, что современные драйверы шаговых двигателей не могут быть окончательно уничтожены; вы просто будете умнее в том, как вы это делаете).

В частности, я слышал, что драйверы двигателей часто выходят из строя, когда двигатель отключается при включенном питании. ( Устранение неполадок # Проблемы с электричеством, Обсуждение: Монотроника, RepRapPro Настройка токов двигателя, RAMPS 1.4 # Предполетная проверка, так далее.) Что такое режим отказа? Есть ли способ спроектировать драйвер двигателя, чтобы он был невосприимчив к таким отказам? Предпочтительно, чтобы это стоило меньше, чем просто покупка нового «носителя драйвера шагового двигателя» за 11 долларов каждый раз, когда я его выдуваю?

Шаговый двигатель

— Granite Devices Knowledge Wiki

Шаговый двигатель а.к.а. Шаговый двигатель является популярным типом электродвигателя для недорогих приложений позиционирования.

Шаговые двигатели технически представляют собой бесщеточные двигатели с постоянными магнитами или двигатели переменного тока с большим числом магнитных полюсов. Большое количество полюсов позволяет двигателю работать в шаговом режиме без каких-либо устройств обратной связи. Типичный шаговый двигатель имеет 100 магнитных полюсов, что дает разрешение двигателя 200 полных шагов на оборот. Разрешение может быть дополнительно увеличено с помощью полушага или микрошага.

Pros
  • Доступны дешевые двигатели и приводы
  • Может обеспечить плавное движение с микрошагом
  • Достаточная точность для многих применений
  • Долгий срок службы
Минусы
  • Риск остановки двигателя из-за резонанса или перегрузки
  • Вибрация и резонанс
  • Нелинейность шагов (угол между микрошагами непостоянен)
  • Отопление и потребление энергии даже в состоянии покоя
Привод

IONI был разработан для серводвигателей и шаговых двигателей.Он предлагает три режима работы с шаговыми двигателями, включая режим с обратной связью и режим с открытой петлей с разрешением 25600 шагов/оборот. Дополнительные сведения см. в разделе Использование шагового двигателя с IONI.


Информация о продукте или ее части ни в коем случае не должны рассматриваться как гарантия условий или характеристик. Информация о продукте или любая ее часть также не может рассматриваться как гарантия любого рода. Автор не несет никакой ответственности в отношении Информации о продукте или любого ее использования вами, а также Автор не освобождает вас от ответственности и не несет ответственности за любые претензии третьих лиц в отношении такой информации или любого ее использования.

Поскольку содержимое этой вики может редактироваться сообществом пользователей, Granite Devices Oy или ее аффилированные лица не несут никакой ответственности за содержание этой вики. Используйте информацию на свой страх и риск. Тем не менее, сотрудники Granite Devices стараются проверять все изменения, внесенные в эту вики, и обеспечивать достоверность информации.

Без письменного согласия Продукты или Интеллектуальная собственность Granite Devices не должны использоваться в ситуациях или установках, где живые существа, материальное или нематериальное имущество могут быть повреждены работой, функциями или неисправностями Продукта.Продукты можно использовать только таким образом, при котором такие опасности, как движущиеся части, поражение электрическим током, лазерное излучение или возгорание, не могут быть реализованы, даже если содержание этой Wiki предполагает иное.

Электродвигатель

— Википедия, свободная энциклопедия

Из Википедии, свободной энциклопедии

Электродвигатель преобразует электрическую энергию в механическое движение. Обратную задачу — преобразование механического движения в электрическую энергию — выполняет генератор или динамо-машина.Во многих случаях два устройства отличаются только своим приложением и незначительными деталями конструкции, а некоторые приложения используют одно устройство для выполнения обеих ролей. Например, тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оборудован динамическими тормозами.

Операция

Большинство электродвигателей работают за счет электромагнетизма, но также существуют двигатели, основанные на других электромеханических явлениях, таких как электростатические силы и пьезоэлектрический эффект. Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой провод действует механическая сила, когда он проводит электричество, находясь в магнитном поле.Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю. Большинство магнитных двигателей являются роторными, но существуют и линейные типы. В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть называется статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент. Двигатель содержит электромагниты, намотанные на раме. Хотя эту раму часто называют арматурой, этот термин часто применяют ошибочно.Правильно якорем называется та часть двигателя, на которую подается входное напряжение. В зависимости от конструкции машины якорем может служить либо ротор, либо статор.

Двигатели постоянного тока

Электродвигатели различных размеров.

Один из первых электромагнитных роторных двигателей был изобретен Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в ванну с ртутью. Постоянный магнит помещали в середину бассейна с ртутью. Когда по проводу пропускали ток, провод вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода.Этот двигатель часто демонстрируют на школьных уроках физики, но вместо токсичной ртути иногда используют рассол (соленую воду). Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздней доработкой является колесо Барлоу.

В другой ранней конструкции электродвигателя использовался возвратно-поступательный плунжер внутри переключаемого соленоида; концептуально его можно рассматривать как электромагнитную версию двухтактного двигателя внутреннего сгорания.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил вращающуюся динамо-машину со вторым аналогичным устройством, приводя его в действие как двигатель.

Классический двигатель постоянного тока имеет вращающийся якорь в виде электромагнита. Поворотный переключатель, называемый коммутатором, дважды за цикл меняет направление электрического тока, чтобы течь через якорь, так что полюса электромагнита толкают и тянут постоянные магниты снаружи двигателя. Когда полюса электромагнита якоря проходят через полюса постоянных магнитов, коммутатор меняет полярность электромагнита якоря. В этот момент переключения полярности инерция удерживает классический двигатель в правильном направлении.(См. схемы ниже.)

Простой электродвигатель постоянного тока. Когда на катушку подается питание, вокруг якоря создается магнитное поле. Левая сторона якоря отталкивается от левого магнита и тянется вправо, вызывая вращение. Якорь продолжает вращаться. Когда якорь становится горизонтально, коммутатор меняет направление тока через катушку на противоположное, меняя магнитное поле. Затем процесс повторяется.

Двигатель постоянного тока для поля раны

Постоянные магниты на внешней стороне (статоре) двигателя постоянного тока могут быть заменены электромагнитами.Изменяя ток возбуждения, можно изменить отношение скорости к крутящему моменту двигателя. Обычно обмотка возбуждения размещается последовательно (последовательная обмотка) с обмоткой якоря, чтобы получить низкоскоростной двигатель с высоким крутящим моментом, параллельно (шунтирующая обмотка) с якорем, чтобы получить высокоскоростной двигатель с низким крутящим моментом, или чтобы обмотка частично параллельно и частично последовательно (составная обмотка) для баланса, обеспечивающего постоянную скорость в диапазоне нагрузок. Дальнейшее снижение тока возбуждения возможно для получения еще более высокой скорости, но, соответственно, более низкого крутящего момента, что называется режимом «слабого поля».

Регулятор скорости

Вообще говоря, скорость вращения двигателя постоянного тока пропорциональна приложенному к нему напряжению, а крутящий момент пропорционален току. Регулирование скорости может быть достигнуто с помощью различных ответвлений батареи, переменного напряжения питания, резисторов или электронного управления. Направление двигателя постоянного тока с возбужденным полем можно изменить, поменяв местами соединения возбуждения или якоря, но не оба, обычно это делается с помощью специального набора контакторов (контакторов направления).

Эффективное напряжение можно изменять путем последовательного включения резистора или коммутационного устройства с электронным управлением, состоящего из тиристоров, транзисторов или, как это исторически сложилось, ртутных дуговых выпрямителей. В схеме, известной как прерыватель, среднее напряжение, подаваемое на двигатель, изменяется за счет очень быстрого переключения напряжения питания. Поскольку соотношение «включено» и «выключено» изменяется для изменения среднего приложенного напряжения, скорость двигателя изменяется. Быстрое переключение потребляет меньше энергии, чем последовательные резисторы.Выходные фильтры сглаживают среднее напряжение, подаваемое на двигатель, и уменьшают шум двигателя.

Поскольку двигатель постоянного тока с последовательной обмоткой развивает максимальный крутящий момент на низкой скорости, он часто используется в тяговых устройствах, таких как электровозы и трамваи. Другое применение – стартеры для бензиновых и небольших дизельных двигателей. Серийные двигатели никогда не должны использоваться в приложениях, где привод может выйти из строя (например, ременные передачи). По мере того, как двигатель ускоряется, ток якоря (и, следовательно, возбуждения) уменьшается.Уменьшение поля заставляет двигатель ускоряться (см. «слабое поле» в последнем разделе). Как следствие, скорость двигателя стремится к бесконечности, но двигатель разрушит себя, прежде чем он будет вращаться так быстро.

Одним из интересных методов управления скоростью двигателя постоянного тока было управление Ward-Leonard. Это метод управления двигателем постоянного тока (обычно с шунтовой или комбинированной обмоткой), который был разработан как метод обеспечения двигателя с регулируемой скоростью от источника переменного тока, хотя он не лишен своих преимуществ в схемах постоянного тока.Источник переменного тока используется для привода двигателя переменного тока, обычно асинхронного двигателя, который приводит в действие генератор постоянного тока или динамо-машину. Выход постоянного тока якоря напрямую подключен к якорю двигателя постоянного тока (обычно идентичной конструкции). Шунтирующие обмотки возбуждения обеих машин постоянного тока возбуждаются через переменный резистор от якоря генератора. Этот переменный резистор обеспечивает очень хорошее управление скоростью от состояния покоя до полной скорости, а также постоянный крутящий момент. Этот метод управления был методом де-факто с момента его разработки до тех пор, пока его не вытеснили твердотельные тиристорные системы.Он нашел применение практически в любой среде, где требовался хороший контроль скорости, от пассажирских лифтов до больших подъемных механизмов шахты и даже промышленных технологических машин и электрических кранов. Его принципиальный недостаток заключался в том, что для реализации схемы требовалось 3 машины (5 в очень больших установках, поскольку машины постоянного тока часто дублировались и управлялись тандемным переменным резистором). Во многих приложениях мотор-генераторная установка часто оставлялась постоянно включенной, чтобы избежать задержек, которые в противном случае были бы необходимы при ее запуске по мере необходимости.На момент написания (май 2006 г.) многие устаревшие установки Ward-Leonard все еще находились в эксплуатации.

Универсальные двигатели

Вариант обмотки Двигатель постоянного тока — универсальный двигатель . Название происходит от того факта, что он может использовать переменный или постоянный ток питания, хотя на практике они почти всегда используются с источниками переменного тока. Принцип заключается в том, что в двигателе постоянного тока с возбужденным полем ток как в поле, так и в якоре (и, следовательно, в результирующих магнитных полях) будет чередоваться (обратная полярность) в одно и то же время, и, следовательно, создаваемая механическая сила всегда в одном и том же направлении. .На практике двигатель должен быть специально разработан для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и результирующий двигатель, как правило, менее эффективен, чем эквивалентный чистый двигатель постоянного тока . Максимальная мощность универсальных двигателей, работающих на обычных частотах сети, ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного тягового железнодорожного двигателя. В этом приложении, чтобы поддерживать их электрический КПД на высоком уровне, они работали от очень низкочастотных источников переменного тока с частотой 25 Гц и 16 2/3 Гц.Поскольку это универсальные двигатели, локомотивы этой конструкции также обычно могли работать от третьего рельса, питаемого от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться с двигателями, которые имеют типичные характеристики двигателей постоянного тока, особенно высокий пусковой момент и очень компактную конструкцию, если используются высокие рабочие скорости. Отрицательным аспектом являются проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами.Непрерывное регулирование скорости универсального двигателя, работающего от сети переменного тока, очень легко осуществляется с помощью тиристорной схемы, в то время как ступенчатое регулирование скорости может осуществляться с помощью нескольких отводов на катушке возбуждения. Бытовые блендеры, которые рекламируют много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (заставляя двигатель работать на полуволновом постоянном токе с половиной среднеквадратичного напряжения сети переменного тока). линия).

В отличие от двигателей переменного тока, универсальные двигатели могут легко превысить один оборот за цикл сетевого тока.Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где требуется высокая скорость работы. Двигатели многих пылесосов и триммеров превышают 10 000 об/мин, Dremel и другие подобные миниатюрные шлифовальные машины часто превышают 30 000 об/мин. Теоретически универсальный двигатель, которому разрешено работать без механической нагрузки, будет работать с превышением скорости, что может привести к его повреждению. Однако в реальной жизни различные трения в подшипниках, «парусность» якоря и нагрузка любого встроенного охлаждающего вентилятора предотвращают превышение скорости.

Из-за очень низкой стоимости полупроводниковых выпрямителей в некоторых приложениях, которые ранее использовали универсальный двигатель, теперь используется чистый двигатель постоянного тока, обычно с полем постоянного магнита. Это особенно верно, если полупроводниковая схема также используется для управления переменной скоростью.

Преимущества универсального двигателя и распределения переменного тока сделали установку системы распределения низкочастотного тягового тока экономичной для некоторых железнодорожных установок. На достаточно низких частотах производительность двигателя примерно такая же, как если бы двигатель работал на постоянном токе.Использовались частоты всего 16 2/3 Гц.

Двигатели переменного тока

Типовой двигатель переменного тока состоит из двух частей:

  1. Внешний стационарный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  2. Внутренний ротор, прикрепленный к выходному валу, которому вращающееся поле придает крутящий момент.

Существует два основных типа двигателей переменного тока в зависимости от типа используемого ротора:

  • Синхронный двигатель, который вращается точно на частоте питания или частоте, кратной частоте питания, и;
  • Асинхронный двигатель, который вращается немного медленнее и обычно (хотя и не всегда) имеет форму двигателя с короткозамкнутым ротором.

Принцип вращающегося магнитного поля, хотя его обычно приписывают Николе Тесле в 1882 году или около того, использовался такими учеными, как Майкл Фарадей в 1820-х годах, а позже Джеймс Клерк Максвелл. Тесла, однако, использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. Михаэль фон Доливо-Добровльский изобрел первый современный трехфазный «корпус-ротор» в 1890 году. Появление двигателя с 1888 года положило начало тому, что известно как Вторая промышленная революция, сделавшая возможным эффективное производство и распределение электроэнергии на большие расстояния с использованием системы передачи переменного тока, также изобретенной Теслой (1888 г.) [1].Первая успешная коммерческая трехфазная система генерации и передачи на большие расстояния была разработана Алмерианом Декером в Милл-Крик № 1 [2] в Редлендсе, Калифорния [3].

Трехфазные асинхронные двигатели переменного тока

Трехфазные асинхронные двигатели переменного тока мощностью 1 л.с. (746 Вт) и 25 Вт с небольшими двигателями от проигрывателя компакт-дисков, игрушек и приводов для чтения компакт-дисков и DVD-дисков.

Там, где доступно многофазное электропитание, обычно используется трехфазный (или многофазный) асинхронный двигатель переменного тока, особенно для двигателей большей мощности.Разность фаз между тремя фазами многофазного источника питания создает вращающееся электромагнитное поле в двигателе.

Благодаря электромагнитной индукции вращающееся магнитное поле индуцирует ток в проводниках ротора, который, в свою очередь, создает уравновешивающее магнитное поле, заставляющее ротор вращаться в направлении вращения поля. Ротор всегда должен вращаться медленнее, чем вращающееся магнитное поле, создаваемое многофазным источником питания; в противном случае в роторе не будет создаваться уравновешивающего поля.

Асинхронные двигатели являются рабочими лошадками промышленности, а двигатели мощностью до 500 кВт выпускаются в строго стандартизированных типоразмерах, что делает их почти полностью взаимозаменяемыми между производителями (хотя стандартные европейские и североамериканские размеры различаются). Очень большие синхронные двигатели имеют выходную мощность в десятки тысяч кВт для трубопроводных компрессоров и приводов аэродинамических труб.

В асинхронных двигателях используются роторы двух типов.

Роторы с короткозамкнутым ротором: Наиболее распространенные двигатели переменного тока используют ротор с короткозамкнутым ротором, который можно найти практически во всех бытовых и легких промышленных двигателях переменного тока.Беличья клетка получила свое название из-за своей формы — кольца на обоих концах ротора с стержнями, соединяющими кольца по всей длине ротора. Обычно это литой алюминий или медь, залитая между металлическими пластинами ротора, и обычно видны только торцевые кольца. Подавляющее большинство токов ротора будет протекать через стержни, а не через ламинаты с более высоким сопротивлением и обычно покрытые лаком. Для стержней и торцевых колец типичны очень низкие напряжения при очень высоких токах; В высокоэффективных двигателях часто используется литая медь, чтобы уменьшить сопротивление ротора.

В работе двигатель с короткозамкнутым ротором можно рассматривать как трансформатор с вращающейся вторичной обмоткой — когда ротор не вращается синхронно с магнитным полем, индуцируются большие токи ротора; большие токи ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора. Ненагруженный двигатель с короткозамкнутым ротором на синхронной скорости будет потреблять электроэнергию только для поддержания скорости ротора с учетом потерь на трение и сопротивление; по мере увеличения механической нагрузки будет увеличиваться и электрическая нагрузка — электрическая нагрузка неразрывно связана с механической нагрузкой.Это похоже на трансформатор, где электрическая нагрузка первичной обмотки связана с электрической нагрузкой вторичной обмотки.

Вот почему, например, двигатель вентилятора с короткозамкнутым ротором может вызывать приглушение света в доме при запуске, но не приглушает свет при снятии ремня вентилятора (и, следовательно, механической нагрузки). Кроме того, заглохший двигатель с короткозамкнутым ротором (перегруженный или с заклинившим валом) будет потреблять ток, ограниченный только сопротивлением цепи, при попытке запуска. Если что-то еще не ограничит ток (или не отключит его полностью), вероятным результатом будет перегрев и разрушение изоляции обмотки.

Практически каждая стиральная машина, посудомоечная машина, автономный вентилятор, проигрыватель и т. д. используют тот или иной вариант двигателя с короткозамкнутым ротором.

Ротор с обмоткой: Альтернативная конструкция, называемая ротором с обмоткой, используется, когда требуется переменная скорость. В этом случае ротор имеет такое же количество полюсов, как и статор, а обмотки выполнены из проволоки, соединенной с контактными кольцами на валу. Угольные щетки соединяют контактные кольца с внешним контроллером, таким как переменный резистор, который позволяет изменять коэффициент скольжения двигателя.В некоторых мощных приводах с регулируемой скоростью с фазным ротором энергия частоты скольжения улавливается, выпрямляется и возвращается в источник питания через инвертор.

По сравнению с роторами с короткозамкнутым ротором двигатели с фазным ротором дороги и требуют обслуживания контактных колец и щеток, но они были стандартной формой для регулирования скорости до появления компактных электронных устройств. Транзисторные инверторы с частотно-регулируемым приводом теперь могут использоваться для управления скоростью, а двигатели с фазным ротором становятся менее распространенными.(Транзисторные инверторные приводы также позволяют использовать более эффективные трехфазные двигатели, когда доступен только однофазный ток сети, но это никогда не используется в бытовых приборах, потому что это может вызвать электрические помехи и из-за требований высокой мощности. )

Используется несколько методов запуска многофазного двигателя. Там, где допускается большой пусковой ток и высокий пусковой момент, двигатель можно запустить от сети, подав на клеммы полное линейное напряжение.Там, где необходимо ограничить пусковой ток (когда мощность двигателя велика по сравнению с мощностью короткого замыкания источника питания), используется пуск при пониженном напряжении с помощью последовательных катушек индуктивности, автотрансформатора, тиристоров или других устройств. Иногда используется метод пуска по схеме звезда-треугольник, при котором катушки двигателя сначала соединяются звездой для ускорения нагрузки, а затем переключаются на треугольник, когда нагрузка достигает нужной скорости. Этот метод более распространен в Европе, чем в Северной Америке.Транзисторные приводы могут напрямую изменять приложенное напряжение в зависимости от пусковых характеристик двигателя и нагрузки.

Этот тип двигателя становится все более распространенным в тяговых устройствах, таких как локомотивы, где он известен как асинхронный тяговый двигатель.

Скорость двигателя переменного тока определяется в первую очередь частотой сети переменного тока и числом полюсов в обмотке статора в соответствии с соотношением:

Н с = 120 Ж / р

где

N s = Синхронная скорость, об/мин
F = частота сети переменного тока
p = Количество полюсов на фазную обмотку

Фактическая скорость вращения асинхронного двигателя будет меньше расчетной синхронной скорости на величину, известную как проскальзывание , которая увеличивается с увеличением создаваемого крутящего момента.Без нагрузки скорость будет очень близка к синхронной. Под нагрузкой стандартные двигатели имеют проскальзывание 2-3%, специальные двигатели могут иметь проскальзывание до 7%, а класс двигателей, известный как моментные двигатели , рассчитан на работу при 100% проскальзывании (0 об/мин/полный останов).

Скольжение двигателя переменного тока рассчитывается по формуле:

С = ( С с С r ) / С 6 с

где

N r = Скорость вращения, в оборотах в минуту.
S = нормализованное скольжение, от 0 до 1.

Например, типичный четырехполюсный двигатель, работающий на частоте 60 Гц, может иметь заявленную на паспортной табличке номинальную скорость 1725 об/мин при полной нагрузке, тогда как его расчетная скорость равна 1800.

Скорость в двигателе этого типа традиционно изменялась за счет дополнительных наборов катушек или полюсов в двигателе, которые можно включать и выключать для изменения скорости вращения магнитного поля. Однако развитие силовой электроники означает, что теперь можно изменять частоту источника питания, чтобы обеспечить более плавное регулирование скорости двигателя.

Синхронные двигатели трехфазного переменного тока

Если соединения с катушками ротора трехфазного двигателя выведены на контактные кольца и на них подается отдельный ток возбуждения для создания непрерывного магнитного поля (или если ротор состоит из постоянного магнита), то результат называется синхронным. двигатель, потому что ротор будет вращаться синхронно с вращающимся магнитным полем, создаваемым многофазным источником питания.

Синхронный двигатель также можно использовать в качестве генератора переменного тока.

В настоящее время синхронные двигатели часто приводятся в действие частотно-регулируемыми приводами на транзисторах. Это значительно облегчает задачу запуска массивного ротора большого синхронного двигателя. Их также можно запускать как асинхронные двигатели с использованием короткозамкнутой обмотки с общим ротором: как только двигатель достигает синхронной скорости, ток в короткозамкнутой обмотке не индуцируется, поэтому он мало влияет на синхронную работу двигателя. помимо стабилизации скорости двигателя при изменении нагрузки.

Синхронные двигатели иногда используются в качестве тяговых двигателей; TGV может быть самым известным примером такого использования.

Однофазные асинхронные двигатели переменного тока

Трехфазные двигатели по своей природе создают вращающееся магнитное поле. Однако, когда доступна только однофазная мощность, вращающееся магнитное поле необходимо создавать с помощью других средств. Обычно используются несколько методов.

Распространенным однофазным двигателем является двигатель с расщепленными полюсами, который используется в устройствах, требующих низкого крутящего момента, таких как электрические вентиляторы или другие мелкие бытовые приборы.В этом двигателе небольшие одновитковые медные «затеняющие катушки» создают движущееся магнитное поле. Часть каждого полюса обмотана медной катушкой или лентой; индуцированный ток в ремешке противодействует изменению потока через катушку (закон Ленца), так что максимальная напряженность поля перемещается по поверхности полюса в каждом цикле, создавая тем самым необходимое вращающееся магнитное поле.

Другим распространенным однофазным двигателем переменного тока является двухфазный асинхронный двигатель , обычно используемый в крупных бытовых приборах, таких как стиральные машины и сушилки для белья.По сравнению с двигателем с расщепленными полюсами эти двигатели обычно могут обеспечивать гораздо больший пусковой момент за счет использования специальной пусковой обмотки в сочетании с центробежным выключателем.

В двигателе с расщепленной фазой пусковая обмотка имеет более высокое сопротивление, чем рабочая обмотка. Это создает цепь LR, которая немного сдвигает фазу тока в пусковой обмотке. При пуске двигателя пусковая обмотка подключается к источнику питания через набор подпружиненных контактов, на которые нажимает еще не вращающийся центробежный переключатель.Пусковая обмотка намотана меньшим количеством витков проводом меньшего сечения, чем основная обмотка, поэтому имеет меньшую индуктивность (L) и большее сопротивление (R). Меньшее отношение L/R создает небольшой фазовый сдвиг, не более 30 градусов, между потоком основной обмотки и потоком пусковой обмотки. Начальное направление вращения можно изменить, просто поменяв местами соединения пусковой обмотки с рабочей обмоткой.

Фаза магнитного поля в этой пусковой обмотке смещена от фазы сетевого питания, что позволяет создать движущееся магнитное поле, запускающее двигатель.Как только двигатель достигает скорости, близкой к расчетной, срабатывает центробежный переключатель, размыкающий контакты и отключающий пусковую обмотку от источника питания. В этом случае двигатель работает только на рабочей обмотке. Пусковую обмотку необходимо отключить, так как это увеличит потери в двигателе.

В двигателе с конденсаторным пуском пусковой конденсатор включен последовательно с пусковой обмоткой, создавая LC-цепь, которая способна к гораздо большему фазовому сдвигу (и, таким образом, к гораздо большему пусковому моменту).Конденсатор, естественно, увеличивает стоимость таких двигателей.

Другим вариантом является двигатель с постоянным раздельным конденсатором (PSC) (также известный как двигатель с конденсаторным пуском и работой). Этот двигатель работает аналогично двигателю с конденсаторным пуском, описанному выше, но в нем нет центробежного пускового выключателя, а вторая обмотка постоянно подключена к источнику питания. Двигатели PSC часто используются в устройствах обработки воздуха, вентиляторах и воздуходувках, а также в других случаях, когда требуется переменная скорость. Меняя отводы на рабочей обмотке, но сохраняя постоянную нагрузку, можно заставить двигатель работать с разными скоростями.Также при условии, что все 6 соединений обмоток доступны по отдельности, трехфазный двигатель можно преобразовать в конденсаторный пусковой двигатель, объединив две обмотки и подключив третью через конденсатор, который будет действовать как пусковая обмотка.

Репульсные двигатели представляют собой однофазные двигатели переменного тока с фазным ротором, аналогичные универсальным двигателям. В репульсионном двигателе щетки якоря закорочены вместе, а не соединены последовательно с полем. Было изготовлено несколько типов отталкивающих двигателей, но наиболее часто использовался асинхронный двигатель с отталкивающим пуском и запуском (RS-IR).Двигатель RS-IR имеет центробежный переключатель, который закорачивает все сегменты коммутатора, так что двигатель работает как асинхронный двигатель, когда он разогнан до полной скорости. Двигатели RS-IR использовались для обеспечения высокого пускового момента на ампер в условиях низких рабочих температур и плохого регулирования напряжения источника. По состоянию на 2006 год продается несколько репульсионных двигателей любого типа.

Однофазные синхронные двигатели переменного тока

Небольшие однофазные двигатели переменного тока также могут иметь намагниченный ротор (или несколько вариантов этой идеи).Роторы в этих двигателях не требуют индуктивного тока, поэтому они не скользят назад по отношению к частоте сети. Вместо этого они вращаются синхронно с частотой сети. Из-за их очень точной скорости такие двигатели обычно используются для питания механических часов, аудиопроигрывателей и ленточных накопителей; раньше они также широко использовались в точных приборах для измерения времени, таких как ленточные самописцы или приводные механизмы телескопа. Синхронный двигатель с расщепленными полюсами является одной из версий.

Поскольку инерция затрудняет мгновенное ускорение ротора от остановленной до синхронной скорости, этим двигателям обычно требуется какая-то специальная функция для запуска.В различных конструкциях используется небольшой асинхронный двигатель (который может иметь те же катушки возбуждения и ротор, что и синхронный двигатель) или очень легкий ротор с односторонним механизмом (чтобы гарантировать, что ротор запускается в направлении «вперед»).

Моментные двигатели

Моментный двигатель — это особый тип асинхронного двигателя, способный работать неограниченное время в остановленном состоянии (с заблокированным от вращения ротором) без повреждений. В этом режиме двигатель будет прикладывать к нагрузке постоянный крутящий момент (отсюда и название).Обычным применением моментного двигателя могут быть двигатели подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимом в действие от низкого напряжения, характеристики этих двигателей позволяют прикладывать к ленте относительно постоянное легкое натяжение независимо от того, подает ли ведущая лента ленту мимо головок ленты. Приводимые в действие более высоким напряжением (и, таким образом, обеспечивающие более высокий крутящий момент), моментные двигатели также могут выполнять быструю перемотку вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты.

Шаговые двигатели

Основная статья: Шаговый двигатель

По конструкции с трехфазными синхронными двигателями переменного тока тесно связаны шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты или большой железный сердечник с выступающими полюсами, управляется набором внешних магнитов, переключаемых электронным способом. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и соленоидом. Поскольку на каждую катушку по очереди подается питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, при его применении двигатель не может вращаться непрерывно; вместо этого он «шагает» из одного положения в другое, поскольку обмотки возбуждения последовательно включаются и выключаются. В зависимости от последовательности ротор может вращаться вперед или назад.

Простые драйверы шагового двигателя полностью запитывают или полностью обесточивают обмотки возбуждения, приводя ротор к «зубчатому» ограниченному количеству положений; более сложные драйверы могут пропорционально управлять мощностью обмоток возбуждения, позволяя роторам располагаться «между» точками «зубчатых колес» и, таким образом, вращаться очень плавно.Шаговые двигатели, управляемые компьютером, являются одной из самых универсальных форм систем позиционирования, особенно когда они являются частью цифровой системы с сервоуправлением.

Шаговые двигатели можно легко поворачивать на определенный угол, поэтому шаговые двигатели используются в дисководах компьютеров, где высокая точность, которую они обеспечивают, необходима для правильного функционирования, например, жесткого диска или дисковода для компакт-дисков.

Бесщеточные двигатели постоянного тока

Основная статья: Бесщеточный электродвигатель постоянного тока

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимать щетки к коллектору.Это создает трение. На более высоких скоростях щеткам все труднее поддерживать контакт. Щетки могут отскакивать от неровностей поверхности коллектора, создавая искры. Это ограничивает максимальную скорость машины. Плотность тока на единицу площади щеток ограничивает мощность двигателя. Несовершенный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подвержен износу и обслуживанию. Сборка коллектора на большой машине является дорогостоящим элементом, требующим точной сборки многих деталей.

Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коллектора/щетки заменен внешним электронным переключателем, синхронизированным с положением двигателя. Бесщеточные двигатели обычно имеют КПД 85-90%, тогда как двигатели постоянного тока с щеточным механизмом обычно имеют КПД 75-80%.

На полпути между обычными двигателями постоянного тока и шаговыми двигателями находится бесщеточный двигатель постоянного тока. Построенные по принципу шаговых двигателей, они часто используют внешний ротор с постоянным магнитом , три фазы приводных катушек, одно или несколько устройств на эффекте Холла для определения положения ротора и соответствующую приводную электронику.Катушки активируются, одна фаза за другой, электроникой привода по сигналам датчиков Холла. По сути, они действуют как трехфазные синхронные двигатели, содержащие собственную электронику частотно-регулируемого привода. Специализированный класс контроллеров бесщеточных двигателей постоянного тока использует обратную связь по ЭДС через основные фазовые соединения вместо датчиков Холла для определения положения и скорости. Эти двигатели широко используются в электрических радиоуправляемых транспортных средствах.

Бесщеточные двигатели постоянного тока обычно используются там, где необходимо точное регулирование скорости, компьютерные дисководы или кассетные видеомагнитофоны, шпиндели в CD, CD-ROM (и т.) приводы и механизмы в офисных изделиях, таких как вентиляторы, лазерные принтеры и копировальные аппараты. Они имеют ряд преимуществ перед обычными двигателями:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с расщепленными полюсами, они очень эффективны и работают намного медленнее, чем аналогичные двигатели переменного тока. Эта холодная работа приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коллектора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор.Коммутация также имеет тенденцию вызывать сильный электрический и радиочастотный шум; без коммутатора или щеток бесщеточный двигатель можно использовать в электрически чувствительных устройствах, таких как аудиооборудование или компьютеры.
  • Те же самые устройства на эффекте Холла, которые обеспечивают коммутацию, могут также обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром управления (управляемых сервоприводом). В вентиляторах сигнал тахометра можно использовать для получения сигнала «вентилятор в порядке».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что обеспечивает точное регулирование скорости.
  • Коллекторные двигатели нельзя использовать в космическом вакууме, потому что они привариваются к неподвижному положению.

Мощность современных бесщеточных двигателей постоянного тока варьируется от долей ватта до многих киловатт. В электромобилях используются более крупные бесщеточные двигатели мощностью до 100 кВт. Они также находят широкое применение в высокопроизводительных электрических моделях самолетов.

Электродвигатели постоянного тока без сердечника

Ничто в конструкции любого из двигателей, описанных выше, не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов.Преимуществом этого факта является двигатель постоянного тока без сердечника , представляющий собой специализированную форму щеточного двигателя постоянного тока. Эти двигатели, оптимизированные для быстрого ускорения, имеют ротор без железного сердечника. Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блина (возможно, сформированного на печатной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются пропиткой эпоксидными смолами.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс. Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая действовала бы как радиатор, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Эти двигатели обычно использовались для привода шпилей магнитных ленточных накопителей и до сих пор широко используются в высокопроизводительных системах с сервоуправлением.

Линейные двигатели

Линейный двигатель — это, по сути, электродвигатель, который был «развернут» таким образом, что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подвеске (Transrapid), где поезд «летает» над землей.

Нанодвигатель

Наномотор, построенный Калифорнийским университетом в Беркли.Диаметр двигателя около 500 нм: в 300 раз меньше диаметра человеческого волоса.

Исследователи Калифорнийского университета в Беркли разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (с размерами порядка 100 нм) к внешней оболочке подвешенной многостенной углеродной нанотрубки (наподобие вложенных углеродных цилиндров), они способны электростатически вращать внешнюю оболочку относительно внутреннего ядра. Эти подшипники очень прочные; Устройства подвергались колебаниям тысячи раз без признаков износа.Работа была выполнена на месте в РЭМ. Эти наноэлектромеханические системы (НЭМС) представляют собой следующий шаг в миниатюризации, который в будущем может найти применение в коммерческих аспектах.

Примечание: тонкая вертикальная нить, видимая в середине, представляет собой нанотрубку, к которой прикреплен ротор. Когда внешняя трубка разрезается, ротор может свободно вращаться на подшипнике из нанотрубки.

Процесс и технология видны на этом рендере.

См. также

Компоненты:

Ученые и инженеры:

приложений:

Другое:

Внешние ссылки

Учебники

  • Шейнфилд Д.J., Industrial Electronics for Engineers, Chemists, and Technicians, William Andrew Publishing, Norwich, NY, 2001. Учебник для самообучения, в котором кратко рассматриваются электродвигатели, трансформаторы, регуляторы скорости, коды проводки и заземления, транзисторы, цифровые, и т. д. Легко читать и понимать, вплоть до элементарного уровня по каждому предмету, не подходящий справочник для технологов, уже работающих в любой из этих областей.
  • Fitzgerald/Kingsley/Kusko (Fitzgerald/Kingsley/Umans в более поздние годы), * Electric Machinery , классический текст для младших и старших студентов-электриков.Первоначально опубликовано в 1952 году, 6-е издание опубликовано в 2002 году. Авторы по-прежнему указаны как Фицджеральд / Кингсли / Уманс, хотя Фицджеральд и Кингсли уже умерли.
  • Бедфорд, Б.Д.; Хофт, Р. Г. и др. (1964). Принципы инверторных схем . Нью-Йорк: John Wiley & Sons, Inc.. 0 471 06134 4. (Схемы инвертора используются для управления скоростью двигателя с переменной частотой)
  • Б. Р. Пелли, «Тиристорные преобразователи с фазоуправляемым управлением и циклопреобразователи: работа, управление и производительность» (Нью-Йорк: John Wiley, 1971).

Ссылки

  • Дональд Г. Финк и Х. Уэйн Бити, Стандартный справочник для инженеров-электриков, одиннадцатое издание , McGraw-Hill, Нью-Йорк, 1978, ISBN 007020974X.
  • Эдвин Дж. Хьюстон и Артур Кеннелли, Последние типы динамо-электрических машин , авторское право American Technical Book Company 1897, опубликовано П.Ф. Коллиер и сыновья Нью-Йорк, 1902 г.
  • Купхалдт, Тони Р. (2000–2006 гг.). «Глава 13 ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА», Уроки электрических цепей — Том II .Проверено 11 апреля 2006 г.
  • А.О.Смит: Переменный и постоянный ток электродвигателей. Проверено 11 апреля 2006 г.

шаговый двигатель | Строительство, работа и типы ~ Wiki For You

Шаговый двигатель — строительство и работа

Шаговый двигатель — это, по сути, синхронный двигатель. В шаговом двигателе нет щеток. Этот двигатель вращается не непрерывно, а вращается в форме плюсов или дискретными шагами.Вот почему он называется шаговым двигателем. Доступны различные типы двигателей на основе количества шагов на оборот, например, 12 шагов на оборот, 24 шага на оборот и т. д. Мы можем управлять шаговым двигателем или управлять им с обратной связью или без обратной связи. Простое изображение шагового двигателя показано на рисунке выше.

Принцип работы шагового двигателя:

Принцип работы шагового двигателя — электромагнетизм. Он состоит из ротора из постоянных магнитов и статора из электромагнитов. На следующем рисунке показана конструкция практического шагового двигателя:

Теперь, когда мы подаем питание на обмотку статора.В статоре возникнет магнитное поле. Теперь ротор двигателя, состоящий из постоянных магнитов, будет пытаться двигаться вместе с вращающимся магнитным полем статора. Это основной принцип работы шагового двигателя. Теперь поговорим о его видах. В этой заметке вы найдете реальный метод работы серводвигателя определенного типа.

Типы серводвигателей:

Шаговый двигатель бывает следующих типов:

  • Постоянный магнит
  • Переменное сопротивление.
  • Гибридный шаговый двигатель
Первый тип наиболее важен, поэтому сначала мы должны обсудить его.

Шаговый двигатель с постоянными магнитами :

Работа и конструкция шагового двигателя с постоянными магнитами приведены ниже:

Шаговый двигатель с постоянными магнитами имеет статор из электромагнитов и ротор из постоянных магнитов, поэтому этот двигатель называется шаговым двигателем с постоянными магнитами.

Рабочий :

Когда мы подаем питание на статор, обмотка статора находится под напряжением и, следовательно, создает магнитное поле.Как описано выше, ротор состоит из постоянного магнита, поэтому он стремится следовать за вращающимся полем. Так работает шаговый двигатель.

Скорость или крутящий момент двигателя с постоянными магнитами зависит от количества полюсов, используемых в статоре. Если мы используем большое количество полюсов в статоре, то скорость двигателя увеличится, а если мы используем меньшее количество полюсов, то скорость уменьшится.

Схема шагового двигателя с постоянными магнитами приведена ниже:

Двигатель с переменным сопротивлением:  

В шаговом двигателе с переменным сопротивлением мы используем ротор с немагнитным железным сердечником, на поверхности которого витая обмотка.Статор такой же, как и в шаговом двигателе постоянного типа.

Рабочий:

Когда мы подаем питание на статор, в обмотке статора индуцируется магнитное поле, которое вызывает ЭДС. индукция в обмотке ротора, поэтому в роторе также создается магнитное поле, которое стремится следовать за магнитным полем статора.

Схема шагового двигателя с переменным сопротивлением приведена ниже:

Метод управления скоростью почти такой же, как и в двигателе с постоянными магнитами.В этом двигателе мы можем увеличить скорость за счет увеличения количества полюсов статора, а также за счет увеличения количества зубьев ротора и наоборот.

Двигатель гибридного типа, как следует из названия, представляет собой смесь обоих вышеперечисленных типов. Он состоит из ротора, который является магнитным, а также зубчатым. Схема конструкции этого мотора представлена ​​ниже:

Ротор этого типа двигателя состоит из двух роторов, соединенных как вал двигателя. Один из них для севера, а другой для южного полюса.Эти полюса располагаются альтернативным образом, как они спроектированы таким образом.

Основы линейного шагового двигателя. Советы по линейному движению

Как и большинство линейных двигателей, линейный шаговый двигатель представляет собой разновидность роторного двигателя, с радиальным вырезом и плоским расположением. Подобно своим вращающимся аналогам по работе и производительности, линейные шаговые двигатели обычно работают как системы с разомкнутым контуром и способны обеспечивать высокое разрешение при высоких скоростях и ускорениях.

Линейный шаговый двигатель почти исключительно использует гибридную конструкцию с двумя основными частями — основанием (также называемым валиком) и ползунком (также называемым форсирующим устройством).В отличие от других конструкций линейных двигателей, в линейном шаговом двигателе валик представляет собой пассивный компонент — пластину из стали (или нержавеющей стали) с прорезанными в ней пазами. Форсунка содержит пластины с прорезными зубьями, обмотки двигателя и постоянный магнит. Зубья форсунки концентрируют магнитный поток, который создается при подаче тока на катушки. Зубья нагнетателя также смещены по отношению к зубьям валика — обычно на ¼ шага зубьев — для обеспечения постоянного притяжения и того, чтобы следующий набор зубьев выровнялся при переключении тока в катушках.На каждый полный шаг двигателя форсунка перемещается на ¼ шага зуба.

В линейном шаговом двигателе основание или валик является пассивным, а форсирующий элемент содержит пластины с прорезями, обмотки и постоянный магнит.
Изображение предоставлено: Parker Compumotor

Магнитный поток между толкателем и плитой создает очень сильное магнитное притяжение, поэтому подшипники — либо механические роликоподшипники, либо воздушные подшипники — обычно интегрируются в систему линейного двигателя для поддержания правильного воздушного зазора. между усилителем и плитой.Когда используются воздушные подшипники, опорной поверхностью для воздуха служит валик.

С линейными шаговыми двигателями возможны как полношаговые операции, так и микрошаги, но микрошаги часто используются для минимизации резонанса, возникающего, когда частота входных импульсов совпадает с частотой собственных колебаний двигателя. Резонанс вызывает потерю крутящего момента и может привести к пропущенным шагам и ошибкам позиционирования. Микрошаг также увеличивает разрешение двигателя, хотя и за счет крутящего момента.


Микрошаговый режим — это распространенный метод управления как вращательными, так и линейными шаговыми двигателями, в котором контроллер двигателя подразделяет угол шага двигателя и управляет каждой фазой током с идеальной синусоидой. Угол шага может быть разделен до 256 раз, что приводит к гораздо меньшим шагам для лучшего контроля вращения двигателя. Кроме того, синусоидальные токи разнесены на 90 градусов, поэтому при увеличении тока в одной обмотке он уменьшается в другой обмотке. Это обеспечивает плавность хода и более стабильное создание крутящего момента по сравнению с полным или полушаговым режимом.

Микрошаговый режим питает каждую фазу двигателя синусоидальными токами, смещенными на 90 градусов.
Изображение предоставлено: Texas Instruments Inc.

Основным недостатком линейных шаговых двигателей является плохое соотношение скорости и силы. Это означает, что, хотя они могут создавать большую силу на низкой скорости, их производство силы резко падает с увеличением скорости. Но для приложений, подходящих для работы в разомкнутом контуре с требованиями к усилию от низких до умеренных, линейные шаговые двигатели предлагают решение, простое в настройке и эксплуатации и обеспечивающее высокое разрешение на высоких скоростях.

Серводвигатель

и шаговый двигатель (разница в принципе работы и производительности)

Шаговый двигатель

Принцип работы шагового двигателя

Шаговый двигатель, как специальный двигатель для управления, представляет собой привод преобразования электрического импульса в угловое перемещение.

Когда шаговый драйвер получает импульсный сигнал, он заставляет шаговый двигатель вращаться на фиксированный угол в заданном направлении (так называемый «угол шага»).

Вращается шаг за шагом на фиксированный угол шага.

Угловое смещение можно контролировать, контролируя количество импульсов для достижения точного позиционирования

В то же время скорость и ускорение вращения двигателя можно контролировать, контролируя частоту импульсов, чтобы достичь цели регулирования скорости. Двигатель будет реверсирован, если изменить последовательность электрификации обмотки.

Принцип работы драйвера шагового двигателя

Шаговый двигатель должен приводиться в действие специальным драйвером шагового двигателя, который состоит из блока импульсного управления, блока силового привода и блока защиты.

Блок силового привода усиливает импульс, генерируемый блоком управления генерацией импульсов, и напрямую связан с шаговым двигателем, который относится к силовому интерфейсу между шаговым двигателем и микроконтроллером.

Блок инструкций управления получает импульс и сигналы направления, соответствующий блок управления генерацией импульсов генерирует набор соответствующих импульсов и затем отправляет их на шаговый двигатель через блок силового привода. Шаговый двигатель поворачивает шаг на угол в соответствующем направлении.

Шаговый двигатель имеет некоторые важные технические характеристики, такие как максимальный статический крутящий момент, начальная частота и рабочая частота.

Вообще говоря, чем меньше угол шага, тем больше максимальный статический крутящий момент двигателя, тем выше пусковая частота и рабочая частота.

Таким образом, режим работы подчеркивает технологию привода подразделения.

Этот метод улучшает момент вращения и разрешающую способность шагового двигателя и полностью устраняет низкочастотные колебания двигателя.

Таким образом, производительность раздельного диска лучше, чем у других типов дисков.

Ротор внутри серводвигателя представляет собой постоянный магнит. Драйвер управляет трехфазным электричеством U/V/W для формирования электромагнитного поля. Ротор вращается под действием этого магнитного поля, и собственного сигнала обратной связи энкодера к драйверу. Драйвер регулирует угол поворота ротора в соответствии со значением обратной связи и целевым значением.

Серводвигатель

Принцип работы серводвигателя

Серводвигатель, также известный как исполнительный двигатель.

В системе автоматического управления серводвигатель используется в качестве исполнительного механизма для преобразования полученного электрического сигнала в угловое смещение или угловую скорость на валу двигателя и последующего вывода.

Серводвигатели

делятся на серводвигатели постоянного и переменного тока.

Когда серводвигатель получает один импульс, он повернется на угол, соответствующий одному импульсу, чтобы реализовать смещение, потому что:

Сам серводвигатель имеет функцию отправки импульсов, поэтому каждый угол поворота серводвигателя будет посылать соответствующее количество импульсов, которые образуют замкнутый контур вместе с импульсом, полученным серводвигателем.Система будет знать, сколько импульсов она отправляет на серводвигатель и сколько импульсов получает.

Таким образом можно точно управлять двигателем для достижения точного позиционирования.

Серводвигатель переменного тока

превосходит серводвигатель постоянного тока по производительности.

Серводвигатель переменного тока

использует синусоидальное управление с небольшой пульсацией крутящего момента и большой мощностью.

Серводвигатель постоянного тока

использует управление трапециевидной волной, что является относительно плохим.

Бесщеточный серводвигатель постоянного тока имеет лучшую производительность, чем щеточный серводвигатель.

Принцип работы драйвера серводвигателя

Ротор внутри серводвигателя представляет собой постоянный магнит.

Привод управляет трехфазным электричеством U/V/W для формирования электромагнитного поля, в котором вращается ротор.

В то же время сигнал обратной связи собственного энкодера двигателя к драйверу. Драйвер регулирует угол поворота ротора в соответствии со значением обратной связи и целевым значением.

Серводвигатель постоянного тока со щеткой:

Принцип работы двигателя такой же, как у обычного двигателя постоянного тока.

Привод представляет собой трехконтурную структуру, состоящую из контура тока, контура скорости и контура положения изнутри наружу.

Выход токовой петли управляет напряжением якоря двигателя. Вход контура тока — это выход ПИД-регулятора скорости, вход контура скорости — это выход ПИД-регулятора контура положения, а вход контура положения — заданный вход. Схема управления показана выше.

Бесщеточный серводвигатель постоянного тока:

Источник питания постоянного тока, который преобразуется в мощность переменного тока U/V/W через внутренний трехфазный инвертор.

Водитель также использует трехконтурную структуру управления (токовая петля, петля скорости, петля положения), а принцип управления вождением такой же, как описано выше.

Серводвигатель переменного тока:

Его можно разделить на два модуля: силовой щит и щит управления с независимыми функциями.

Панель управления выводит сигналы PWM через соответствующий алгоритм, как цепь привода сигнала привода, для изменения выходной мощности инвертора, чтобы достичь цели управления трехфазным синхронным серводвигателем переменного тока с постоянными магнитами.

Блок силового привода сначала выпрямляет входное трехфазное электричество или городское электричество через трехфазную мостовую схему выпрямителя и получает соответствующее электричество постоянного тока.

Трехфазный синхронный серводвигатель переменного тока с постоянными магнитами приводится в действие коммутатором трехфазного синусоидального инвертора напряжения ШИМ после хорошего трехфазного или муниципального выпрямителя. Это просто процесс преобразования переменного тока в постоянный.

Блок управления является ядром всей сервосистемы переменного тока, реализуя управление положением системы, управление скоростью, крутящим моментом и током.

Сравнение производительности серводвигателя и шагового двигателя

Точность управления

Чем больше фаз и биений у шагового двигателя, тем точнее он будет.

Серводвигатель получает кадры от собственного энкодера. Чем больше масштаб у энкодера, тем выше точность.

Низкочастотная характеристика

Низкочастотная вибрация шагового двигателя легко возникает на низкой скорости. Когда он работает на низкой скорости, он обычно использует технологию демпфирования или технологию разделения для преодоления низкочастотной вибрации.

Серводвигатель работает очень плавно, вибрации не будет даже на низкой скорости.

Частотно-моментная характеристика

Выходной крутящий момент шагового двигателя уменьшается с увеличением скорости и резко уменьшается на высокой скорости.

Серводвигатель имеет постоянный выходной крутящий момент при номинальной скорости и постоянную выходную мощность при номинальной скорости.

Перегрузочная способность

Шаговый двигатель не имеет перегрузочной способности, а серводвигатель имеет сильную перегрузочную способность.

Эксплуатационные характеристики

Шаговый двигатель находится в режиме управления без обратной связи. Если начальная частота слишком высока или нагрузка слишком велика, легко потерять шаг или остановить вращение. Если скорость слишком высока, легко промахнуться.

Система сервопривода переменного тока

имеет замкнутый контур управления. Драйвер серводвигателя может напрямую сэмплировать сигнал обратной связи энкодера двигателя. Внутреннее кольцо положения и кольцо скорости сформированы. Как правило, шаговый двигатель не теряет шаг и не перескакивает, поэтому эффективность управления более надежна.

Скорость отклика

Шаговому двигателю требуются сотни миллисекунд для разгона от статической до рабочей скорости.

Сервосистема переменного тока

имеет хорошие характеристики ускорения, обычно всего несколько миллисекунд, которые можно использовать в случаях управления, требующих быстрого запуска и остановки.

Добавить комментарий

Ваш адрес email не будет опубликован.