Включение светодиода на напряжение 220 в: Схема подключения светодиода к 220в — Ваша техника
Схема подключения светодиода
Изучим правильное включение светодиодов, только электрическую сторону дела.
Для использования изложенных ниже сведений потребуются: калькулятор, паяльник, тестер.
Сразу следует остановиться на некоторых моментах. Если нет навыков применения перечисленных инструментов, лучше обратиться к специалисту, в результате чего можно избежать таких неприятностей как незапланированный костер дома, а также повреждение собственного организма в целом или отдельных его частей. Так же не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.
Следует соблюдать заводские параметры включения светодиода. Прежде чем куда-либо подсоединить светодиод, нужно выяснить его электрические параметры.
Немного физики. Напряжение ‘U’ измеряется в вольтах (В), ток ‘I’- в амперах (А), сопротивление ‘R’ в омах (Ом).
Итак, мы решили подключить светодиод. Рассмотрим наиболее популярные напряжения — 9, 12 В. Изучим вариант, когда в распоряжении есть постоянное напряжение, без помех (например батарейки, вынутые втихаря из пульта от телевизора), а потом исследуем вопрос подключения к менее идеальным источникам (помехи, нестабильное напряжение и др.).
Все светодиоды имеют один главный электрический параметр, при котором обеспечивается его нормальная работа. Это ток ( I ), текущий через светодиод. Светодиод нельзя назвать двух или трехвольтовым. У тех, кто все-таки посещал уроки физики в школе, сразу возникает логичный вопрос: если 2 светодиода абсолютно одинаковые и через оба течет один и тот же ток, значит, и напряжение надо приложить одно и тоже к обоим. А вот и не так! Технология изготовления кристаллов не позволяет сделать 2 светодиода с одинаковым, назовем его, ‘ Через светодиод надо пропустить ток (согласно заводским параметрам) и измерить напряжение на его контактах. Это напряжение и будет обеспечивать протекание требуемого тока через кристалл светодиода!
Рассмотрим наиболее распространенные светодиоды, рассчитанные на ток 20 мА (т.е. 0,02 А).
Идеальный вариант подключения светодиодов — использование стабилизатора тока. К сожалению, готовые стабилизаторы стоят на порядок выше самого светодиода, об изготовлении относительно дешевого самодельного расскажем чуть ниже.
Как правило среднее напряжение (при I=20 мА) красного и желтого светодиода — 2,0 В (обычно эта величина 1,8 — 2,4 В), а белого, синего и зеленого — 3,0 В (3,0 — 3,5 В).
Итак, продавец Вам безапелляционно заявил, что Вы купили, например ‘красный светодиод на 2,0 В, такой-то яркости’ -поверим продавцу пока на слово, проверим и, если это не так, — вернемся и очень вежливо попросим заменить.
Вот простой вариант. У Вас нашлось дома, например, 8 штук батареек по 1,5 В, итого 8,0 *1,5 = 12,0 В (берем большое напряжение, чтобы было понятнее), и подсоединяем светодиод, который купили. Подключили ? Теперь выкиньте свой светодиод, потому, что он сгорел! Вам же продавец сказал — 2,0 В, а Вы его в 12,0 В воткнули ! Купили новый, а лучше сразу небольшую кучку (фото). Смотрим (не только смотрим, но и еще очень энергично пользуемся измерительным прибором): есть 12,0 В, надо 2,0 В, надо куда-то деть лишних 10 В (12,0 — 2,0 = 10,0).
U = R * I
R = U / I
Ток, текущий в цепи I = 20 мА. Сопротивление нужно подобрать, чтобы на нем потерялось (упало) 10 В, а нужные 2,0 В дошли до светодиода. Отсюда находим требуемое R:
R = 10,0 / 0,02 = 500 Ом
Напряжение на сопротивлении превращается в тепло.
P = U * I
На сопротивлении у нас 10,0 В при токе 20 мА. Считаем:
P = 10,0 * 0,02 А = 0,2 Вт.
При приобретении сопротивления просим у продавца 500 Ом, мощностью не менее 0,2 Вт (лучше больше, с запасом, чтобы на душе было спокойнее, 0,5 Вт например, но следует учесть — чем больше мощность, тем больше размеры). Подключаем светодиод (не забыв про полярность) через сопротивление и ощущаем волну радости — сияет!
Теперь размыкаем цепь между сопротивлением и светодиодом, включаем измерительный прибор и измеряем протекающий в цепи ток. Если ток менее 20 мА, надо немного уменьшить сопротивление, если больше 20 мА — увеличить. Вот и все ! Получив ток в 20 мА, мы достигли оптимальной работы светодиода, а при таком режиме производитель гарантирует десять лет непрерывной работы. Садимся и ждем десятьлет, если что не так, пишем претензию на завод. По мере того, как батарейки будут ‘садиться’, яркость светодиода будет уменьшаться. После того как батарейки ‘сядут’ совсем, их надо вставить обратно в пульт, сделать вид, что так и было или, например, объявить всем, что на быструю смерть батареек повлияла магнитная буря или чрезмерная активность солнца.
Это мы поступили правильно, но обычно производитель указывает среднее напряжение для партии светодиодов при оптимальном токе. И никто не утруждает себя точным подбором тока. Поэтому остальные примеры будут основаны на данных о среднем напряжении, а не токе (и мы ни кому не скажем, что это не совсем правильно !).
Теперь определимся с подключением нескольких светодиодов. Подключаем два красных последовательно. 2 шт * 2,0 = 4,0 В. Питающее напряжение — 12 В, следовательно лишних — 8,0 В. R = 8,0 / 0,02 = 400 Ом. P= 8,0 * 0,2 = 0,16 Вт.
Если шесть штук — 6шт. * 2,0В = 12 В. Сопротивление не требуется… (на самом деле так НЕЛЬЗЯ!). А нельзя потому, что светодиоды имеют небольшой разброс по напряжениям, а вот ток без резистора задать им нечем. И в такой цепи он может оказаться как 5 мА, так и 35 мА!
Аналогично, например, с синими (3,0в) : 3шт x 3,0 В = 9,0В. 12,0 В — 9,0 В = 3,0 В. R = 3,0 / 0,02 = 150 Ом. P = 3,0 * 0,02 = 0,06 Вт.
Теперь изучим более сложный вариант. Надо подключить к 12 В тридцать штук красных по 2,0В. На 12В можем подключить только пять штук с резистором (шесть штук без сопротивлений НЕЛЬЗЯ), соединяем пять штук последовательно с соответствующим сопротивлением и подключаем — светится. Соединяем еще пять штук и резистор, присоединяем параллельно к первым. При этом через каждые пять штук будет течь ток в 0,02А. У нас получится шесть цепочек с общим током 6* 0,02А = 0,12А (уже батареек хватит ненадолго).
Надо подключить к 12В 30 штук зеленых по 3,5В. На 12В мы можем подключить: 12В / 3,5В = 3,43 штуки. Мы не будем отрезать от четвертого светодиода 0,43 части, а подключим 3 штуки + сопротивление: 3штуки * 3,5В = 10,5 В. Лишнее напряжение: 12,0 В — 10,5 В = 1,5 В. Сопротивление R = 1,5В / 0,02А = 75 Ом при мощности P = 1,5 * 0,02 = 0,03 Вт. Если вдруг одному светодиоду в процессе монтажа были случайно выдраны ноги и их осталось всего 29 штук, то соединяем 9 цепочек по 3 штуки, и одну цепочку из 2-х штук + сопротивление R = 250 Ом, P = 0,1Вт.
Чудненько. Вот мы и вспомнили чуть-чуть основы физики. Теперь рассмотрим более стабилизированную схему включения светодиодов. Возложим техническую проблему подключения на мировые умы, разрабатывающие интегральные микросхемы. Коснёмся изготовления стабилизатора тока. Это достаточно просто, главное нащупать немного лишних монет в кармане. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напрягать их так и подавать максимум 20 вольт. При таком подключении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток через светодиод будет соответствовать неизменному значению в 20 мА! При 20 вольтах получаем, что к такому стабилизатору можно подключить последовательно пять белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет всегдп протекать 20 мА (лишнее напряжение погасится на стабилизаторе).
Важно!!! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В таком случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.
Каждую цепочку желательно собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно!!! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно разрабатывать устройство так, чтобы протекающий ток через светодиод был равен не 20 мА, а 17-18 мА. Потеря яркости будет небольшая, зато долгий срок службы гарантирован.
Просто соединять светодиоды и подключать их к батарейкам от пульта — не интересно. Их обязательно надо спаять вместе и подключить к какому-нибудь устройству (пылесосу например, чтобы было видно всасывание каждой пылинки. Тут сразу надо учесть, что в пылесосе 220 опасных вольт, да еще и напряжение переменное, что ни как не годится к подключению светодиодов. Для этого надо изготовить специальный блок питания, но эту тему мы не будем сейчас обсуждать).
Надо найти устройство с постоянным напряжением и обильно украсить его светодиодами. Вот тут-то вперед выступают счастливые обладатели личных механических коней (авто-мото-вело-самокато). Ведь можно обвесить свой любимый транспорт светодиодами так, что прохожие не усомнятся, что мимо проехала новогодняя елка, а никак не средство передвижения. Нужно сразу предупредить, что злоупотребление количеством, яркостью и цветом пресекается некоторыми сотрудниками дорожной инспекции. Также не следует, к примеру, делать стоп-сигналы с яркостью превышающей яркость фар с включенным дальним светом — это немного раздражает едущих сзади, что тоже может в конце концов неблагоприятно сказаться на Вашем организме (особенно на лице), но не будем расстраиваться, ведь есть еще пространство внутри!!! Там уж можно приложить всю свою фантазию (например подсветить снизу лицо водителя синим цветом, что отобьет охоту у сотрудников ГИБДД проверять документы). 🙂
Сразу надо иметь ввиду, что напряжение в сети исправного авто не 12В, а 14,5 В. Желательно проверить это прибором при запущенном двигателе (если конечно есть двигатель). Так же в бортовой сети железного коня наблюдается множество помех, которые не желательны, да и напряжение иногда не очень постоянное. Для снижения помех на входе вашего светящегося устройства можно собрать простую схему из двух деталей — диода и электролитического конденсатора (рисунок). Конденсатор и диод, как и светодиод имеет полярность, значения рабочего напряжения и тока (диод). После установки диода и конденсатора надо замерить напряжение Uвых (оно не будет совпадать с Uвх) и после этого рассчитывать схему подключение светодиодов.
Если Вы не уверены в стабильности напряжения бортовой сети, можно использовать специальные интегральные стабилизаторы напряжения. Они обеспечивают постоянное напряжение на выходе при изменяющемся (в разумных пределах) или скачущем (как лошадка) входном напряжении.
Наиболее простые представители — К142ЕН8А или КРЕН8А (9 вольт) и К142ЕН8Б или КРЕН8Б (12 вольт). Приблизительная цена такой штуки составляет 10-20 руб (зависит от жадности продавца). Т.е. у продавца надо спросить с гордым видом ‘КРЕНКУ, например, на 9В’, он сразу все поймет и узрев в Вас крупного специалиста не посмеет обмануть (продаются также иностранные аналоги). Микросхемы имеют всего три ноги и если Вы ни разу в жизни не заблудились в трех соснах, то разобраться в них не составит ни какого труда. Берем левой рукой стабилизатор ногами вниз и надписью к себе, указательным пальцем правой руки слева направо тычем в выводы. Первая нога — вход (+), средняя — корпус (-), правая выход (+). (фото). Подключить ее надо как на рисунке. На выходе получим постоянное напряжение в 9 или 12 вольт. Исходя из этого, рассчитываем, как было в начале статьи, схему включения светодиодов. Почему 9В или 12 В? На 9В хорошо подсоединяются два синих, зеленых или белых светодиода либо три-четыре красных или желтых и резистор, на 12В — пять штук красных, желтых или три штуки синих, зеленых или белых, обязательно требуется дополнительное сопротивление. Микросхему (при большом количестве светодиодов) надо установить на радиатор. КРЕН8Б рассчитана на максимальную нагрузку в 1,5А (при таком токе очень сильно будет греться). На вход не следует подавать напряжение более 35 вольт. Входное напряжение должно быть не менее чем на 3В больше выходного, иначе стабилизатор не будет работать.
В заключении следует отметить такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
Не рекомендуется паять светодиоды старым дедушкиным паяльником, который нагревали в печке и использовали для запайки дырок в кастрюлях. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Полезным будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ноги светодиода следует изгибать с небольшим радиусом (чтобы они не ломались, нам калеки не нужны !). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то материал устанет, и кристалл отвалится от ножек).
Собирать светодиоды в одно большое светящееся чудо лучше всего на каком-нибудь плоском листовом материале (пластмасса, оргстекло и др.), предварительно просверлив в нем дырок нужного размера по диаметру корпуса (придется освоить еще измерительный инструмент и дрель).
Помните, что светодиод — нежный прибор и обращаться с ним надо соответственно (при пайке можно спеть песню, чтобы работал долго).
Чтобы Ваше устройство защитить от автомобиля и автомобиль от устройства (ведь теперь не известно, что надежнее) — следует ставить предохранители.
СодержаниеВведение ВведениеРанее я уже писал о том, как правильно подключать светодиоды. [Вернуться в начало] Напряжение питанияНапряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его. [Вернуться в начало] ТокВеличина тока для светодиода является основным
параметром, и как правило, составляет 10 или 20 милиампер.
Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:
[Вернуться в начало] Параллельное и последовательное включение светодиодовПараллельное включение светодиодов с общим резистором — плохое решение. При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой. Так, к автомобильному аккумулятору 12 вольт можно подключить 12 / 2 = 6 светодиодов с падением напряжения 2 вольта. В этом случае теоретически можно обойтись вообще без резистора, однако из-за расброса характеристик светодиодов проверить ток в цепи будет не лишним. Он не должен превышать номинального тока светодиода. Если ток выше, следует включить в цепь резистор сопротивлением несколько ом. [Вернуться в начало] Часто задаваемые вопросы1. Я знаю электротехнику и уверяю вас, что ток прекрасно регулируется напряжением! Мне не нужен резистор, я отрегулирую ток напряжением источника питания, и запитаю от него сразу несколько светодиодов! Было бы хорошо, если помимо электротехники Вы бы знали и электронику. 2. Я втыкал один и тот же светодиод и в 2 и в 3 вольта, и он нормально светился и не перегорал! Нафига мне мерить ток, если всё и так работает? Весь вопрос в том, как долго светодиод должен быть исправным. Если Вам достаточно
нескольких дней (недель, при качественных светодиодах — месяцев), то втыкайте их как хотите.
Если вам нужно надёжное изделие, стабильно работающее годами, потрудитесь посчитать резисторы. 3. Я правильно подсчитал резистор для питания светодиода от сети 220 вольт переменного тока. Однако светодиоды постоянно перегорают. Ваши светодиоды не выдерживают постоянный электрический пробой обратным полупериодом. В результате происходит необратимый тепловой пробой. Чтобы этого избежать, параллельно светодиоду, но с обратной полярностью, включите любой кремниевый диод, например КД522Б. Он пропустит через себя обратный полупериод, не давая ему пробить светодиод в обратном направлении. Также обратите внимание на то, что в расчёте номинала резистора следует использовать не среднеквадратичное напряжение 220 вольт, а амплитудную его величину 311 вольт. При расчёте же мощности резистора используем привычное нам среднеквадратичное значение напряжения в 220 вольт. 4. У меня светодиоды подключены вместо контрольных ламп в системе автоматики. Из-за большой
длинны кабельной линии они постоянно подсвечиваются от наводок. Самый удачный способ избежать свечения отключенных светодиодов — занулить питающий провод при снятии напряжения питания со светодиода. Обычно это делается на противоположной светодиоду стороне переключающим реле. Общий контакт реле подключается к жиле, питающей светодиод, нормально замкнутый контакт зануляется, а на нормально разомкнутый подаётся напряжение. Теперь срабатывание реле зажжёт светодиод, а при его отключении питающая жила будет занулена и все наводки стекут в ноль. Часто такое подключение требует переделки схемы
автоматики. Если на это пойти нельзя, можно придумать альтернативные варианты. Например, использовать
рядом со светодиодами промежуточные реле, или извратиться и включить две связки «светодиод-диод-резистор» последовательно — один
на стороне автоматики, другой на удалённой панели индикации, поставить их под напряжение, а отключение
производить замыканием средней точки на ноль. 5. У меня есть светодиод, но я не знаю его марку, а значит, мне неизвестен ни его ток, ни величина прямого падения напряжения на нём. Для простейшего способа определения характеристик светодиода вам понадобится
источник питания постоянного тока с плавно регулируемым выходным напряжением (например, от
0 до 12 вольт, хотя в большинстве случаев подойдет диапазон 1,5—2,5 вольта), вольтметр и амперметр.
Ставим регулятор напряжения на минимум и, соблюдая полярность, подключаем светодиод к блоку
питания. В цепь последовательно со светодиодом включаем амперметр, а параллельно источнику
питания — вольтметр. Напряжение: регулятором медленно поднимаем напряжение до тех пор, пока светодиод не начнет приемлемо светиться. При этом следим, чтобы ток случайно не превысил 20 миллиампер (максимум для большинства светодиодов). Смотрим напряжение (например, 1,82 В). Округляем его до десятых вольта (1,8). Это и будет величина прямого падения напряжения. Ток: теперь проверяем разницу свечения светодиода при токах 5, 10 и 20 миллиампер (наиболее распространенные величины), аккуратно выставляя их регулятором напряжения. Интуитивно по характеру изменения свечения определяем, какой ток для светодиода будет оптимальным. При этом если разница в свечении не существенна, выбираем меньшее значение тока (чаще всего используется 10 миллиампер). Сегодня также существуют светодиоды повышенной яркости, которые рассчитаны на токи в сотни
миллиампер. Поэтому, если светодиод горит тускло при 20 миллиамперах, пробуем увеличивать ток
далее. 6. Я подключил светодиоды к аккумулятору в автомобиле, но когда двигатель работает — они горят ярче. Это не опасно? Опасно. Генератор автомобиля при работе двигателя даёт напряжение в бортовую
сеть 13,6—14,7 вольта, и светодиоды могут быстро выйти из строя. Кроме того, это напряжение
постоянно изменяется и сильно падает при пуске двигателя. Поэтому необходимо стабилизировать
это напряжение, например, на 9 вольтах специальной микросхемой КРЕН8А (КР142ЕН8А, 7809) с максимальным
током 1,5 ампера или КРЕН8Г (КР142ЕН8Г) с максимальным током 1 ампер, и расчёт резисторов
производить уже относительно этого напряжения. Не забывайте, что при большом токе микросхема
будет греться, поэтому её следует устанавливать на радиатор. |
Включаем индикаторный светодиод в сеть 220 вольт: grodenski — LiveJournal
Случаются ситуации, когда нужно видеть подается ли напряжение 220 В на нагрузку. Нагрузка может находиться даже не в этом помещении, но включаться здесь. Например свет в погребе или на чердаке частного дома, который нужно включать дома.
В этом нам поможет обычный китайский светодиод установленный на видном месте. Его просто так взять и включить в 220 В нельзя — сгорит мгновенно. Нужно последовательно ему включить токоограничительный резистор и защитить от обратного напряжения.
Подобрать резистор нам поможет программа. Мгновенное напряжение в электрической сети может достигать 310 вольт. На него и рассчитываем сопротивление. 220 вольт это действующее усредненное напряжение. Ток светодиода выбираем 5 мА — его достаточно для свечения. При большем токе светодиода мощность резистора нужно увеличивать.
расчет на 5 мАДля защиты от обратного напряжения нужно использовать диод, включенный встречно – параллельно. Я использовал вездесущий 1n4007. Его можно заменить вторым светодиодом включенным встречно – параллельно первому.
Чтобы снизить нагрев резистора и исключить вероятность серьезного удара током при прикосновении к выводам светодиода или разрушении его корпуса если через резистор подключена не фаза, а земля ставим два резистора по 33 кОм. В сопротивление, рассчитанное программой попадает.
светодиод с двумя резисторами 33 кОм и включенным встречно – параллельно диодомТак же для защиты от обратного напряжения можно диод 1n4007 включить последовательно резистору и светодиоду. Так же можно использовать два резистора по 33 кОма как и в прошлом случае.
светодиод с резистором 68 кОм и с включенным последовательно диодомДля освещения нужно использовать блок питания чтобы убрать пульсации переменного тока.
Соблюдайте правила электробезопасности! Благодарю за внимание!
Напряжение на светодиоде
В сети «гуляют» таблицы со следующими величинами рабочего напряжения светодиодов:
белые 3-3,7 v
синие 2,5-3,7 v
зеленые 2,2-3,5 v
желтые 2,1-2,2 v
красные 1,6-2,03 v
В то же время производители конкретных SMD светодиодов дают следующие напряжение питания светодиодов:
Напряжение красного светодиода самое низкое, а белого – самое высокое.
На цвет свечения светодиода влияют добавки в полупроводнике. Корректировать цвет удается нанесением люминофора, так, например, получают из голубого свечения белый свет.
Падение напряжения на светодиоде зависит не только от цвета свечения, но и от конкретного типа, протекающего тока, температуры и старения. Отвод тепла в лампах, светильниках и прожекторах является очень важной задачей, т.к. сильно влияет на степень деградации светодиодов. .
На практике самым важным параметром светодиода, от которого зависит срок его службы, является номинальный ток. Для светодиодов увеличение тока на 20% выше номинального сокращает срок их службы в несколько раз. Поэтому для светодиодов стабилизатор напряжения не обязателен, важнее поддерживать заданный ток с помощью специальных драйверов, которые автоматически поддерживают ток в широком диапазоне колебаний напряжения питания. «Правильные» драйверы обеспечивают нормальную работу светодиодной лампы в диапазоне питающего напряжения 60-260 вольт.
В случае использования токограничивающих резисторов, напряжение желательно стабилизировать. КПД при таком включении складывается из КПД стабилизатора напряжения и потерь на резисторе и не превышает 80%, в то время как КПД современных драйверов-стабилизаторов тока не ниже 95%.
Наличие технологического разброса прямого падения напряжения даже у диодов произведённых в одном технологическом цикле, делает нежелательным их параллельное включение.
Проблема решается уменьшением тока через светодиоды с соответствующей потерей яркости свечения, либо установкой ограничительного резистора на каждый led.
При последовательном включении все светодиоды в гирлянде, должны быть одного типа или иметь одинаковый рабочий ток.
Следует помнить, что светодиод пропускает ток только при подаче на катод отрицательного напряжения, а на анод положительного. При обратном включении ток протекает при повышенном напряжении и следствием может стать пробой и выход из строя. Допустимое обратное напряжение, как правило, находится в пределах 5 вольт. При питании переменным током надо использовать встречно-параллельное включение диодов.
Зависимость интенсивности излучения светодиода от прямого тока нелинейная, при увеличении тока интенсивность излучения растет не пропорционально.
Наружное освещение — самые безопасные варианты напряжения
Когда дело доходит до наружного освещения, безопасность системы даже важнее, чем функциональность и эстетика. Сегодня мы поговорим о безопасности и напряжении. Для наружного освещения предусмотрено три варианта напряжения: 220 вольт, 110 вольт и 12 вольт. Сравним:
220 Вольт
Это не норма в Америке, но это стандарт во многих других странах. Некоторые бытовые приборы в Америке используют 200 вольт. Эти приборы обычно имеют большую причудливую вилку и розетку, а также собственную цепь и автоматический выключатель.Ваша сушилка, плита/духовка, основной блок кондиционера, водонагреватель и гидромассажная ванна на открытом воздухе, скорее всего, работают от напряжения 200 вольт. Наружное освещение на 220 вольт обычно предназначено только для коммерческого использования (автостоянки, стадионы и т. д.), где требуется много света. Наружное освещение редко используется на этом уровне для жилых помещений и всегда требует наличия лицензированного электрика.
120 вольт
Это также называется освещением высокого, линейного или стандартного напряжения. Это стандартное напряжение, подаваемое непосредственно в дома. Наружное освещение, установленное при таком напряжении, потребует лицензированного электрика почти везде в Соединенных Штатах, что значительно увеличит стоимость, однако есть некоторые приложения, для которых это лучший выбор: коммерческие и некоторые жилые помещения.
12 вольт
Это также называется низковольтным освещением и является стандартом для ландшафтного освещения. Используя понижающий трансформатор, низковольтное освещение преобразует 120-вольтовую электрическую сеть вашего дома в 12-вольтовую. Без трансформатора на ваши фары будет поступать слишком большой ток, и они сгорят/взорвутся. Вроде не то, что мы ищем, верно?!
Стандарт:
Низковольтное освещение стало стандартом для наружного освещения, потому что это самый безопасный вариант напряжения ландшафтного освещения. Риск получения травмы от системы 12 В намного ниже, чем от системы 120 В, просто по проводам проходит меньше электричества. Воздействие системы 12 В крайне маловероятно, чтобы привести к серьезной травме или смерти. А разве это не то, что вы хотите услышать, если по какой-то причине у вас есть оголенный провод? Например, если ваша собака выкапывает его или вы копаете во дворе?
Кроме того, низковольтное освещение потребляет меньше электроэнергии (особенно со светодиодными лампами), служит дольше (меньше выделяемого тепла) и имеет гораздо больше возможностей для создания желаемого эффекта (включая стили светильников, рассеивание луча и цветовую температуру). А поскольку для внесения изменений в низковольтное освещение не требуется электрик (т. е. добавление или перемещение светильников), вносить изменения намного проще и дешевле.
В целом, для жилых помещений (а также для многих коммерческих помещений) наружное освещение с низким напряжением является гораздо лучшим выбором. Для безопасности и практичности. И именно поэтому это стандарт — это просто лучший выбор. Позвольте нам показать вам, как мы можем дать вам безопасность, защищенность и спокойствие, которые вы желаете!
Компания Southern Lights-Architectural and Landscape Lighting, расположенная в Саммерфилде, Северная Каролина, обслуживает компании, управляющие недвижимостью, по всему штату Северная Каролина, включая Гринсборо, Хай-Пойнт, Джеймстаун, Берлингтон, Рейдсвилл, Ок-Ридж, Браун-Саммит, Уинстон-Салем, Клеммонс, Роли. , Шарлотта, Каннаполис, Солсбери, Гастония, Мэтьюз и др.Компания Southern Lights установила сотни систем наружного ландшафтного освещения и имеет больше сертификатов, чем кто-либо другой в штате. Мы специализируемся на проектировании освещения и обслуживаем все, что устанавливаем сами, а также системы освещения, установленные другими. С вниманием к деталям и глубоким знанием дизайна компания Southern Lights является ведущей фирмой по наружному ландшафтному освещению в штате Северная Каролина и за его пределами. Узнайте, почему наши клиенты выбирают нас. Свяжитесь с нами сегодня через Интернет (онлайн-форма) или по телефону (336.451.4969)
Правильный диапазон напряжения для светодиодного приложения
Новое в апреле 2019 г.
Выбор драйвера светодиодов с надлежащим рабочим диапазоном напряжения (область постоянного тока) может показаться довольно простым, но в этой статье объясняется, что это не так просто.Во-первых, нужно понимать, что прямое напряжение светодиода неодинаково от кристалла к кристаллу. Во-вторых, напряжение светодиода меняется при повышении или понижении температуры перехода. Поскольку правильная работа драйвера имеет решающее значение для функциональности и надежности лампы, стоит более подробно изучить эти факторы, влияющие на напряжение светодиода. В этой статье объясняются типичные проблемы, связанные с прямым напряжением светодиодов, и способы правильного определения необходимого запаса напряжения драйвера светодиодов.Также предлагается найти новую функцию в некоторых новых драйверах светодиодов, которая может работать с временным повышенным выходным напряжением, чтобы обойти проблему высокого напряжения светодиода при чрезвычайно низкой температуре.
Проектирование светодиодной лампы представляет собой многоплановую инженерную работу, включающую в себя вопросы оптического, теплового и электрического проектирования. Для достижения целевых оптических требований в первую очередь определяются тип и количество светодиодов, а также их управляющий ток. В зависимости от определенных соображений безопасности и/или модульного подхода к проектированию определенное количество светодиодов помещается в одну цепочку, а другое — параллельно. Когда эти факторы определены, первая оценка рабочего напряжения светодиода может быть сделана путем умножения количества светодиодов в одной цепочке на типичное прямое напряжение (V forward ) этого светодиода.
В вперед_всего = В вперед x Число/строка
Приведенный выше расчет дает приблизительное представление о диапазоне рабочего напряжения, и вместе с определенным током возбуждения можно узнать требуемую мощность. Однако это число не является абсолютным значением и не подходит для обеспечения надлежащего электрического проектирования.Чтобы проект учитывал напряжение драйвера, напряжение светодиода должно учитываться 1) характеристикой VI, 2) вариациями производства и 3) температурным коэффициентом. В следующем абзаце эти 3 аспекта объясняются отдельно, а в конце В статье приведен пример оценки напряжения и шаги выбора светодиодного драйвера.
Характеристики V/I светодиода
Для идеального светодиода прямое напряжение не изменяется при увеличении тока (рис. 1). В действительности, прямое напряжение ДЕЙСТВИТЕЛЬНО изменяется в зависимости от тока, и важно проверять напряжение светодиода на основе фактического расчетного тока, а не ссылаться на стандартные условия испытаний, указанные в спецификации.
В приведенном ниже примере спецификация показывает, что типичное напряжение светодиода составляет 3,2 В. Если светодиод используется не на 350 мА, а на 1 А, то вместо 3,2 В на светодиод фактическое типичное напряжение светодиода составляет 3,8 В на светодиод. Эта разница в 0,6 В может привести к совершенно другому результату, если последовательно подключить большое количество светодиодов. Кроме того, ситуация может стать еще хуже, если драйвер светодиода имеет высокий пульсирующий ток, что приведет к пиковому току выше 1 А и, следовательно, пиковому напряжению превысит 3,8 В.
Характеристики | Типичных | Максимальный | |||||||||||||||
Направление вперед (@ 350 мА, 85 ° C) | V | | | | | | | | | | | | 3.![]() | 3.48 |
Рис. 1. | Рис. Зрелая добыча должна обеспечивать более жесткий допуск, приводящий к нормальному распределению (например, рис. 3). Типичный допуск по напряжению из-за производственных отклонений составляет менее 10%, что может быть косвенно получено из отношения максимального к типичному для типичного прямого напряжения в таблице данных светодиода (см. Таблицу 1, столбцы 4 и 5).С другой стороны, производственные данные, такие как фактическое распределение прямого напряжения, возможно, придется проверять непосредственно у производителя светодиодов. Хотя абсолютный максимум/минимум составляет +/- 10 %, по статистике, чем больше светодиодов подключено последовательно, тем больше вероятность того, что суммарное прямое напряжение установится около типичного значения напряжения. Рекомендуется создать некоторый запас по напряжению, безопасным считается запас в 10% от типичного напряжения. Также можно рассмотреть более высокую маржу, которая поставит драйвер в лучшее рабочее состояние и продлит срок службы драйверов. ![]() LED Vf. Против. Temp Прямое напряжение светодиода имеет отрицательный температурный коэффициент, это означает, что чем выше температура, тем ниже прямое напряжение. Поскольку светодиод является самонагревающимся элементом, при правильной тепловой конструкции лампы постоянная рабочая температура и рабочее напряжение светодиода обычно достаточно стабильны. Худший случай наступает, когда лампа запускается при низкой температуре. Чтобы оценить потребность в дополнительном напряжении при низкой температуре, спецификация светодиодов предоставляет типичную кривую V-T в соответствии со стандартными условиями испытаний (например,грамм. 350 мА). Многие производители также предоставляют программное средство для проверки напряжения в соответствии с переменными параметрами, такими как температура перехода (Tj), управляющий ток и т. д. допуск или разница тока. В первом случае потребность в напряжении носит временный характер, и, таким образом, запас по напряжению не требуется постоянно резервировать. Например, HLG-480H-C компании Mean Well имеет функцию «адаптации к окружающей среде», которая может автоматически снижать выходной ток для замены на более высокое выходное напряжение, сохраняя при этом общую выходную мощность в пределах спецификации. По мере того, как лампа включается и постепенно нагревается, напряжение падает до нормального уровня, а затем ток также возвращается к исходному расчетному значению. Функция адаптации к окружающей среде обеспечивает запас напряжения на 20 % выше, чем у обычного драйвера светодиодов. HLG-480H-C1400, работающий от 171~343 В, может временно повысить напряжение до 412 В, чтобы обеспечить успешный запуск ламп при экстремально низких температурах (например,грамм. -40°С). Серия HVGC с постоянной мощностью, аналогичным образом, допускает более высокое выходное напряжение при уменьшении силы тока. Пример и сводкаВ конструкции лампы используется 100 светодиодов, как на рис. 2, ток возбуждения составляет 1,05 А. Всего есть 2 строки, что означает, что каждая строка имеет 50 светодиодов. Минимальная рабочая температура согласно спецификации лампы составляет 0°C.Чтобы определить требования к напряжению: Решение 1: Введите эти параметры в программное обеспечение ПК и получите рабочую точку светодиода с запасом. Более подробно уточните у производителя. Решение 2. Ознакомьтесь со спецификацией светодиода и выполните следующие действия:
|