Арболит пропорции: ГОСТ, пропорции, химдобавки, технология изготовления
состав, пропорции, технология изготовления в домашних условиях
Арболитовые блоки – это строительный материал, применяемый для возведения малоэтажных домов (не более 2 этажей), хозяйственных построек, перегородок и в качестве теплоизоляции. Для его изготовления используются такие компоненты как портландцемент, древесные отходы, добавки и вода. Пропорции зависят от требуемой марки. Он бывает теплоизоляционным и конструкционно-теплоизоляционным. В отличие от опилкобетона для арболита не нужен песок.
Компоненты и пропорции
В состав входит цемент, заполнитель, добавки и вода. Для изготовления качественных блоков рекомендуется использовать портландцемент марок М300-М500, но не ниже. Для теплоизоляционных понадобится М300, конструкционно-теплоизоляционных – от М400. Расход зависит от требуемой марки по прочности и вида наполнителя.
В качестве заполнителя используется щепа хвойных и твердолиственных пород деревьев, также может добавляться кора и хвоя, но в небольших количествах – 5-10 %. Щепки могут быть заменены на костру льна. Нельзя использовать отходы от лиственниц или только изготовленные. Щепки можно разбавлять опилками или древесной стружкой в соотношении 1:1. Перед применением свежей щепы ее оставляют на 3 месяца вне помещения, чтобы разрушились вещества, содержащие сахар, или обрабатывают известью.
Главное требование к наполнителю – это размер. Он не должен быть слишком крупным, так как при попадании на него воды он начинает разбухать. В итоге щепки разламываются. Оптимальным размером является длина до 2,5 см, ширина 1 см, толщина от 2 до 5 мм, форма игольчатая.
Если используется костра льна, то следует сначала ее подготовить, так как она содержит большое количество сахара, который ухудшает адгезионные характеристики цементного порошка. Для этого ее поливают известковым молоком в пропорции 1 часть извести к 4 частям костры. После чего оставляют на двое суток. 2 раза в день кучу перемешивают, чтобы вся костра льна равномерно пропиталась известковым молоком. Эта обработка не только улучшает адгезию наполнителя с вяжущим компонентом, но и уменьшает расход последнего.
Для достижения необходимой прочности и плотности в состав смеси из щепы и портландцемента вносятся химические добавки. Благодаря им разрушаются сахара, находящиеся в древесных отходах, и значительно ускоряется процесс схватывании раствора, улучшается показатель водонепроницаемости и увеличивается срок эксплуатации.
К добавкам относятся хлористый кальций, жидкое стекло, известь и сернокислый алюминий. Чаще всего используется хлористый кальций и сернокислый алюминий. Если добавить алюминий, то прочность блоков значительно возрастает, так как этот компонент устраняет все негативные последствия сахара.
Пропорция добавок не должна превышать 2-4% от всего объема вяжущего наполнителя. Их можно использовать как по отдельности, так и комбинировать, например, хлористый кальций с алюминием в соотношении 1:1. Перед тем как добавить в состав, их разводят водой. Расход материалов зависит от требуемой марки по прочности.
Воду для замешивания смеси можно брать практически любую, главное, чтобы она была без грязи и других подобных примесей. Температура должна быть не ниже +15°С. Иначе значительно снизится скорость процесса гидратации цемента.
Перед тем как сделать арболитовые блоки своими руками, нужно рассчитать пропорции. Для этого рекомендуется умножить число требуемой марки на 17, например, если необходим М25, то 17*25=425 кг цемента потребуется для изготовления 1 м3.
Приблизительное соотношение компонентов следующее: 1 часть древесных отходов, 1 часть вяжущего порошка и 1,5 части добавок, разведенных водой. Для замешивания смеси арболита марки М15 потребуется около 270 кг портландцемента, 280 кг щепы, примерно 12 кг добавок и 280 л воды. Для М20 – 330 кг цементного порошка, 300 кг древесных отходов, столько же химических добавок и 40 л воды.
Технология производства
Чтобы изготовить блоки в домашних условиях, потребуется самому сделать формы, причем лучше всего разборные, тогда во время вытаскивания меньше риск повредить материал. Сооружаются формы из деревянных досок или фанеры. Внутри рекомендуется отделать их линолеумом или другим подобным материалом, чтобы смесь не присохла к стенкам. Размеры могут быть любыми, в зависимости от назначения.
Формы устанавливаются на ровном месте, чтобы состав распределился равномерно. Приступают к приготовлению раствора своими руками. Древесные отходы засыпают в бетономешалку, вносят цементный порошок и воду с добавками. Все перемешивается в течение 10 мин до однородной консистенции. Химические добавки лучше всего вносить методом распыления, так они распределятся по всем щепкам равномерно.
Как только смесь готова, ее разливают по формам. Во время заливки ее нужно постоянно утрамбовывать, чтобы удалить все пустоты. Из-за оставшегося внутри блока воздуха сильно снижается прочность. Удалять пустоты лучше всего специальным оборудованием, например, вибропрокатом.
Готовые формы оставляют для затвердевания, накрыв пленкой. При температуре +15°С арболитовая смесь достигнет 50%-ной прочности за 5 суток, а при +40°С схватится полностью за 2 дня. Во время замешивания не стоит всыпать сразу всю дозировку компонентов, лучше всего делать это частями. Это поможет избежать появления комков.
Преимущества:
- низкий коэффициент теплопроводности;
- устойчивость к огню;
- невысокая стоимость;
- хороший показатель на изгиб.
При движении фундамента во время пучения грунта арболит не растрескивается, а при повышенных нагрузках лишь слегка продавливается. Различается марками по прочности. Маркируется она буквой М и числом после нее: М5, М10, М15, М25, М35 и М50. От М5 до М15 – теплоизоляционный, М25-М50 – конструкционно-теплоизоляционный.
Главный недостаток – в условиях повышенной влажности обязательно необходима пароизоляция и защита от атмосферных осадков. Снаружи блоки окрашивают, а изнутри закрывают пароизоляционной пленкой.
состав, пропорции по ГОСТ, изготовление своими руками
Арболитовые блоки все чаще стали использовать при возведении одноэтажных домов, внутренних перегородок в них, гаражей, хозяйственных построек. Впервые о них как о строительном материале для изготовления временного и постоянного жилья заговорили в середине 20 века.
Оглавление:
- Состав арболита
- Пропорции
- Как сделать своими руками?
Несмотря на то, что основным компонентом является дерево, по многим характеристикам арболит не уступает традиционным материалам, он сохраняет тепло и комфортабельную обстановку в построенных из него помещениях.
Из чего состоят блоки?
Компонентный состав арболита рассчитан так, что он способствует сохранению его прочности, огнестойкости и долговечности. В него входят: вода, наполнители, цемент, химические добавки.
1. Наполнители. Применяются отходы переработки сельскохозяйственных культур (чаще костры льна) и деревообработки (щепа).
- Древесная щепа – самый распространенный компонент. При производстве блоков из арболита берется щепа длиной до 15 см и шириной не более 2 см, без присутствия листьев и примесей. Вместе со щепой можно добавить опилки или стружку в соотношении 1:1. Используются в основном хвойные породы древесины, намного реже – лиственные.
- Костры льна. Являются полноценным материалом для арболита. Используются в том виде, в каком они были на предприятии: их не надо дополнительно измельчать. При длине частиц льна 15-20 см и ширине до 5 см качество получаемых блоков высокое.
2. Все наполнители содержат в составе сахара и смоляные кислоты, препятствующие адгезии цемента с их частичками. Для уменьшения их количества и минерализации щепы (костр льна) применяются: сернистый глинозем, хлорид кальция, жидкое стекло, известь. Эти компоненты повышают биологическую устойчивость, снижают водопроницаемость, увеличивают срок эксплуатации блоков. Их можно использовать как самостоятельно, так и сочетать между собой: хлорид кальция и сернокислый глинозем (1:1), жидкое стекло и гашеную известь (1:1). Каждую добавку перед применением необходимо растворить в воде.
3. Вода – берется обычная техническая.
4. Цемент – используется с маркой 400 или 500 (можно выше).
Пропорции компонентов
При изготовлении арболита следует строго соблюдать соотношение всех ингредиентов между собой. Расход материалов в процентном содержании:
- соотношение наполнителей составляет 80-90%;
- примерный объем цемента в общей массе – 10-15%;
- объем воды – 60-70%;
- химические добавки – 2-4%.
Для производства 1 м3 материала берутся следующие пропорции компонентов в арболитовых блоках: по 300 кг наполнителя и цемента, 400 л воды.
При обработке наполнителей используется чаще всего известковый раствор. Он готовится в пропорции: 2,5 кг извести, 150-200 л воды на 1 м3 древесной щепы (костр льна). Чтобы ускорить затвердевание и улучшить свойства материала, добавляются хлористый алюминий, жидкое стекло, хлористый кальций в соотношении: на 1 м3 арболита – до 10 кг. Такой состав смеси является классическим, а изменение пропорции компонентов может негативно сказаться на качестве.
Изготовление арболита
Сделать блоки из арболита можно самому, а не приобретать готовые. При этом нет необходимости вкладывать большие финансовые средства на покупку дорогого спецоборудования и сырья.
Перед тем как сделать арболитовые блоки своими руками необходимо приготовить:
- лоток для замешивания смеси или бетономешалку;
- разъемные формы;
- лопату;
- крупное сито;
- поддон металлический.
Предварительно следует позаботиться о формах для выработки блоков из арболита. Их можно приобрести или сделать своими руками. Для изготовления используются доски до 2 см толщиной, скрепленные по требуемым размерам. С внешней стороны их отделывают пленкой (фанерой).
Перед тем как делать блоки из арболита, наполнитель выдерживается около 40 дней на улице. Это очищает его состав от сахаров и смоляных кислот. В течении всего времени его следует переворачивать и «тормошить» до 4 раз в день, чтобы дать возможность воздуху свободно проникать в нижний слой. Для достижения максимального эффекта и ускорения процесса распада сахаров и кислот наполнители рекомендуется поливать 15% раствором извести. Она же является прекрасным антисептиком. Затем отлежавшийся состав просеивается ситом с крупными ячейками, что избавляет его от остатков земли и постороннего органического мусора.
Вся работа выполняется в такой последовательности:
1. Очищенный наполнитель замачивается в воде. В этот состав добавляется жидкое стекло и перемешивается бетономешалкой или вручную (при небольшом объеме).
Смесь для изготовления арболитовых блоков готовится в пропорции: 6:2:1, это означает, что на 6 мешков наполнителя потребуется 2 просеянного песка и 1 цемента. При замешивании не надо все компоненты сразу загружать в бетономешалку. Их лучше закладывать порциями, не выключая агрегат. Частями заливается и вода. Такой способ даст возможность избежать образования комков и повысит конечное качество материала.
2. Подготовить формы для заливки. Для этого их внутренняя сторона обмазывается известковым молочком. Чтобы не было прилипания массы к стенкам, их можно обшить линолеумом.
3. Арболитовая смесь заливается в формы. Чтобы не допустить образования завоздушленных участков, после заполнения вся масса взбалтывается, стенки простукиваются.
4. Смесь уплотняется электрической (пневматической) трамбовкой, можно использовать вибропресс. Выдерживается около суток.
Формы ставятся в затененное место, укрываются пленкой и выдерживаются около трех недель на воздухе при температуре не меньше 15 С. Изготавливая блоки своими руками, специалисты советуют первую партию сделать небольшой, чтобы проверить качество и правильность взятых пропорций всех компонентов.
Блоки из арболита готовы к возведению строения после того, когда достаточно хорошо схватятся. Главное условие – это обязательная внешняя отделка.
Монолитный арболит своими руками: состав и пропорции замеса
Монолитный арболит своими руками приготовить не сложно. Главное удобство в том, что это делается непосредственно на стройплощадке. По составу и пропорциям, а также по своим характеристикам и свойствам он ничем не отличается от блочного.
Номенклатура монолитного арболита
Номенклатура арболита монолитного такая же, как и у блочного — существует 2 вида:
- Конструкционный. Имеет плотность от 500 до 850 кг/куб. м. Соответствует классу прочности В1, В1,5, В2, В2,5. Используют для возведения несущих стен и перегородок зданий до 2-х этажей.
- Теплоизоляционный. Его плотность от 300 до 500 кг/куб. м. Класс прочности — В0,35, В0,5, В0,75. Применяют для заливки пазух и межстеных пустот для теплоизоляции и звукоизоляции.
Прочность заливного арболита зависит от используемой марки цемента и качества уплотнения смеси. При недостаточной прочности выполняют армирование арболита.
Готовим монолитный арболит: состав и пропорции смеси
Монолитный арболит на 80-90% состоит из щепы, как заполнителя, цемента, воды и химических добавок, ускоряющих твердение раствора и для устранения влияния сахаров древесины.
Щепа для арболита по ГОСТу должна иметь определенный размер и форму. Желательно использовать хвойные породы древесины, кроме лиственницы. В лиственных породах содержится немного больше древесных ядов, их также можно использовать.
В качестве цемента выступает портландцемент марок М400, М500 (европейские марки: CEM I 32,5, CEM I 42,5, CEM II/A 32,5, CEM II/A 42,5, CEM III 32,5).
Пропорции минеральной добавки
В качестве минеральных добавок для ускорения твердения раствора, обработки щепы, увеличения подвижности раствора можно использовать различные химические компоненты описанные в статье «Химические добавки для арболита». Самые распространенные и в то же время эффективные добавки это – хлористый кальций (технический CaCl2), жидкое стекло, сернокислый алюминий, известь-пушенка.
Соответственно существует много рецептов приготовления монолитного арболита. В одних рецептах подготавливается и обрабатывается древесина, в других – добавляют химический компонент непосредственно в смесь.
По одному из рецептов щепу вымачивают в извести (80 кг извести на куб древесины), отжимают. Затем сверху посыпают порошком негашеной извести (80 кг), перемешивают, разравнивают, высушивают и добавляют в смесь. Таким образом, избавляются от древесных сахаров, влияющих на прочность монолитного арболита.
Возиться со щепой, да тем более с такими объемами для строительства – дело достаточно затратное по времени, требующее площадей для этого процесса. Поэтому быстрым вариантом приготовления монолитного арболита будет применение хлористого кальция или сульфата алюминия (сернокислого алюминия). В этом случае щепу можно не обрабатывать, но будет лучше, если она отлежится на открытом воздухе, под солнцем и дождем, пару месяцев (не в куче!). Также, если есть возможность, ее можно замочить в воде, а перед приготовлением смеси высушить. Замачивание и вылеживание – это своего рода элементарная подготовка древесины, позволяющая частично устранить сахара.
На этапе приготовления состава монолитного арболита добавляется хлористый кальций или сульфат алюминия 2-5% от массы цемента. Так какая же все-таки пропорция химической добавки для арболита, 2% или 5%? Это зависит от марки и от качества цемента. Состав одной и той же марки (например, М500) но разных производителей на самом деле может отличаться качеством. Поэтому рекомендуют сделать тестовый замес. Если при добавлении хлористого кальция 5% от массы вяжущего на отвердевшем материале появятся «высолы» (белого цвета соляные выцветы), то процент содержания химического компонента нужно уменьшать. Высолы говорят о том, что цемент хороший и 5% для состава многовато. В то же время 2% может быть мало. Пару тестовых замесов стоит сделать.
Важно знать! Конкретной пропорции химического компонента для монолитного арболита нет! Ее всегда нужно определять в зависимости от качества используемого цемента и щепы (качество, порода древесины, размеры).
Некоторые не хотят заниматься подборкой пропорции хлористого кальция. И, чтобы не образовывались соляные выцветы, добавляют в состав жидкое стекло. Например, 2% хлористого кальция и 3% жидкого стекла от массы цемента. Но жидкое стекло достаточно дорогое, поэтому для многих экономичнее сделать пару тестовых замесов и определить пропорцию хлористого кальция.
Пропорции щепы, цемента и воды на 1м3 заливного арболита
Пропорция зависит от того, какой вид монолитного арболита вы готовите: конструкционный или теплоизоляционный.
Рассмотрим пропорции состава на 1м3 заливного монолитного арболита при использовании вяжущего марки М400 и абсолютно сухой щепы хвойных пород древесины:
Конструкционный монолитный арболит
В2,5(М25) – 380 кг цемента, 250кг древесного заполнителя, 440 литров воды;
В2,0(М20) – 350 кг, 230кг, 400 литров;
В1,0(М15) – 320 кг, 210кг, 360 литров;
Теплоизоляционный монолитный арболит
В0,75(М10) – 300 кг цемента, 190кг древесного заполнителя, 430 литров воды;
В0,35(М5) – 280 кг, 170кг, 300 литров;
Корректировка состава
Если вы используете другую марку цемента, то пропорция высчитывается с применением коэффициента: для М300 коэффициент 1,05, для М500 – 0,96, для М600 – 0,93.
Пропорция щепы дана для абсолютно сухого материала. Обычно это редкость. Поэтому ее количество нужно скорректировать в зависимости от ее влажности – добавить некоторое количество. Для подсчета дополнительного количества умножаем вышеприведенную массу на коэффициент, который рассчитывается как %влажности щепы деленная на 100%.
Например, древесный заполнитель имеет влажность 20%. Получить нужно монолитный арболит класса прочности В2,0. Следовательно: 20%/100%=0,2. Умножаем коэффициент 0,2 на количество сухой щепы 230 кг для В2,0 – 0,2*230=46 кг. В состав дополнительно нужно добавить 46 кг древесного заполнителя.
Процесс замеса
Щепа и хлористый кальций (или другая хим. добавка) перемешиваются в сухом виде, потом добавляется цемент. Достигают однородности состава. Затем из лейки струей добавляется вода с постоянным перемешиванием, до тех пор, пока весь древесный заполнитель со всех сторон не будет покрыт смесью.
Смешивать удобно при помощи строительного миксера или смесителя. Обычно на это затрачивается 5 – 7 минут.
Готовая смесь монолитного арболита – это умеренно влажная масса. Если взять в руку щепу, то из нее не должна вытекать вода!
Если в состав не вводилась химическая добавка, а выполнялась предварительная обработка заполнителя в извести, то процесс перемешивания длиться минут 25, чтобы известь успела погаситься.
Так можно приготовить монолитный арболит своими руками для последующей заливки в возведенную опалубку или несъемную опалубку стен и перегородок, а также заливки полов и перекрытий.
Арболит своими руками в домашних условиях пропорции — из чего состоит арболитовый блок?
Монолитный арболит своими руками: как приготовить заливной арболит
Монолитный арболит своими руками приготовить не сложно. Главное удобство в том, что это делается непосредственно на стройплощадке. По составу и пропорциям, а также по своим характеристикам и свойствам он ничем не отличается от блочного.
Номенклатура монолитного арболита
Номенклатура арболита монолитного такая же, как и у блочного — существует 2 вида:
- Конструкционный. Имеет плотность от 500 до 850 кг/куб. м. Соответствует классу прочности В1, В1,5, В2, В2,5. Используют для возведения несущих стен и перегородок зданий до 2-х этажей.
- Теплоизоляционный. Его плотность от 300 до 500 кг/куб. м. Класс прочности — В0,35, В0,5, В0,75. Применяют для заливки пазух и межстеных пустот для теплоизоляции и звукоизоляции.
Прочность заливного арболита зависит от используемой марки цемента и качества уплотнения смеси. При недостаточной прочности выполняют армирование арболита.
Готовим монолитный арболит: состав и пропорции смеси
Монолитный арболит на 80-90% состоит из щепы, как заполнителя, цемента, воды и химических добавок, ускоряющих твердение раствора и для устранения влияния сахаров древесины.
Щепа для арболита по ГОСТу должна иметь определенный размер и форму. Желательно использовать хвойные породы древесины, кроме лиственницы. В лиственных породах содержится немного больше древесных ядов, их также можно использовать.
Пропорции минеральной добавки
В качестве минеральных добавок для ускорения твердения раствора, обработки щепы, увеличения подвижности раствора можно использовать различные химические компоненты описанные в статье «Химические добавки для арболита». Самые распространенные и в то же время эффективные добавки это – хлористый кальций (технический CaCl2), жидкое стекло, сернокислый алюминий, известь-пушенка.
Соответственно существует много рецептов приготовления монолитного арболита. В одних рецептах подготавливается и обрабатывается древесина, в других – добавляют химический компонент непосредственно в смесь.
По одному из рецептов щепу вымачивают в извести (80 кг извести на куб древесины), отжимают. Затем сверху посыпают порошком негашеной извести (80 кг), перемешивают, разравнивают, высушивают и добавляют в смесь. Таким образом, избавляются от древесных сахаров, влияющих на прочность монолитного арболита.
Возиться со щепой, да тем более с такими объемами для строительства – дело достаточно затратное по времени, требующее площадей для этого процесса. Поэтому быстрым вариантом приготовления монолитного арболита будет применение хлористого кальция или сульфата алюминия (сернокислого алюминия). В этом случае щепу можно не обрабатывать, но будет лучше, если она отлежится на открытом воздухе, под солнцем и дождем, пару месяцев (не в куче!). Также, если есть возможность, ее можно замочить в воде, а перед приготовлением смеси высушить. Замачивание и вылеживание – это своего рода элементарная подготовка древесины, позволяющая частично устранить сахара.
На этапе приготовления состава монолитного арболита добавляется хлористый кальций или сульфат алюминия 2-5% от массы цемента. Так какая же все-таки пропорция химической добавки для арболита, 2% или 5%? Это зависит от марки и от качества цемента. Состав одной и той же марки (например, М500) но разных производителей на самом деле может отличаться качеством. Поэтому рекомендуют сделать тестовый замес. Если при добавлении хлористого кальция 5% от массы вяжущего на отвердевшем материале появятся «высолы» (белого цвета соляные выцветы), то процент содержания химического компонента нужно уменьшать. Высолы говорят о том, что цемент хороший и 5% для состава многовато. В то же время 2% может быть мало. Пару тестовых замесов стоит сделать.
Важно знать! Конкретной пропорции химического компонента для монолитного арболита нет! Ее всегда нужно определять в зависимости от качества используемого цемента и щепы (качество, порода древесины, размеры).
Некоторые не хотят заниматься подборкой пропорции хлористого кальция. И, чтобы не образовывались соляные выцветы, добавляют в состав жидкое стекло. Например, 2% хлористого кальция и 3% жидкого стекла от массы цемента. Но жидкое стекло достаточно дорогое, поэтому для многих экономичнее сделать пару тестовых замесов и определить пропорцию хлористого кальция.
Пропорции щепы, цемента и воды на 1м3 заливного арболита
Пропорция зависит от того, какой вид монолитного арболита вы готовите: конструкционный или теплоизоляционный.
Рассмотрим пропорции состава на 1м3 заливного монолитного арболита при использовании вяжущего марки М400 и абсолютно сухой щепы хвойных пород древесины:
Конструкционный монолитный арболит
В2,5(М25) – 380 кг цемента, 250кг древесного заполнителя, 440 литров воды;
В2,0(М20) – 350 кг, 230кг, 400 литров;
В1,0(М15) – 320 кг, 210кг, 360 литров;
Теплоизоляционный монолитный арболит
В0,75(М10) – 300 кг цемента, 190кг древесного заполнителя, 430 литров воды;
В0,35(М5) – 280 кг, 170кг, 300 литров;
Корректировка состава
Если вы используете другую марку цемента, то пропорция высчитывается с применением коэффициента: для М300 коэффициент 1,05, для М500 – 0,96, для М600 – 0,93.
Пропорция щепы дана для абсолютно сухого материала. Обычно это редкость. Поэтому ее количество нужно скорректировать в зависимости от ее влажности – добавить некоторое количество. Для подсчета дополнительного количества умножаем вышеприведенную массу на коэффициент, который рассчитывается как %влажности щепы деленная на 100%.
Например, древесный заполнитель имеет влажность 20%. Получить нужно монолитный арболит класса прочности В2,0. Следовательно: 20%/100%=0,2. Умножаем коэффициент 0,2 на количество сухой щепы 230 кг для В2,0 – 0,2*230=46 кг. В состав дополнительно нужно добавить 46 кг древесного заполнителя.
Процесс замеса
Щепа и хлористый кальций (или другая хим. добавка) перемешиваются в сухом виде, потом добавляется цемент. Достигают однородности состава. Затем из лейки струей добавляется вода с постоянным перемешиванием, до тех пор, пока весь древесный заполнитель со всех сторон не будет покрыт смесью.
Смешивать удобно при помощи строительного миксера или смесителя. Обычно на это затрачивается 5 – 7 минут.
Готовая смесь монолитного арболита – это умеренно влажная масса. Если взять в руку щепу, то из нее не должна вытекать вода!
Если в состав не вводилась химическая добавка, а выполнялась предварительная обработка заполнителя в извести, то процесс перемешивания длиться минут 25, чтобы известь успела погаситься.
Так можно приготовить монолитный арболит своими руками для последующей заливки в возведенную опалубку или несъемную опалубку стен и перегородок, а также заливки полов и перекрытий.
Из чего состоят арболитовые блоки?
Арболит является одним из представителей легкого бетона и используется при строительстве зданий и сооружений любого предназначения. Возведение загородных домов, дач и надворных построек станет бюджетным мероприятием, если в качестве основного материала выбрать арболит. Его применяют в виде блоков для устройства наружных несущих стен и внутренних перегородок, а также из него изготавливают различные плиты и панели.
- Из чего состоит арболит?
- Пропорции компонентов и нюансы изготовления
- Плюсы и минусы
Технические характеристики:
Состав блоков
Арболит производят из древесного наполнителя, связующего, химических составляющих и воды. Древесный заполнитель присутствует в виде отходов деревообработки (ель, пихта, осина, сосна, береза, тополь) и растениеводства (льняная костра, рисовая солома, стебли хлопчатника). Очень крупные частицы после намокания увеличиваются в объеме, это может привести к последующему разрушению, а мелкие возьмут на себя больше цементного раствора. Оптимальный их размер – 40х10х5 мм. Его химическая активность является основным недостатком, поэтому введение древесины свежесрубленных деревьев в состав арболитовых блоков крайне не рекомендуется.
Наиболее востребованным органическим составом считается стружка древесная и щепа в пропорции 1:1 или 1:2. Помимо опилок можно брать отходы льна. Костра должна быть игольчатой формы, шириной 2-5 мм и длиной 15-25 мм. В составе сырья недопустимо присутствие инородных частиц, признаков плесени и гнили, а в зимний период – льда и снега.
Находящийся в льне сахар разрушает цемент, поэтому необходимо ввести в состав арболита химические вещества. Для улучшения качества легкого бетона, костру нужно обработать известковым молочком (2,5 кг извести растворить в 150-200 литров воды на 1 м3 наполнителя) выдержать 2 суток и перемешивать каждый день. Использование этой технологии снизит расход цемента до 100 кг на куб бетона. Еще один способ нейтрализовать сахар – это поместить костру 3-4 месяца на свежем воздухе, что придаст блокам дополнительную прочность.
Минеральным связывающим в составе смеси является портландцемент марки 400, 500 и выше. Чтобы рассчитать количество цемента на 1 куб арболита 16, нужно увеличить его значение в 17 раз. Получается: 16х17= 272 кг. Химические добавки определяют свойства арболитового блока. Независимо от климатического пояса, где будет возводиться сооружение или здание из этого строительного материала, введение их в состав обязательно. Благодаря способности нейтрализации сахара, химические вещества сделают возможным использовать древесные наполнители без ее обработки.
Такими добавками могут служить: растворимое стекло, K2SO4, гашеная известь и CaCl2. Сернокислый алюминий, соединяясь с сахарами, нейтрализует их действие увеличивая при этом прочность готового изделия. Химические вещества применяют как отдельно, так и в сочетании: Al2(SO4)3 и CaCl2 в пропорции 1:1, гашеная известь и растворимое стекло – 1:1. Перед использованием их разводят в воде, после чего соединяют с арболитовой смесью. Общая масса присадок в 1 кубометре не должно превышать 4% от всего веса цемента.
Арболит марки 30 включает добавки: Al2(SO4)3 и CaCl2 – 1:1; Na2SO4 и CaCl2 – в таком же соотношении и в количестве 4 % от всего веса цемента. Na2SO4 и AlCl3 – 1:1 в 2 % от массы связывающей части. При производстве арболита пропорции на 1 м3 замеса должны быть строго соблюдены.
Технология изготовления
Арболитовые блоки можно делать своими руками. Если нужно большое их количество, приобретают бетономешалку, трамбовку, пресс-формы и печь для сушки. Бюджетный вариант предполагает самостоятельное изготовление форм и покупку смесителя составных частей раствора. Пропорции компонентов в арболитовых блоках были рассмотрены выше, поэтому:
1. В бетономешалку постепенно насыпаем древесный наполнитель и заливаем его водой с химическими добавками, тщательно все перемешиваем.
2. Засыпаем портландцемент и, понемногу вливая воду, снова все мешаем.
3. Обрабатываем форму внутри известковым раствором.
4. Готовую смесь накладываем в формы, плотно трамбуя каждый слой. Объем заполняется до уровня 2 см от края.
5. На свободное место укладываем раствор для штукатурки. Разравниваем поверхность при помощи шпателя.
Полученный блок должен находиться в форме около 24 часов, после чего его вынимают и размещают на две недели под навес для постепенной просушки.
Как видно, технология изготовления арболитовых блоков своими руками довольно проста, а соблюдение необходимых пропорций позволит получить на выходе строительный материал, полностью соответствующий его техническим характеристикам.
Преимущества и недостатки блоков
- высокая звуко- и теплоизоляция;
- повышенная пожароустойчивость;
- устойчивость к появлению плесени и к гниению;
- обладает достаточной прочностью;
- отсутствует необходимость в мощном фундаменте;
- легкость и простота монтажа;
- экологичный, невысокая стоимость.
Обладая определенной влагопроницаемостью, конструкции из арболита могут эксплуатироваться в условиях сухого режима. Во всех остальных случаях стены должны быть защищены от влаги изоляционным материалом. При строительстве стен в подвалах и цокольных этажей применение арболитных блоков не рекомендуется. Защитой от воздействия атмосферных осадков служит их гидрофобная окраска или оштукатуривание стен с двух сторон.
Прежде чем самому приступить к изготовлению арболитовых блоков, необходимо все правильно рассчитать и обдумать. При точном соблюдении технологии производства дома из этого строительного материала получатся комфортными, теплыми и недорогими.
Состав арболитовых блоков
По мере того как технический прогресс двигается вперед, появляются все новые материалы для строительства домов своими руками. Если раньше дело ограничивалось деревом, камнем или кирпичом, то сегодня существуют различные виды бетона, которые превосходят другие материалы по характеристикам. Одним из таких материалов является арболит. Это уникальный материал, который вместил в себе преимущества как бетона, так и древесины. Его состав достаточно прост, и вы можете приготовить раствор своими руками. Примечательно, что он может использоваться как обычный бетон, путем заливки смеси в опалубку, а может быть, сделан в виде блоков, для обычной кладки. Арболитовые блоки можно купить в специализированном магазине, или приготовить раствор своими руками, сделав блоки из готовой смеси.
Все что нужно – знать точный состав арболита, пропорции для смешивания смеси и технологию его приготовления. Давайте рассмотрим все детальней.
Арболитовый блок – из чего он состоит
Арболит, из которого формируют арболитовые блоки для кладки, состоит из 3 основных компонентов:
- заполнитель;
- минеральное вяжущее;
- химические добавки и вода.
Путем соединения всех этих элементов получается арболитовый раствор, который впоследствии используется для формирования блоков. Состав достаточно простой и каждый сможет сделать материал для своих целей. Сам по себе материал легкий, поэтому блоки идеально подходят для кадки. Их достоинством, по сравнению с газоблоками и пеноблоками, является большая граница прочности. Они стойкие к трещинам и ударам.
Несмотря на то что главным компонентом является древесные опилки (щепа), арболит высоко ценится и не уступает по характеристикам традиционным материалам. Наоборот, арболитовые блоки хорошо сохраняют тепло и создают хороший микроклимат в помещении.
Органический заполнитель
Львиную долю в составе арболитных блоков занимает древесная щепа. Это основной материал, который входит в его состав. Такой органический заполнитель легко можно приобрести за небольшие деньги. Стоит обратиться в местную пилораму, где есть отходы деревообработки и договориться с работниками. Преимущественно используют хвойные породы дерева и твердолиственные. Пихта, сосна, ель, осина, бук, береза и тополь идеально подходят, чтобы сделать из них арболитовый раствор. Также можно использовать костру льна.
Чаще всего применяется древесный заполнитель: дробленка, стружка с опилками, в пропорции 1:1 или 1:2, щепа, стружка и опилки, в пропорции 1:1:1. Все пропорции измеряются в объеме. К примеру, если нужно добиться соотношения 1:2, то берется 1 ведро древесных опилок и 2 ведра стружки. Опилки легко заменяются кострой льна или конопляными стеблями, на состав это не повлияет.
Какие требования к заполнителю? Прежде всего, важно правильно подобрать их размер. Крупные опилки использовать не рекомендуется, ведь когда изделия вступят в контакт с водой, они могут увеличиться в объеме. В результате блок может разрушиться. Если же использовать слишком мелкие частицы, то увеличивается расход цементной смеси. Рекомендуемый размер частиц – 15 или 25 мм длинной и не больше 2–5 мм шириной. Сырье не должно иметь листья и другие примеси.
Предупреждение! Лиственница и свежесрубленная древесина любых пород в состав арболитовых растворов не добавляется. Это запрещено!
Костра льна
Полноценным заполнителем, добавляющимся в раствор, является костра льна. Так как в ней присутствует сахар, обязательно применяются химические добавки. Чтобы улучшить качества готовой смеси для блоков, костра заранее обрабатывается известняковым молоком, в пропорции: 200 кг костры на 50 кг извести. Затем все выдерживается несколько дней в куче, после чего все готово для производства арболита. Благодаря такой технологии расход цемента значительно уменьшается. На 1 м3 арболита требуется 50–100 кг цемента.
Важно! Если костра льна используется в обычном виде, то конопляные стебли требуют некой обработки. Их нужно предварительно измельчить.
За счет того, что в составе отходов органики есть вещества, растворимые водой, среди которых смоляные кислоты и сахар, это препятствует хорошей адгезии между частицами. Для устранения сахара, древесные щепки требуется выдержать на воздухе 3 или больше месяцев, или обработать его известняком. Во втором случае смесь выдерживается 3–4 дня. Содержимое перемешивается 2 раза на день.
Минеральное вяжущее
Вам никак не сделать раствор своими руками без вяжущего компонента. Он делает арболитовые блоки прочными и пригодными для кладки. В качестве вяжущего вещества используется портландцемент марки М400, М500 или еще выше.
Его расход зависит от вида заполнителя, крупности частиц, марки цемента, характеристик и т. д. Чтобы немного ориентироваться, можно определить расход таким образом: коэффициент 17 нужно умножить на требуемую марку арболита. К примеру, вам нужно приготовить раствор, маркой 15 (B1). В таком случае на 1 м3 арболита потребуется 255 кг цемента.
Химические добавки
Свойства, которые имеют арболитовые блоки, напрямую зависят от химических добавок. Их использование обязательно в любом случае, неважно, в каком климате выполняются работе. Благодаря добавкам, заполнитель можно использовать без выдержки, ведь они нейтрализуют сахар и другие вещества, что улучшает качество готовых блоков.
В качестве таких добавок может использоваться:
- жидкое стекло (силикат натрия). Закрывает все поры в древесине, поэтому влага не попадет внутрь. Используется после удаления сахара;
- гашеная известь. Она расщепляет сахар и убивает микроорганизмы в опилках;
- сернокислотный алюминий. Отлично расщепляет сахар. Благодаря компоненту состав быстрее набирает прочность;
- хлористый кальций. Убивает все микроорганизмы и придает древесине противогнилостных свойства.
Сернокислотный алюминий и хлористый кальций считаются лучшими добавками. Пропорции добавок – 2–4% от массы цемента, или от 6 до 12 кг на 1 м3. Добавки можно сочетать между собой.
Пропорции для арболитовых блоков
Чтобы сделать арболитовые блоки своими руками важно знать не только состав, но и пропорции. Соотношение всех компонентов между собой следующее: 4:3:3 (вода, древесная щепа, цемент). Химические добавки – 2–4% от общей массы.
Для изготовления 1 м3 арболита своими руками, из которого будут сделаны блоки для кладки, вам потребуется:
- 300 кг древесных отходов;
- 300 кг портландцемента;
- 400 л воды.
В раствор добавляется хлористый кальций или другой химикат. Это классический состав, который легко можно сделать своими руками. Все что потребуется: бетономешалка или большая емкость для размешивания, ведра, лопаты, вилы (для перемешивания вручную) и все компоненты арболита. Процесс выполнения работ следующий:
- Наполнитель (щепу) засыпают в емкость и смачивают водой. Тогда сцепление с цементом будет лучше.
- Затем, постепенно добавляется цемент с добавками. Содержимое тщательно перемешивается в бетономешалке или своими руками, при помощи вил.
- Настало время добавлять воду, в которой уже растворены химические добавки. Все снова перемешивается.
- Как цемент, так и воду требуется добавлять не сразу, а понемногу, небольшими порциями. Так смесь будет легче перемешивать и компоненты будут лучше соединяться между собой.
- После того как сделан раствор, его нужно поместить в подготовленные формочки, чтобы они обрели вид блоков для кладки.
Это состав и пропорции смеси арболитовых блоков, которые можно сделать своими руками. Все что требуется – быть внимательным и четко придерживаться инструкций по его приготовлению. Ниже приводится таблица, которая поможет вам разобраться в том, какие есть марки арболита и каковы пропорции компонентов для его приготовления.
Какой раствор используется для кладки
Это логичный вопрос. Ведь если арболит специфический материал, то может для кладки арболитовых блоков потребуется специфический раствор? Нет. Арболитовые блоки кладутся на обычный цементный раствор, который под силу сделать любому. Он состоит из цемента, песка и воды. Соотношение компонентов – 3:1. Вода добавляется до тех пор, пока раствор не приобретет нужной консистенции. Эта смесь идеально подходит для кладки блоков своими руками.
Итак, зная состав, пропорции и технологию замешивания арболитового раствора, вы можете делать блоки для ваших целей.
- Состав и пропорции раствора для кладки кирпича
- Как сделать цветной раствор для кирпича
- Размер и вес белого силикатного кирпича
- Кирпич облицовочный силикатный
Что происходит с блоком, в составе которого есть только цементный раствор и щепа? Он крошится, подобно пенопласту, и оббивается при транспортировке и укладке. От такого «арболита» можно руками оторвать кусок.
Минерализатор – такой же ключевой компонент, как цемент и щепа.
«Русский Арболит» выбирает для минерализации сульфат алюминия, так как он полностью безопасен: его используют для очистки питьевой воды или в качестве пищевой добавки Е-520. После высыхания блока он полностью деактивируется.
При изготовлении арболита своими руками добавка иногда заменяется известью, что, во-первых, не так эффективно, во-вторых, создает проблемы при армировании конструкции (известь провоцирует корродирование металлических элементов).
Как сульфат алюминия делает блок прочнее?
При взаимодействии древесных сахаров с раствором бетона образуются «цементные яды». Для человека они не несут вреда; такое название дано им за то, что они замедляют схватывание цемента. Чтобы нейтрализовать сахара, нужны минерализаторы – соли. Самой эффективной и экономически выгодной признан сульфат алюминия.
В щепе лиственных деревьев сахаров больше, именно поэтому она не так предпочтительна, как щепа сосновых пород. Если все же приходится использовать древесину лиственных – увеличится и количество минерализатора.
Состав «древесного» бетона арболита: органическая и неорганическая части
Арболит – весьма необычный вид бетона, где основным наполнителем выступают отходы лесоперерабатывающей промышленности – стружка, хвоя и другое. Именно состав и обеспечивает необычные свойства этого строительного материала. Итак, давайте сегодня поговорим про состав для производства арболита и блоков из него по ГОСТу, пропорции, рецепт и технологию производства.
Состав
Как и всякий бетон, материал включает в себя цементирующее вещество и наполнитель – только органического происхождения, а также различные добавки. Происхождение и свойства ингредиентов влияют на качества конечного продукта.
Органические наполнители сообщают арболиту очень значительные тепло- и звукоизоляционные свойства. По прочности материал мало чем уступает бетону с такими же показателями плотности. Такое сочетание качеств возможно лишь при правильном выборе сырья.
О том, как сделать щепу для производства арболита своими руками поговорим ниже.
Более подробно о том, как подобрать состав для арболита и опилкобетонов, расскажет этот видеосюжет:
Органические компоненты
В виде древесного наполнителя применяют несколько видов материала. Далеко не всякая стружка годится в качестве сырья – не стоит путать материал с опилкобетоном. Новый ГОСТ четко регулирует размеры и геометрию добавляемых в арболит фракций.
- Щепа – получают ее методом дробления нетоварной древесины – горбыля, сучков, верхушек и тому подобного. Для производства арболита используют щепу длиной в 15–20 мм – не превышая 40 мм, шириной в 10 мм и толщиной в 2–3 мм. В промышленных условиях дробление выполняют специальные установки. Практические исследования утверждают, что для достижения лучшего качества при изготовлении дробленая щепа для арболита должна иметь игольчатую форму и быть меньше в размерах: длина до 25 мм, ширина – 5–10 мм, толщина 3–5 мм. Дело в том, что древесина по-разному впитывает влагу вдоль и против волокна, а указанные выше размеры уравнивают эту разницу.
Годится для щепы не всякое дерево: можно использовать ель, сосну, осину, березу, бук, а вот лиственница нежелательна. Древесный материал перед использованием обязательно обрабатывают антисептическими составами, чтобы предупредить развитие плесени или грибков.
- Измельченные кора и хвоя также может применяться. Однако доля их меньше: коры должна быть не более 10% от массы продукта, а хвои – не более 5%.
- Сырьем может выступать рисовая солома, костра льна и конопли, а также стебли хлопчатника. Материалы измельчают: длина не должна превышать 40 мм, ширина – 2–5 мм. Очесы и пакля, если они оказываются в наполнителе, не превышают 5% от массы. ГОСТ 19222-84 регламентирует размеры фракций, которые получают при измельчении того или иного сырья. И хотя в пропорции ингредиентов допускаются отклонения, отступать от стандартов сырьевых нельзя.
Лен содержит большое количество сахаров, а последние, вступая в реакцию с цементом, разрушают его. Предварительно костру льна вымачивают в известковом молоке – 1–2 дня, или выдерживают на воздухе 3–4 месяца.
Неорганические компоненты
Вяжущим в деревобетоне, а именно так называют арболит, выступают следующие вещества:
- портландцемент – традиционный материал и наиболее популярный;
- портландцемент с минеральными дополнительными компонентами – обычно, таким образом повышают морозостойкость блоков;
- сульфатостойкий цемент, за исключением пуццоланового, обеспечивает стойкость к химически агрессивным веществам.
Согласно требованиям ГОСТ использоваться может лишь материал соответствующей марки:
- не менее, чем 300 для теплоизоляционного деревобетона;
- не менее, чем 400 для конструкционного.
А теперь поговорим про пропорции химдобавки в составе арболита.
Общее количество дополнительных ингредиентов может достигать 2–4% от веса цемента. Большинство из них повышают прочность деревобетона: вещества взаимодействуют с сахарами, которые наличествуют в древесине, и образуют безвредные для цемента соединения.
Конкретное количество ингредиентов определяется маркой арболита. Например, в состав деревобетона марки 30 могут входить:
- хлорид кальция и сульфат алюминия в пропорции 1:1 – не более 4% от массы цемента;
- хлорид кальция и сульфат натрия в пропорции 1:1 – не более 4%;
- хлористый алюминий и сульфат алюминия в пропорции 1:1 – не более 2%;
- хлорид кальция и хлористый алюминий в пропорции 1:1 – не более 2%.
В тех же целях может использоваться и жидкое стекло – силикаты натрия и калия.
Вода
ГОСТ регламентирует степень чистоты воды, но на практике используют любую – центральный водопровод, колодцы, скважина. Для качества арболита принципиальным является температура воды. В состав она добавляется вместе с дополнительными ингредиентами.
Чтобы скорость гидратации цемента была достаточной, нужна вода с температурой не менее +15 С. Уже при +7–+8 С скорость схватывания цемента заметно падает.
Далее будет рассмотрен рецепт, состав пропорции смеси на куб (1м3) арболита своими руками.
Пропорции
Жестко состав арболита не регламентируется. Если требованиям ТУ материал соответствует, то этот показатель считают более важным, чем точность состава. Приблизительные пропорции таковы: 1 часть заполнителя, 1 вяжущего и 1,5 части раствора с химическими добавками.
Более точно состав вычисляется для конкретной марки, где важным является достигнуть требуемой прочности и плотности.
Например, соотношение для обычного деревобетона в расчете на получение 1 куб. м.
Марка | Цемент, кг | Органический заполнитель, кг | Присадки, кг | Вода, кг |
---|---|---|---|---|
15 | 250–280 | 240–300 | 12 | 350–400 |
25 | 300–330 | 240–300 | 12 | 350–400 |
Если древесный наполнитель неоднородный, то долю щепы и стружки в нем определяют как соотношение объемов, например, 1 ведро опилок и 1 ведро стружек. Также допускается 1 ведро опилок и 2 стружки.
- В смеси с дробленкой доли щепы и опилок будут равными – 1:1:1.
- Костра льна и стебли хлопчатника могут замещать опилки в той же пропорции.
О том, как происходит замес смеси арбалитобетона по указанным пропорциям, расскажет это видео:
ГОСТ
Состав арболита регламентирует ГОСТ 19222-84. Стандарт разрешает подбирать состав смеси в лабораторных условиях, но предъявляет жесткие требования к сырью и к параметрам конечного результата. В зависимости от прочности на сжатие и показателей по теплоизоляции выделяют 2 вида арболита:
- теплоизоляционный, то есть, разработанный для утепления стен;
- конструкционный – допускается возведение самонесущих стен.
Показатели этих материалов разные.
Вид арболита | Класс по прочности на сжатие | Марка по прочности при осевом сжатии | Средняя плотность, кг/куб. м. | |||
---|---|---|---|---|---|---|
На измельченной древесине | На костре льна или стеблях хлопчатника | На костре конопли | На рисовой соломе | |||
Теплоизоляционный | В0,35 | М5 | 400–500 | 400–450 | 400–450 | 500 |
В0,75 | М10 | 450–500 | 450–500 | 450–500 | ||
В1,0 | М15 | 500 | 500 | 500 | ||
Конструкционный | В1,5 | – | 500–650 | 500–650 | 550–650 | 600–700 |
В2,0 | М25 | 500–700 | 600–700 | 600–700 | – | |
В2,5 | М35 | 600–750 | 700–800 | – | – | |
В3,5 | М50 | 700–850 | – | – | – |
Поскольку условия эксплуатации изделий из арболита могут быть весьма разными, к ним могут предъявляться дополнительные требования, регламентируемые ГОСТ 4.212-80.
Именуются марки арболита по ГОСТ 25192-82. Может указываться также структура материала.
Размерные отклонения в изделиях
ГОСТ регулирует возможные размерные отклонения в изделиях:
- по длине, при общей длине блока до 3,0 м – не более 5 мм;
- при длине изделия от 3 до 6 м – 7 мм;
- по высоте и толщине отклонения могут быть лишь в пределах 5 мм;
- погрешность размеров выступов, выемок, полок, ребер и так далее не превышает 5 мм.
Разрешается армирование изделий из деревобетона сетками и стальными стрежнями, регламентируемыми соответствующим ГОСТом.
Так как материал не отличается высокой влагостойкостью, наружную поверхность изделий покрывают слоем декоративного бетона или другого материала с минеральными наполнителями. Внутренний слой может отсутствовать. Допускается отделка цементом или цементно-известковым раствором.
Проверка арбалитовой смеси
Согласно ГОСТ не реже 2 раз в смену проводят проверку арбалитовой смеси:
- оценивают показатель плотности;
- удобоукладываемость;
- уровень расслаиваемости;
- оценка межзерновых пустот.
Для проверки на прочность проводят серию лабораторных исследований, для смеси спустя 7 суток затвердевания, для смеси спустя 28 суток и смеси, которая испытывалась и спустя 7 суток и через 28.
- Морозостойкость оценивают для отделочных и несущих слоев,
- Теплопроводность измеряется по образцам смеси,
- Влажность рассчитывают на пробах из готовых изделий.
Только, если смесь проходит испытания, предлагаемые ГОСТ, ее можно в полной мере считать рабочей и принимать в производство.
Арболит – пример удачного сочетания органического наполнителя и неорганического вяжущего. И как для всех видов бетона, состав в значительной мере определяет качества конечного продукта.
О том, как подобрать состав арболита и замесить ингредиенты для постройки гаража, узнаете из видео ниже:
состав, арболит своими руками, пропорции смеси на 1 куб, из чего делают арболитобетон, рецепт из соломы и цемента
Арболитовые блоки – это популярный строительный материал, который применяют при строительстве домов, внутренних ограждений, гаражей и прочих построек. Такая востребованность арболитовых блоков связана с тем, что он имеет массу преимуществ, среди которых долговечность, простота укладки и отличные технические свойства.
Состав
При изготовлении арболитовых блоков применяют натуральные и химические компоненты. При их грамотном соединении с соблюдением пропорции можно получить изделие необходимой марочной прочности, которое в последующем можно будет использовать для возведения одноэтажных или двухэтажных построек.
Древесина
Дерево относится к органическим материалам, так что в его клетках содержится вода. Кроме воды, дерево содержит сахар, от которого необходимо избавиться. Процесс изготовления начинается с того, что щепку нужно нарубить.
Для этого используют сырую древесину. Затем она должна побыть рядом с химическими реагентами, чтобы весь сахар покинул ее. Как известно, дерево – это материал, имеющий низкие адгезивные свойства. Если не соблюдать технологии, то это станет причиной разрушения блока непосредственно в руках.
На фото-щепки в арболитовых блоках:
Размер щепки оказывает влияние на количество используемого цемента для получения 1 м3 арболита. Если задействовать щепки из сухой древесины, то фракция получится мелкой. Она будет иметь игольчатую структуру, а это потребует использование большего количества цемента. Щепка игольчатой формы должна присутствовать только в определенном количестве.
На 1 м3 арболита потребуется
Всего на 1м3 арболита необходимо:
- 8-10 кг химических составляющих;
- 250 кг цемента;
- 250 г щепы.
При замесе щепки ее нужно хорошенько смочить, чтобы вся свободная влага не выделялась, а сама щепка была укрыта слоем цемента. Именно он при трамбовки блока сможет соединить щепки между собой.
Сернокислый алюминий
Этот компонент используют при изготовлении арболита, а относится он к химическим составляющим. Его задача – это расщеплять сахара.
На фото – арболитовые блоки с алюминием
При добавлении сернокислого алюминия в смесь удается сократить время, которое требуется для набора прочности. При этом на схватываемость это не влияет.
Хлористый кальций
При использовании его в сочетании с сернокислым алюминием удается побороть всех микроорганизмов в дерево. Еще этот компонент оказывает противогнилостные свойства и не дает возникать очагам внешнего поражение готовых блоков.
На фото- арболитовые блоки с хлористым калием
Если хлористый кальций отсутствует, заменить его может хлористый алюминий.
Жидкое стекло
При помощи этого компонента можно закрыть поры в древесине и избежать проникновения влаги внутрь щепы. Применять жидкое стекло рекомендуется после того, как были устарнены все сахара и есть необходимость в защите от проникновения влаги. Жидкое стекло могут применять в качестве модификатора для схватывания строительной массы, но только делать это предельно осторожно.
А вот какой зимний клей для газосиликатных блоков самый популярный и чаще всего используемый, рассказывается в данной статье.
Какие блоки для внутренних перегородок самые подходящие, рассказывается в данной статье.
Какие плюсы и минусы дома из газоблока существуют и стоит ли использовать такой строительный материал, рассказывается в данной статье: https://resforbuild.ru/beton/bloki/gazobloki-plyusy-minusy.html
Возможно вам так же будет интересно узнать о том, какие технические характеристики газоблоков существуют.
Известь гашеная
Этот вариант станет отличной заменой первым двум химическим составляющим, если существуют сложность в их приобретении. Гашеная известь имеет уникальные способности выводить сахар и бороться с различными микроорганизмами, которые содержаться в древесине.
Как сделать своими руками
Изготовить арболитовые блоки совершенно несложно своими руками. Для этого не нужно использовать особое оборудование. Главное в этом деле, это четко придерживаться необходимых пропорций.
Рецепт смеси и пропорции
При изготовлении арболита важно строго придерживаться соотношениямежду всеми компонентами.
Расход каждого материала составит:
- соотношение наполнителей 80-90%;
- приблизительный объем цемента в общей смеси – 10-15%;
- объем воды – 60-70%;
- химические составляющие – 2-4%.
Чтобы получить 1 м3 материала, необходимо использовать следующие пропорции: 300 г наполнителей и 400 л воды. При обработке наполнителей применяют известковый раствор.
На видео – как сделать арболитовые блоки своими руками:
Для его приготовления необходимо воспользоваться следующей пропорцией:
- известь – 2,5 кг
- ,вода – 200-300 л на 1 м3 древесной щепы.
Для ускорения процесса затвердевания смеси и улучшения ее свойств применяют указанные выше химические компоненты. Для производства 1 м3 арболита уйдет до 10 кг химических компонентов. Если четко соблюдать пропорции, то состав смеси получается классическим. При смене пропорций вы рискуете получить некачественный строительный продукт.
Как залить блоки
Перед тем как переходить к заливке подготовленного материала, нужно позаботиться про оснащение:
- емкость для замешивания смеси или бетономешалку;
- формы съемного типа;
- лопату;
- сито;
- поддон из металла.
Что касается форм для заливки материала, то их можно сделать своими руками или купить готовый вариант в строительном магазине. Если вы решили выбрать первый способ, то тогда нужно взять доски толщиной до 2 с. Скрепить их по необходимым размерам. С наружной стороны оббить их пленкой.
На видео – дом из арболитовых блоков своими руками:
Процесс заливки сводится к соблюдению следующих действий:
- Очищенный наполнитель отправить в воду. Добавлять жидкое стекло и все перемешать. Для этих целей можно использовать бетономешалку или миксер.
- Для приготовления смеси необходимо взять наполнитель, песок и цемент в пропорции 6:2:1. Во время замешивания не стоит сразу вес компоненты помещать в бетономешалку. Это приведет к образованию комочков, что в итоге снизит качество готового материала.
- Подготовить формы. Их внутреннюю сторону обработать известковым молоком. Чтобы смесь не прилипала к стенкам, можно отделать их линолеумом.
- Залить приготовленную смесь в форме. Чтобы отсутствовали пузырьки воздуха, стоит после заполнения всю массу взбалтывать, а стенки простукивать.
- Для уплотнения смеси применять трамбовку или вибропресс. Ждать 1 сутки.
На видео – станок для производства арболитовых блоков своими руками:
Формы установить в темное место, накрыть пленкой и ждать примерно 21 день. Держать форму на воздухе при показателях температуры не менее 15 градусов. Если вы впервые занимаетесь изготовлением арболитовых блоков, то первая партия должна быть небольшой. Таким образом, вы сможет оценить качество и правильность пропорций используемых компонентов.
А в данной статье можно прочесть про отрицательные отзывы о арболитовых блоках.
Так же будет интересно узнать о том, что лучше газоблок или пеноблок, поможет понять видео из статьи.
А вот что дешевле пеноблок или газоблок и что всё таки лучше использовать, очень подробно рассказывается в данной статье.
Так же будет важно узнать о том, какие размеры бетонных стеновых блоков существуют и как правильно их подобрать. Для этого стоит перейти по ссылке.
А вот какие существуют плюсы и минусы бани из шлакоблока, рассказывается в данном видео.
Арболитовые блоки – это широкоприменяемый строительный материал при взведении домов различного назначения. Изготовить блоки можно самостоятельно, если знать состав материала и пропорции всех компонентов. При четком соблюдении всех правил и рекомендаций можно получить качественные и прочнее арболитовые блоки, ни чем не хуже от тех, которые изготовлены промышленным путем.
каркас и заливка своими руками
Деревобетон или монолитный арболит широко известен в строительстве. Материал обладает хорошими техническими характеристиками. Его применение при возведении зданий имеет свои достоинства и недостатки. Что представляет собой арболитовый состав, и какие особенности монолитных сооружений?
Свойства материала и особенности его применения
Монолитный арболит представляет собой смесь измельченной древесины и цемента. В качестве дополнительных компонентов в материал добавляют рисовую дробленую солому, стебли хлопчатника и химические вещества, которые расщепляют древесные сахара.
Благодаря своему составу арболит обладает хорошей тепловой и звуковой изоляцией. Материал достаточно огнестойкий и легко поддается обработке. Одной из основных особенностей монолитного арболита является его небольшой вес. За счет этого фундамент под сооружения выстраивается облегченного типа.
При строительстве домов учитывается высокое влагопоглощение материала. Поэтому применение деревобетона предусматривает хорошую гидроизоляцию всех стен:
- поверхность фасада защищается облицовкой или штукатуркой;
- сверху на фундамент укладывается гидроизоляционное покрытие;
- навес карниза над стенами должен быть не менее пятидесяти сантиметров.
От нижней части стены до высшей точки грунта следует соблюдать дистанцию в пятьдесят сантиметров.
Виды
Монолитный арболит изготавливается двух типов:
- Конструкционный. Применяется для несущих конструкций здания и перегородок. За счет невысокой прочности используется только в строительстве малоэтажных сооружений. Конструкционный материал согласно прочности имеет классификацию В3,5, В3, В2,5,В2, В1,5 и В1, что соответствует пределу плотности от 500 до 850 килограмм на метр кубичный.
- Теплоизоляционный. Таким раствором заливают стенные проемы. По прочности делится на классы В0,75 и В0,5. Плотность материала составляет не более 500 килограмм на метр кубичный.
На степень прочности заливки из арболитной смеси влияет марка используемого цемента и уровень уплотнения состава. Для повышения износостойкости сооружений материал обязательно армируют.
Способы монолитного строительства
Строительство монолитных зданий осуществляется двумя основными методами:
- Непрерывная поэтажная заливка. При таком варианте возведения домов для фундамента сооружается несъемная опалубка. Состав для заливки подается из локальной бетонно-растворной установки или автоматического миксера.
- Заливка поясов. Опалубка монтируется для всего периметра дома. Изначально выставляется необходимая ширина деревянной формы, которую постепенно продвигают снизу вверх для формирования следующего пояса.
Нередко при монолитном строительстве используют сегментную заливку, при которой за один раз заливается определенного размера стена с боковыми ограничениями.
Технология монолитного строительства
Для монолитных зданий из арболита нет необходимости сооружения железобетонного пола. Легкий деревобетон устанавливают на ленточный фундамент. Ширина его должна соответствовать толщине стен.
Технология строительства монолитных зданий не имеет особой сложности. Часто такого типа дома возводят своими руками:
- При заливке фундамента выставляются стержни арматуры до уровня пола следующего этажа здания. Чем больше планируется выстроить этажей, тем толще подбираются детали армирующей конструкции.
- Сбитая необходимого размера опалубка укладывается на фундамент так, чтобы нижняя ее часть была внахлест ленточному основанию. Детали формы для заливки соединяются шпильками из металла. Все боковые щели закрываются деревянными обрезками. После полного застывания арболита опалубка снимается, а крепежные детали обрезаются, чтобы не было ненужных отверстий.
- В правильно установленную опалубку заливается раствор арболита. Состав смеси готовится согласно типу стены – внутренняя или наружная. Форма должна быть наполнена так, чтобы края ее от верхнего среза оставались на пять сантиметров свободными.
- Залитый раствор тщательно утрамбовывают по всей поверхности. Для этого используют металлический штырь. Такое уплотнение позволит устранить воздушные пузырьки из материала, способствуя повышению его прочности.
- Опалубка снимается только после полного застывания части стены. После этого ее очищают, пропитывают маслянистым веществом и выставляют для заливки следующего участка. Перемещение формы проводится в одной плоскости, пока не замкнется периметр. Далее выполняется подъем на верхние участки.
Когда нижние стены будут полностью залиты, выполняется установка пола следующего этажа. Для этого специально монтируется опалубка, которая заполняется арболитовой смесью или выкладываются для перекрытия плиты из железобетона. Затем аналогично первому этажу заливаются верхние стены.
Теплоизоляционным арболитным раствором заполняют проемы между стенами из двойного кирпича. Такая конструкция значительно снижает теплоотдачу кирпичных сооружений и намного упрощает строительство здания.
Приготовление арболитовой смеси
Качество раствора из арболита для монолитного строительства зависит от соблюдения пропорций смеси и правильного ее изготовления.
Подготовка компонентов
В состав раствора для заливки из арболита входит более 80 процентов щепы хвойной древесины. Она имеет определенные размеры и форму. Стандартная величина сырья – 25*5*10 миллиметров. Если древесные частицы имеют больший объем, то прочность материала снижается. При меньших размерах требуется большее количество цементной смеси и при этом уровень теплоизоляционных свойств понижается.
В состав раствора для заливки из арболита входит более 80 процентов щепы хвойной древесиныДля цементной основы используется портландцемент. В основном используют марки М500 или М400. Для быстроты твердения смеси вносятся минеральные добавки, такие как сернокислый алюминий, хлористый кальций или жидкое стекло. Также хорошо зарекомендовала себя гашеная известь.
Для заливки монолитных сооружений арболитовый раствор готовится в зависимости от его типа. Для конструкционного деревобетона на 1 метр кубический требуется такие пропорции основных компонентов:
- для плотности В1 – на 360 литров воды используется 210 килограмм цемента и 210 килограмм измельченной древесины;
- В2 – соединяется 350 килограмм цемента, 230 килограмм щепы и 400 литров воды;
- класс В2,5 требует 250 килограмм хвойного наполнителя, 440 литров жидкости и 380 килограмм портландцемента.
Для замеса арболита, который используют в теплоизоляционных целях на 1 кубический метр в зависимости от плотности необходимо от 280 до 300 килограмм цемента, 300- 430 литров води и от 170 до 190 килограмм щепы древесины.
Все расчеты используются при условии добавления цемента марки М400. Если применяется сухой раствор М 500, то для пропорции берется во внимание коэффициент 0,96.
Технология изготовления раствора
Процесс замеса состоит из таких этапов:
- В сухом виде смешивается щепа и минеральная или химическая добавка. После этого добавляется портландцемент. Все компоненты размешиваются до однородного состояния.
- В подготовленный состав небольшой струей льется вода. При этом следует беспрерывно перемешивать раствор строительным миксером или бетономешалкой. В готовом арболитовом материале для заливки вся щепа должна быть покрыта цементной смесью. Процесс смешивания компонентов занимает не менее 5 минут.
Правильно сделанный раствор должен быть влажным, но не сильно мокрым. При добавлении в качестве добавки извести для ее полного погашения раствор смешивается в течение 20 минут.
Роль каркаса в монолитном строительстве
Технология строительства монолитных зданий включает установку каркаса. От вида и размеров таких опор зависит прочность здание и возможность возведения более двух этажей. Также с помощью каркаса устанавливается форма будущей постройки.
Для монолитных сооружений из арболита используется два типа несущей конструкции:
- Деревянная. Такой вариант применяется только для малоэтажных домов. Рамки из дерева монтируются в вертикальном положении на расстоянии от 120 до 150 сантиметров друг от друга. При этом обязательно включаются оконные и дверные проемы. Деревянный каркас повышает прочность зданий. С помощью досок равномерно распределяется вся нагрузка при усадке.
- Металлическая. Такая каркасная основа выстраивается из сальных стержней и сеток. Для оконных проемов применяются металлические балки. Данный вид основы более надежен и позволяет сооружать этажные монолитные здания из арболита.
Деревянный каркас перед установкой обрабатывается специальными антисептическими веществами. К такой основе можно монтировать стропила и удобно устанавливать оконные и дверные конструкции.
Деревянный каркас перед установкой обрабатывается специальными антисептическими веществамиДетали металлического каркаса требуют предварительной защиты антикоррозийными средствами. Бескаркасное возведение зданий из арболита в монолитном строительстве не применяется. Такой вариант подходит только для сооружений из деревобетонных блоков.
Преимущества и недостатки монолитного арболита
Достоинством монолитного строительства из арболита является хорошие технические характеристики материала. Среди преимуществ деревобетона можно выделить:
- Огнестойкость. Невзирая на легковоспламеняющийся древесный состав арболит не горит. Такое свойство материалу придает цементная смесь и предварительная обработка щепы антипиренами.
- Высокая теплоизоляция. Деревобетон сохраняет тепло в помещении в пять раз лучше, чем кирпич из глины. Степень теплоизоляционных характеристик монолитных строений зависит от класса материала.
- Легкий вес. Такое свойство деревобетона позволяет возводить облегченные виды фундамента.
- Несложная обработка материала. Арболит можно без особых усилий разрезать или распилить. Все крепежные элементы установить достаточно просто, что значительно экономит время на выполнение внутренних работ в здании.
- Хорошие шумоизоляционные свойства. Коэффициент поглощения звука достигает 0,6 при наибольшей частоте 2000 герц.
- Морозостойкость. Деревобетон имеет устойчивость к низким температурам порядка 50 циклов.
- Длительный срок эксплуатации. Монолитный арболит сохраняет свою структуру и не дает трещин и расколов на протяжении сорока пяти лет.
- Биостойкость материала. Деревобетонные конструкции не подвержены грибковым поражениям, плесени и гниению.
Наряду с многочисленными достоинствами монолитный арболит имеет свои недостатки:
- высокая степень поглощения влаги.
- неустойчивость к агрессивному химическому воздействию.
Материал быстро промокает и разбухает. Поэтому при сооружении зданий обязательно применяется защита стен. Строительство монолитных домов из деревобетона проводится только в условиях пониженной влажности воздуха. Также для установки арболитовых стен требуется надежная гидроизоляция основания.
Деревобетонные конструкции достаточно привлекательны для грызунов, которые легко проделывают в нем хода и норы.
Достоинства монолитного арболита намного превышают недостатки. Правильное сооружение конструкции для заливки и соблюдение пропорций при замесе раствора намного повысит технические качества материала, а надежная защита от влаги увеличит его эксплуатационный срок.
Производство арболита своими руками: состав, пропорции, оборудование
Арболит (он же деревобетон) все чаще используется в малоэтажном строительстве. Во многом это связано с простотой производственной технологии и доступностью исходных компонентов. Именно о технологии, оборудовании и способах производства я расскажу в этой статье.
Производственное оборудование
Оборудование для производства арболита не отличается особой сложностью и габаритами. Его можно разместить на приусадебном или дачном участке, в любом боксе, цеху или просто на улице под навесом. Главное условие – наличие электроэнергии и удобство эксплуатации. Полный перечень заводского оборудования, необходимого для промышленного производства арбоблоков выглядит следующим образом:
- Шредер – измельчитель органических наполнителей (щепы, соломы и т.д.).
- Ёмкость для приготовления и розлива химических компонентов.
- Дозатор цемента.
- Дозатор органических наполнителей.
- Дозатор заполнителей для бетонного раствора.
- Бетоносмеситель для арболита принудительного типа действия.
- Подъёмно-поворотный бункер для приёма и дальнейшего розлива готового арболитового раствора.
- Система лебёдок для погрузочно-разгрузочных работ.
- Самозапечатываемые формы для отливки блоков.
- Вибропресс для арболита.
При кустарном производстве деревобетона, для собственных нужд, могут использоваться самодельные станки.
Состав арболита
Состав арболита регламентируется ГОСТ №19-222-84. Готовая к заливке арболитовая смесь состоит из следующих компонентов:
- Цементный раствор;
- Химические добавки;
- Органические наполнители.
Цемент
В качестве связующего компонента в производстве используется раствор на цементной основе. По ГОСТу, портландцемент для приготовления арболита должен иметь марку не ниже М-400.
Таблица . Технические характеристики цемента М-400
Добавлять песок в состав арболитного раствора не рекомендуется, так как это ухудшает показатели сцепки органических наполнителей с цементным вяжущим веществом. В результате блоки становятся менее прочными и склонными к расслоению и растрескиванию.
Химические добавки
Химические добавки предназначены для улучшения эксплуатационных характеристик арболита. В состав арболита входят следующие химические компоненты:
- Сернокислый алюминий, он же сульфат алюминия – неорганическая соль, хорошо растворимая в воде. При изготовлении арболита он используется в качестве гидроизолятора, увеличивающего стойкость материала к воздействию сырости.
Из-за высокой гигроскопичности, хранение сернокислого алюминия должно производиться в помещениях с низким уровнем влажности и в герметичной упаковке.
- Хлористый кальций – химический элемент, получаемый при промышленном производстве соды. Добавляется в арболитную смесь для связывания сахаров, содержащихся в органических заполнителях, что значительно повышает прочностные характеристики получаемого цементного раствора и позволяет повысить степень его сцепления с древесными компонентами.
- Жидкое стекло – водорастворённые силикаты натрия или калия. При изготовлении смеси для деревобетона, жидкое стекло выполняет роль отвердителя, а также для придания цементному раствору кислотоупорных и гидроупорных свойств.
- Гашёная известь добавляется в раствор для нейтрализации содержащихся в органических добавках природных сахаров и улучшения связующих качеств цемента и древесины.
Органические заполнители
В качестве наполнителя при производстве арболита используются отходы деревообрабатывающего производства. Главное отличие арболита от других видов лёгких бетонов состоит в том, что в его состав входят достаточно крупные компоненты – древесная щепа, костра льна, конопляная солома и т.д. От процентного содержания органического наполнителя зависят основные показатели материала: плотность, гигроскопичность, коэффициент теплопроводности и т.д.
- Древесная щепа – наиболее часто используемый заполнитель. Согласно ГОСТу, её размер не должен превышать 4 х 1 х 0,5 см. В связи с этим, технические характеристики арболитовых конструкций отличаются от характеристик опилкобетона и фибролита (стружкобетона).
Древесная щепа – главная составляющая арболитового блока
Нужный размер органической фракции получают при помощи специального станка-щепореза (шредера). Содержание щепы в общем объёме арболита может быть разным, и составлять от 30% до 90%.
- Льняная костра добавляется в таком же виде, в каком она получается на льноперерабатывающем заводе после предварительной обработки сырья.
- Конопляную солому перед использованием следует перемолоть в шредере.
Согласно техническим нормативам, льняные и конопляные наполнители должны иметь следующие размеры:
- Длина – от 15 до 25 мм.
- Ширина – от 2 до 5 мм.
В разных регионах для производства арболитовых блоков и панелей могут применяться и другие органические заполнители: рисовая и гречневая солома, отходы обработки хлопчатника и т.п.
В таблице даны технические характеристики арболита, изготовленных с применением разных органических наполнителей:
Технология производства
Технология производства арболита имеет ряд отличительных особенностей, которые касаются подготовки сырья, рецепта приготовления, дозировки компонентов. Её соблюдение обязательно как при промышленном выпуске, так и при производстве арболита своими руками в домашних условиях.
Подготовка органических заполнителей
Для деревобетона может использоваться щепа древесины хвойных пород – ели, сосны, пихты, а также лиственных деревьев с твёрдой древесиной – дуба, ясеня, берёзы.
Не рекомендуется применять в производстве щепу лиственницы и бука из-за химического состава – их древесина содержит значительно больше сахаров, что приводит к значительному снижению качества блоков. В крайнем случае, при производстве раствора с лиственничной или буковой щепой, придётся, как минимум, вдвое увеличить количество химдобавок – извести или хлористого кальция.
Щепа березы и ясеня – лучший наполнитель для арболитового блока
Первым шагом древесные отходы измельчаются посредством щепореза до размеров, регламентируемых ГОСТ №19-222-84 – не более 40х10х50 мм. Фактически же оптимальными размерами древесной фракции для формовки блоков являются 25х5х3 мм, так как более крупные компоненты хуже связываются цементным раствором и более склонны к расслаиванию в процессе эксплуатации.
После измельчения щепа просушивается. На крупных производственных линиях для этих целей применяют специальные сушилки барабанного типа, в которые подаётся горячий воздух.
Если арболит производится в домашних условиях, щепу складируют для просушки под навесами на срок не менее месяца, при температуре воздуха +15С.
Непосредственно перед замешиванием щепа замачивается на 6-8 ч в растворе воды с химическими добавками. Вода для этого должна соответствовать ГОСТу №23-732-79, где регламентируется её химический состав, кислотность и т.д. На деле же, при кустарном производстве деревобетона применяется любая доступная вода – из водопровода, реки или колодца. Единственное необходимое условие – она должна быть чистой и иметь температуру не ниже +15…+20С. После замачивания древесный наполнитель должен иметь влажность не более 30%.
Костра льна и солома конопли, для удаления из неё излишков сахаров, выдерживается на открытом воздухе не менее 2 – 3 месяцев при плюсовой температуре, либо замачивается в известковом молоке на 3-4 дня. Известковый раствор приготавливается в следующих пропорциях на 1 куб. м органики.
Органический заполнитель | Гашёная известь | Вода | Дополнительные условия |
1 куб. м костры льна или конопли | 2 – 2,5 кг | 150 – 200 л в зависимости от влажности наполнителя | Смесь перемешивается каждые 2 дня |
Пропорции смеси
Пропорции замеса могут незначительно изменяться, в зависимости от класса прочности деревобетона. Для получения более высокой марки арболита увеличивают долю цемента в общем объёме раствора. Ниже представлены рекомендуемые пропорции замеса раствора для деревобетона различных марок на куб готового раствора:
Марка | Портландцемент М-400 | Органический наполнитель | Химдобавки | Вода |
М-5 | 200 – 220 кг | 280 – 320 кг | 12-14 кг | 350 – 400 л |
М-15 | 250 – 280 кг | 240 – 300 кг | 12 кг | 350 – 400 л |
М-25 | 300 – 330 кг | 240 – 300 кг | 12 кг | 350 – 400 л |
М-50 | 350 – 400 кг | 220 – 240 кг | 10-12 кг | 350 – 400 л |
Химические добавки могут добавляться как по отдельности, так и комплексно. К примеру, строительные нормативы СН №54982 допускают смешивание сернокислого алюминия с известью в пропорции 8 кг и 4 кг на куб раствора.
Очерёдность загрузки
При замесе раствора важно соблюдать не только пропорции, но и очерёдность загрузки компонентов. Для изготовления качественной арболитной смеси обычные бетоносмесители, используемые для замеса бетона, не подойдут – щепа в них не сможет хорошо перемешаться с цементным раствором. Бетономешалка для арболита должна быть принудительного типа, например отечественные модели серии СБ, РН, импортные ZZBO и т.д. В них перемешивание компонентов производится не вращением барабана, а расположенным внутри него шнеком или лопастью.
Таблица 3. Технические характеристики принудительных смесителей серии СБ:
- Первым шагом в барабан смесителя насыпается подготовленная щепа в нужной пропорции.
- Затем бетоносмеситель запускается и в него заливается вода с растворёнными в ней химическими добавками. Органический заполнитель размешивается с химраствором в течение 30-60 секунд, чтобы щепки хорошо пропитались.
- После этого добавляется цемент и продолжается размешивание смеси в течение 3-5 минут, до получения однородной массы.
Формирование блоков
Формовка арбоблоков происходит с помощью специальных матриц, в которые заливается готовый раствор. Они изготавливаются из нержавеющей стали разборной конструкции для более лёгкого извлечения блоков.
Также такие формы можно изготовить самому из дерева или фанеры, обив их изнутри линолеумом или жестью. Размеры ячеек матрицы могут быть различными, в зависимости от потребностей в блоках тех или иных габаритов.
Трамбовка производится вручную, либо для этого используется вибростанок. В первом случае раствор заливается в формы слоями толщиной в 5 см, каждый из которых уплотняется металлической трамбовкой.
Во втором случае уплотнение раствора производится на вибростоле, которым обычно оборудуется промышленный станок для производства арболита.
Также при формовке для уплотнения раствора можно использовать ручной или механический пресс. Чтобы из уплотняемых блоков лучше выходил воздух, они периодически прокалывается металлическим стержнем.
Сушка
Сушка готовой продукции является завершающим этапом производственного процесса. В связи с особенностью конструкции, наилучшим вариантом является мягкий режим просушки.
Пропаривать арбоблоки по примеру железобетонных конструкций, не рекомендуется, так как материал теряет прочность из-за возрастающих внутренних напряжений. По этой же причине не следует пытаться ускорить высыхание блоков при помощи сушильных камер и других приспособлений.
Оптимальный режим просушки для арболита – температура 40-50 градусов, при влажности воздуха порядка 70-80%. В этом случае блоки набирают необходимую для распалубки прочность уже спустя 18-20 ч. что составляет около 1/3 от окончательной марочной. Дальнейшая выдержка материала производится при температуре 15-20 С в течение одной-двух недель – за это время деревобетон набирает окончательную прочность.
Соотношение бетонной смеси| Соотношение бетона | Бетонные пропорции | Таблица соотношения бетонной смеси | Соотношение марок бетона | Расчетное соотношение бетонной смеси
Что такое соотношение бетонной смеси?Соотношение бетонной смеси — это соотношение бетонных ингредиентов, таких как цемент , мелкий заполнитель (песок), крупный заполнитель (гравий) , и вода. Эти пропорции смешивания определены как на основе типа конструкции и смешанной конструкции материалов.
Однако строительные нормы обеспечивают номинальных и стандартных соотношений бетонной смеси для различных строительных задач на основе опыта и испытаний. Для приготовления бетонной смеси хорошего качества и прочной .
Соотношение бетонной смесиДля изготовления бетона вам понадобятся четыре основных ингредиента : цемент, песок, заполнитель, вода и дополнительная смесь. Расчет бетонной смеси — это метод определения правильных пропорций цемента , мелкого заполнителя (песка) и заполнителей для бетона для достижения целевой прочности приготовленной бетонной смеси .
Преимущество при проектировании бетонной смеси Расчет PDF состоит в том, что он дает правильное соотношение материалов , что делает использование бетона экономичным для достижения требуемой прочности элементов конструкции.
Поскольку для строительства требуется огромное количество бетона , экономия при количестве материалов, таких как цемент , делает строительство проекта c экономичным.
Различное соотношение бетонной смеси
Номинальная смесь и расчетная смесьТипы соотношений бетонной смеси перечислены ниже:
- Номинальное соотношение бетонной смеси
- Стандартные смеси или соотношение
- Расчетное соотношение смеси бетона
- Высокопрочное соотношение бетонной смеси
Подробнее: Проектирование бетонной смеси | Лист Excel для проектирования бетонных смесей | Смешанный дизайн бетона | Конструкция бетонной смеси M25
1.Номинальное соотношение бетонной смеси
В бетонной смеси номинального размера , пропорции смешивания составляют ингредиентов бетона. являются фиксированными и рекомендованными стандартами .
Для бетонной смеси марки М 15 соотношение составляет 1: 2: 4, что означает 1 часть цемента, 2 части песка и 4 части заполнителя, используемых для приготовления бетонной смеси с водой.
Если вы используете бетон марки М 20, вам необходимо использовать соотношение бетонной смеси 1: 1,5: 3. В котором 1 входит в состав цемента, 1.5 — это часть песка, а 3 — часть цемента.
Марка бетона | Соотношение | Прочность на сжатие | Прочность на сжатие |
(2 мм на каждые 2 мм) | |||
Бетон нормального качества | |||
M-5 | (1) 🙁 5) 🙁 10) | 5 | 725 |
M-7.5 | (1) 🙁 4) 🙁 8) | 7,5 | 1087 |
M-10 | (1) 🙁 3) 🙁 6) | 10 | 1450 |
M-15 | (1) 🙁 2) 🙁 4) | 15 | 2175 |
M-20 | (1) 🙁 1.5) 🙁 3) | 20 | 2900 |
Эти смеси стабильного цемента , мелкого заполнителя (песка) и заполнителя в пропорциях, обеспечивающих достаточную прочность, называются номинальными смесями .
Номинальное соотношение смеси бетон обеспечивает хорошую прочность и качество бетона. Иногда его качество ухудшается d у.е. из-за низкого качества смешивания и неправильного количества материала , добавленного в бетон.
Это стандартное соотношение смеси , обычно используемое для малых строительных проектов , где марка бетона ниже M20 и стандарты качества приемлемы.
2.Стандартное соотношение бетона смеси
Номинальные примесей фиксированных соотношений цемент-заполнитель (по объему) сильно различаются по прочности и могут давать более или менее богатых примесей. По этой причине минимальная прочность на сжатие включена во многие спецификации. Эти смеси называются стандартными смесями .
IS 456-2000 обозначает бетонные смеси нескольких марок как M10, M15, M20, M25, M30, M35, и M40 .Буква M в этом описании относится к смеси и количеству 28-дневной кубической прочности смеси в Н / мм2.
Марка бетона | Соотношение смеси | Прочность на сжатие | Прочность на сжатие | |||
МПа (Н / мм2) | фунт / кв. | 1: 1: 2 | 25 МПа | 3625 фунтов на кв. Дюйм | ||
M30 | Design Mix | 30 МПа | 4350 фунтов на кв. | |||
M40 | Design Mix | 40 МПа | 5800 фунтов на квадратный дюйм | |||
M45 | Design Mix | 45 МПа | 6525 psi |
Смеси марок M10, M15, M20 и M25 примерно эквивалентны по соотношению компонентов (1: 3: 6), (1: 2: 4), (1: 1.5: 3) и (1: 1: 2) соответственно. Спецификации соотношения дубленой смеси для бетона предусматривают эти соотношения c цемента, песка, заполнителя, и воды .
Стандартные смеси из стабильного цемента, мелкого заполнителя (песка) и пропорции заполнителя , обеспечивающие достаточную прочность, называются номинальными смесями . Стандартные смеси обеспечивают легкость и, при нормальных условиях , имеют запас прочности на больше , чем указано.
В этом типе смеси номинальное соотношение твердых веществ и твердых компонентов составляет с префиксом и с указанием .
Стандартное соотношение бетонной смеси M30 от до M45 Соотношение бетонной смеси рассчитывается вручную. Например, M45, объем цемента, песок (мелкий заполнитель), и крупный заполнитель дозируются в количествах согласно проектной смеси . Из приведенной выше таблицы для марки M45, эти пропорции бетона называются номинальной бетонной смесью.
Подробнее: Смешанный дизайн бетона | Конструкция бетонной смеси | Дизайн смеси M 25 | M 25 Соотношение бетона | Модель бетонной смеси M 25
3. Расчетное соотношение смеси для бетона
Характеристики бетона в этих смесях указаны проектировщиком, но соотношение смешивания определяется производителем бетона, за исключением случаев, когда может быть предписано минимальное содержание цемента .
Это наиболее рациональный подход к выбору соотношений смешивания с конкретными материалами с учетом более или менее конкретных характеристик .Этот подход приводит к производству бетона с наиболее экономически подходящими свойствами.
Тем не менее, смесь
, разработанная для , не может служить ориентиром, так как не гарантирует правильного соотношения для предписанных характеристик . Номинал или стандартных смесей (определяется в коде количеством сухого материала на кубических метров и осадки ).Для бетона с нетребовательными характеристиками может использоваться только для очень мелких работ , когда прочность 28 дней, бетона 30 не превышает н / с.мм2. В зависимости от массы материала контрольный тест не требуется.
4. Соотношение высокопрочной бетонной смеси
В спецификации для высокопрочного бетона указано соотношение для цемента , песка, заполнителя, и воды . Высокопрочные смеси стабильного цемента, мелкого заполнителя (песок) и пропорций заполнителя , которые обеспечивают достаточную прочность , называются номинальными смесями .
Высокопрочные смеси обеспечивают легкость и при нормальных условиях имеют запас прочности выше указанного. Однако из-за изменчивости смешанного материала номинальный бетон для данной обрабатываемости сильно различается по прочности.
Марка бетона | Соотношение смеси | Прочность на сжатие | Прочность на сжатие | ||||
МПа (Н / мм 2 ) | фунт / кв. | M50 | Design Mix | 50 МПа | 7250 фунтов на кв. Дюйм | ||
M55 | Design Mix | 55 МПа | 7975 фунтов на кв. | ||||
M65 | Design Mix | 65 МПа | 9425 psi | ||||
M70 | Design Mix | 70 МПа | 10150 psi |
Это соотношение высокопрочного смешивания обычно применяется для мелкосерийного производства.В этом типе смеси номинальное соотношение твердых компонентов и соотношение твердых компонентов указываются заранее и указываются.
Соотношение высокопрочной бетонной смеси Марка M50 — M70 Соотношение бетонной смеси рассчитывается вручную. Например, , M70, цемент, песок (мелкий заполнитель), и крупнозернистый заполнитель дозируются в объемах согласно проектной смеси.
Подробнее: Дизайн бетонной смеси
Конструктивное соотношение бетона и смеси
Расчетное соотношение бетонной смеси , включающее различные компоненты, определяет требуемую прочность , удобоукладываемость, и долговечность бетона, что также сохраняет смесь как можно более экономичной.
Тот факт, что цемент в в несколько раз дороже в заполнителя, вносит свой вклад в атрибут контроля затрат смеси, который фокусируется на производстве тощей бетонной смеси .
Технически богатых смесей склонны к растрескиванию и высокой усадке из-за выделения тепла гидратации в большом количестве, что в дальнейшем вызывает растрескивание .
Стоимость бетона зависит от стоимости материалов, необходимых для производства смеси , имеющей характеристическую прочность , как указано проектировщиком конструкции .
Расчетное соотношение бетонной смеси зависит от QC, то есть мер контроля качества , однако для получения качественной смеси стоимость бетона увеличивается. QC часто зависит от типа и размера задания.
Часто задаваемые вопросы
Соотношение бетонной смеси
Соотношение бетонной смеси — это соотношение компонентов бетона, таких как цемент, песок, заполнители и вода, для образования полной смеси с желаемыми свойствами. Эти пропорции смешивания определяются на основе типа конструкции и смешанных конструкций материалов.
Бетонная смесь
Бетонная смесь состоит из комбинации пяти основных элементов, таких как цемент, вода, крупные заполнители, мелкие заполнители (например, песок) и воздух в определенной пропорции для получения бетона требуемой марки. Другие элементы включают пуццолановые материалы и химические добавки, включенные в смесь для получения определенных желаемых свойств.
Формула бетонной смеси
Точно подобранная смесь обладает необходимой удобоукладываемостью для свежего бетона и желаемой долговечностью, а также прочностью для затвердевшего бетона.Хорошая смесь — это от 10 до 15 процентов цемента, от 60 до 75 процентов заполнителя и от 15 до 20 процентов воды.
Что такое IS Code для проектирования бетонных смесей?
Бюро стандартов Индии рекомендовало установленную процедуру для расчета бетонной смеси, главным образом, на основе работы, выполненной в национальных лабораториях. Порядок расчета
бетонной смеси описан в IS 10262: 2019 .Что такое смесь 1: 2: 3 для бетона?
Соотношение 1: 2: 3: может быть разработано, поскольку смесь содержит 1 часть цемента, 2 части песка и 3 части заполнителя для образования полной бетонной смеси.
Какое оптимальное соотношение для бетонной смеси?
Одно из лучших соотношений для бетонной смеси. — это смесь из 1 части цемента, 3 частей песка и 3 частей заполнителя, это дает в среднем бетонную смесь 3000 фунтов на квадратный дюйм. Прочность подходит для большинства бетонных плит , опор, ступеней, стен фундамента и .
Соотношение цементной смеси
Соотношение бетонной смеси — это соотношение компонентов бетона, таких как цемент, песок, заполнители и вода, для образования полной смеси с желаемыми свойствами.Эти пропорции смешивания определяются на основе типа конструкции и смешанных конструкций материалов.
Соотношение цементной смеси
Правильно подобранная бетонная смесь обладает желаемой удобоукладываемостью для свежего бетона и необходимой прочностью и прочностью для затвердевшего бетона. Обычно смесь составляет от 10 до 15% цемента, от 60 до 75% заполнителя и от 15 до 20% воды.
Соотношение смеси бетона
Соотношение бетонной смеси — это соотношение компонентов бетона, таких как цемент, песок, заполнители и вода, для образования полной смеси с желаемыми свойствами.Эти пропорции смешивания определяются на основе типа конструкции и смешанных конструкций материалов.
Вам также может понравиться
Изображение предоставлено: Image1 Image2
Экспериментальное исследование добавления древесной стружки в раствор и статистическое моделирование отдельных эффектов
В рамках расширенной исследовательской программы по использованию древесных стружек в строительном растворе был разработан набор процедур для проверки влияния древесных стружек на определенные свойства строительного раствора.Были приготовлены смеси, содержащие древесную стружку, заменяющую мелкие заполнители на 0, 30, 50 и 70% их объема. Технологичность, вес единицы свежего строительного раствора, скорость ультразвуковых импульсов (UPV), а также прочность на изгиб и сжатие были определены на основе измерений при разном возрасте отверждения. Результаты измерений и анализа показывают, что снижение прочности на сжатие, вызванное добавлением древесной стружки, может быть предсказано. Результат был стандартизирован в форме многофакторной сигмоидальной модели. Также стало очевидным, что доля цемента в смеси увеличивается, когда древесная стружка используется как объемная замена обычных мелких заполнителей, из-за низкого значения удельного веса древесины по сравнению с обычными заполнителями.Предлагается другая процедура, основанная на измерениях массы и объема, с целью проверки пропорций смеси в окончательной растворной смеси.
1 Введение
Было проведено множество исследований по использованию сельскохозяйственных или промышленных отходов в бетоне. В связи с тем, что бетон широко используется и имеет длительный срок службы, использованные в нем отходы надолго удаляются из потока отходов. Поскольку количество заполнителей, необходимых в строительной отрасли, велико, экологические выгоды от замены природных заполнителей отходами связаны не только с их безопасным удалением, но и со смягчением воздействия на окружающую среду, возникающего в результате добычи заполнителей, т.е.е. визуальное вторжение и потеря сельской местности. Исследования [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] были проведены для оценки физико-механических свойств бетона, содержащего стружку или опилки в качестве заполнителей. Стружка и опилки — это отходы деревообрабатывающей промышленности, образующиеся при резке, фрезеровании и сверлении в процессе подготовки изделий из дерева. Свойства древесной стружки и опилок могут значительно различаться в зависимости от таких факторов, как географическое происхождение древесины, тип древесины, часть дерева, тип производственного процесса, в результате которого получается стружка, и т. Д.Как и в большинстве случаев легких заполнителей, замена обычных заполнителей древесной стружкой или опилками в основном производится на основе критерия замещения «по объему». Замена обычных крупных или мелких заполнителей таким же объемом древесной стружки или опилок [1], [6] обычно выражается в процентах (%).
Из-за (а) изменчивости заменяемых материалов, (б) их значительных отличий от природных заполнителей и (в) изменчивости параметров, влияющих на свойства бетона или самого раствора, данные, полученные в результате испытаний механических свойств образцов бетона или раствора содержащие стружку, основаны на многофакторном процессе.Когда эти результаты поступают из совершенно разных лабораторных процессов, их метрологическая прослеживаемость имеет большое значение для достижения взаимной сопоставимости. Необходим стандартизированный протокол для экспериментального плана и ссылки на все существенные относительные данные (как предложено в [12] для традиционной замены заполнителя пластиком), чтобы облегчить любую попытку составить результаты исследований, когда древесная стружка различного происхождения и характеристик используются, и процент замены агрегатов варьируется.Различное представление общей экспериментальной процедуры вызывает трудности при сравнении результатов, полученных из разных лабораторий, и статистических выводов о влиянии замены природных заполнителей древесной стружкой.
Настоящее исследование посвящено изучению использования древесной стружки как части обычных заполнителей в строительном растворе, и особенно созданию статистических моделей для прогнозирования механических свойств раствора, содержащего древесную стружку, в качестве частичной замены обычных мелких заполнителей.Результат стандартизирован, поэтому любой, кто использует этот протокол, даст результаты, которые будут сопоставимы с другими аналогичными исследованиями.
2 Материалы и методы
Цемент типа IV / B (P-W) 32,5 N и щебень известняка с максимальным размером 4,5 мм использовались во всех смесях. Объемная плотность мелких заполнителей составляла 1740 кг / м 3 3 (стандартная неопределенность 2,7%, основанная только на стандартной ошибке среднего). Древесная стружка, используемая в этом исследовании, была произведена на фабрике путем механической обработки двух видов необработанной древесины, айуса (рис. 1А) и бука (рис. 1В).Бук — древесина, широко используемая в мебельной промышленности. Ayous был выбран как совершенно другая, более легкая порода дерева. Насыпная плотность стружки бука составила 43 ± 1 кг / м 3 , а насыпная плотность буковой стружки — 64 ± 2 кг / м 3 . Процедуру измерения объемной плотности повторяли 10 раз, что обеспечивало точность метода в условиях повторяемости [13]. Было обнаружено, что эта стандартная неопределенность типа А является репрезентативной для всех вносящих вклад параметров неопределенности; его сравнивали с результатом относительной стандартной неопределенности типа B, основанной как на разрешающей способности мерной трубки, так и на интервале поверочной шкалы (e) используемых весов (все термины определены в JCGM 200: 2012 [14]).Наблюдаемая погрешность измерения объемной плотности объясняется сильной зависимостью этой характеристики от метода обработки древесины, используемого для производства стружки. Ожидается, что это будет внутренняя характеристика этого материала. Если древесная стружка предназначена для использования в качестве строительного материала, атрибут насыпной плотности должен быть строго учтен в любом соответствующем исследовании. В качестве суперпластификатора использовался суперпластификатор на основе простого поликарбонового эфира второго поколения.
Рисунок 1:
Древесная стружка, использованная в исследовании: (A) Айус, (B) бук.
Обычно распределение частиц в материалах оценивается ситовым анализом. В случае стружки возникает важный вопрос, какой реальный размер соответствует номинальному размеру сита. Чтобы оценить это, образец, который был взят для анализа с помощью ситового анализа, также изначально был измерен совершенно другим методом. С помощью этого метода приблизительно все стружки длиной более 3 мм (фактически подлежащие оптическому различению) были измерены с помощью высокоточного цифрового штангенциркуля.Для каждого бритья измеряли два размера: длину, которая принималась за максимальный размер, и ширину, которая принималась за размер бритья на оси, перпендикулярной длине. Как показано на рисунке 2, ширина бритья статистически не связана с его длиной (Ayous: r = 0,04, бук: r = 0,20). Стружки размером менее 3 мм были выбраны, чтобы не измерять их штангенциркулем, потому что (а) их измерение было невозможно из-за их очень маленького размера и очень большой популяции, и (б) было замечено, что при таких размерах стружки не было значительной дискриминации между длиной и шириной бритья.Существенный вопрос заключался в том, проходит ли стружка через сито в зависимости от ее длины или ширины, что, очевидно, является избыточным для такой мелкой стружки. Затем на тех же образцах, которые были частично измерены штангенциркулем, был проведен ситовый анализ, как и для мелких агрегатов. Результаты анализа гранулометрического состава двух типов древесной стружки и мелких заполнителей представлены на рисунке 3. Как видно из этого рисунка, почти вся стружка проходит через сито 5 мм.Поскольку в обоих образцах было измерено, что большая популяция имеет длину более 5 мм, можно сделать вывод, что во время ситового анализа критическим размером стружки является ширина, а не длина. Это также подтверждается (рис. 2) тем фактом, что только небольшая часть самых крупных стружек была измерена и имела ширину более 5 мм, что означает, что можно сказать, что распределение ширины стружки сильно связано с результатом ситового анализа. . Следует также отметить, что этот результат ситового анализа следует использовать только в качестве критерия для качественной оценки бритвенного материала перед смешиванием [2], поскольку нет доказательств того, что эта геометрия бритья остается неизменной даже после того, как этот материал добавлен в смесь.
Рисунок 2:
Зависимость ширины от длины для двух типов стружки.
Рисунок 3:
Результаты ситового анализа.
Сначала была приготовлена эталонная смесь с отношением заполнителя к цементу, равным 3, отношением воды к цементу, равным 0,5, и 1% по массе суперпластификатора цемента.Затем были использованы три уровня замены мелкого заполнителя: 30, 50 и 70% по объему. Испытания на удельную массу (плотность) были выполнены после смешивания и перед заливкой строительного раствора в формы. Удельный вес ( D ) определяли путем измерения массы строительного раствора ( м u ), содержащегося в известном объеме ( V u ) образца свежего строительного раствора, как описано в ASTM. C138:
Расчет был использован, чтобы проиллюстрировать изменения доли цемента в смеси и то, остается ли это практически постоянным.Этот расчет использовался также для оценки влияния степени уплотнения древесной стружки, так как воздух в исходном количестве этого «рыхлого» материала (перед смешиванием) был вытеснен всеми другими составляющими смеси (во время смешивания). Это особенно необходимо в случае древесных стружек, поскольку этот материал представляет собой легкий материал с типичной изогнутой формой (рис. 1), отличной от обычных заполнителей. После измерения веса единицы свежего строительного раствора использовались соотношения начальных масс смешиваемых компонентов, чтобы оценить пропорцию смеси каждого компонента.Распределение измеренной массы единицы между составляющими составляющими было рассчитано на основе разумного предположения, что конечная смесь была однородной по всему объему. Массовое соотношение для каждого компонента равно первоначально определенному для свежего раствора, приготовленного путем смешивания (отношение заполнителя к цементу 3, отношение воды к цементу 0,5 и 1% по массе суперпластификатора цемента) (уравнение 2).
(2) м я , в этом / ∑ я м я , в этом знак равно м я / ∑ я м я
, где m i , init — масса составляющей i , первоначально определенная перед смешиванием, а m i — масса составляющей i в любом образце (части) свежего строительного раствора. .В любом случае для образца свежего раствора м u соответствует ∑ я м я как в формуле. 1. Пропорция в смеси составляющих i (MP i ) определяется как:
(3) ( Депутат ) я знак равно м я / V ты знак равно м я / ( м ты / D ) знак равно D ⋅ ( м я / ∑ я м я ) знак равно D ⋅ ( м я , в этом / ∑ я м я , в этом )
Рассчитанные пропорции смеси приведены в таблице 1.После регрессии для подбора кривой для значений изменения пропорции цементной смеси (CMPC) в зависимости от замены мелких заполнителей в соответствии с формулой. (4) установлено, что для древесины ayous h 1 = 0,49 ± 0,11 и h 2 = 0,0053 ± 0,0017 (R 2 = 0,9997) и для древесины бука h 1 = 0,51 ± 0,04 и ч 2 = 0,00041 ± 0,0007 (R 2 = 0,999).
Таблица 1:Пропорции смеси.
Образцы | Порода дерева | Замена | Цемент (кг / м 3 ) | Мелкие заполнители (кг / м 3 ) | Вода (кг / м 3 ) | Суперпластификатор (кг / м 3 ) | |
---|---|---|---|---|---|---|---|
% | кг / м 3 | ||||||
Арт. | 0 | 0 | 481 | 1444 | 241 | 4,8 | |
А30Ш | Ayous | 30 | 13 | 578 | 1214 | 289 | 5,8 |
А50Ш | 50 | 20 | 659 | 989 | 330 | 6.6 | |
А70Ш | 70 | 35 | 772 | 695 | 386 | 7,7 | |
Б30Ш | Бук | 30 | 21 | 572 | 1201 | 286 | 5,7 |
Б50Ш | 50 | 37 | 656 | 983 | 328 | 6.6 | |
Б70Ш | 70 | 60 | 750 | 675 | 375 | 7,5 |
(4) CMPC знак равно час 1 · Икс + час 2 · Икс 2
Согласно расчетным пропорциям смеси, доля цементной смеси значительно увеличивается по мере увеличения процентной доли замены обычных заполнителей по объему (Рисунок 4).Ожидается, что этот результат будет более значительным, когда заменяющий материал имеет более низкий удельный вес и / или является более «пушистым». Это следует учитывать каждый раз, когда легкий и / или «пушистый» материал используется для замены обычных заполнителей.
Рисунок 4:
Процент изменения пропорции цементной смеси (CMPC) по сравнению с процентом замены мелких заполнителей.
Из-за высокого водопоглощения древесных стружек они впитывают часть воды из смеси, оставляя недостаточно воды для удобоукладываемости и схватывания цемента.По этой причине в некоторых исследованиях [1], [2], [4], [6], [7] используются водонасыщенные стружки или дополнительная вода. В обоих этих случаях окончательное и фактическое отношение воды к цементу неизвестно, поскольку используемое избыточное количество воды нелегко оценить по тому, остается ли она внутри пористости древесины или не абсорбируется для вышеупомянутых случаев, соответственно. В качестве альтернативы, в рамках этого исследования было решено использовать древесную стружку в необработанном виде, и в смесь не добавляли лишнюю воду. Предполагалось, что преимущество этого варианта состоит в том, что даже если часть воды абсорбируется древесной стружкой во время смешивания, она будет в виде водоцементной подсмеси, что гарантирует, что вероятность взаимодействия этой воды с цемента было максимум.
Компоненты смешивали в смесителе на медленной скорости для достижения хорошей гомогенизации. Сначала происходило перемешивание цемента и заполнителей. Затем добавили воду с разведенным в ней суперпластификатором. Испытание раствора на текучесть проводилось согласно ASTM C 1437 [15]. Образцы из каждой смеси были отлиты размерами 40 × 40 × 160 мм для проведения всех испытаний. Неразрушающий контроль скорости ультразвуковых импульсов (UPV) проводился в возрасте 28 и 365 дней с использованием метода, описанного в ASTM C 597 [16], в частности, с использованием портативного ультразвукового неразрушающего цифрового индикаторного тестера (PUNDIT).Испытания на прочность проводились через 7, 14, 28 и 365 дней отверждения. Испытание на прочность при изгибе проводилось путем нагружения в центральной точке, как описано в ASTM C 293 [17]. Концевые части призм, которые остались нетронутыми после разрушения при изгибе, использовали для проведения эквивалентного кубического испытания путем приложения нагрузки через квадратные стальные пластины размером 40 мм. Приведенные результаты испытаний на изгиб и неразрушающие испытания соответствуют среднему значению для трех испытанных образцов. Результаты эквивалентного куба на сжатие — это среднее значение шести испытанных образцов.
3 Результаты
3.1 Свежий строительный раствор
Обычно древесная стружка впитывает больше воды по сравнению с обычными мелкими заполнителями. По этой причине удобоукладываемость смеси снижается по мере увеличения процентного содержания мелких заполнителей по объему (Таблица 2). Эталонная смесь, а также A30Sh и A50Sh, были самоуплотняющимися смесями, и измеренный диаметр был не после 25 капель таблицы, как указано в ASTM C 1437 [15]. Из-за разницы в объемной плотности двух типов древесины (айуса и бука) одинаковые мелкие заполнители по процентному содержанию объемного замещения приводят к разным пропорциям смеси для каждого вида древесины.Это означает, что при использовании бука пропорция смеси для древесных стружек для определенного процентного содержания замены по объему имеет большее значение, чем при использовании ayous. Возможно, это приводит к большему водопоглощению древесной стружкой и, как следствие, к снижению удобоукладываемости свежего раствора.
Таблица 2: Результаты теста потока.
Арт. | А30Ш | А50Ш | А70Ш | Б30Ш | Б50Ш | Б70Ш | |
---|---|---|---|---|---|---|---|
Поток без опускания стола | 24.8 | 22,3 | 21,8 | н.с | н.с | н.с | н.с |
Поток с опусканием стола | оф. | оф. | оф. | 22,4 | 22,2 | 21,1 | 20,1 |
Удельный вес уменьшился по мере увеличения объема замещения мелких заполнителей (Рисунок 5).Это снижение объясняется тем, что древесная стружка имеет меньший удельный вес, чем обычные заполнители.
Рисунок 5:
Удельный вес свежего раствора в сравнении с заменой обычных заполнителей в% по объему.
3,2 Затвердевший раствор
Результаты испытаний на изгиб и эквивалентную прочность на сжатие куба приведены в таблице 3.Прочность на изгиб и сжатие раствора, содержащего стружку, уменьшалась по мере увеличения замены мелких заполнителей. Это снижение объясняется более слабым сцеплением цементного раствора и стружки по сравнению со сцеплением цементного раствора и обычных заполнителей.
Таблица 3: Результаты испытаний механических свойств.
Образцы | Прочность на изгиб (МПа) | Прочность на сжатие (МПа) | ||||||
---|---|---|---|---|---|---|---|---|
7 дней | 14 дней | 28 дней | 365 дней | 7 дней | 14 дней | 28 дней | 365 дней | |
Арт. | 10,1 ± 0,4 | 9,3 ± 2,2 | 9,1 ± 0,9 | 12,3 ± 0,9 | 43,7 ± 0,9 | 49,2 ± 0,9 | 58,1 ± 2,1 | 74,4 ± 2,7 |
А30Ш | 7,8 ± 0,1 | 8,5 ± 1,0 | 6,8 ± 0,9 | 9,9 ± 0,8 | 31,7 ± 0,6 | 39,4 ± 0,4 | 45.0 ± 0,9 | 53,5 ± 0,3 |
А50Ш | 6,5 ± 0,1 | 7,3 ± 0,8 | 7,6 ± 1,4 | 9,3 ± 1,7 | 26,2 ± 0,3 | 32,9 ± 0,5 | 41,5 ± 0,3 | 46,0 ± 0,7 |
А70Ш | 6,2 ± 1,0 | 7,2 ± 0,7 | 7,7 ± 0,1 | 9.2 ± 0,1 | 20,8 ± 1,1 | 23,8 ± 0,6 | 29,1 ± 0,8 | 32,2 ± 0,8 |
Б30Ш | 7,7 ± 0,1 | 7,9 ± 0,8 | 8,4 ± 2,6 | 9,9 ± 1,7 | 29,2 ± 0,7 | 34,9 ± 2,4 | 41,1 ± 0,4 | 46,3 ± 3,6 |
Б50Ш | 7.1 ± 1,7 | 8,0 ± 0,9 | 7,5 ± 1,5 | 8,4 ± 0,9 | 21,7 ± 1,8 | 26,8 ± 2,0 | 31,3 ± 1,5 | 33,7 ± 4,6 |
Б70Ш | 5,1 ± 0,1 | 7,1 ± 0,1 | 6,6 ± 0,9 | 7,3 ± 0,2 | 14,8 ± 1,3 | 21,7 ± 1,2 | 28,0 ± 0.8 | 26,9 ± 3,3 |
Показано, что результирующее снижение прочности раствора, содержащего древесную стружку, не связано только с влиянием замены мелких заполнителей древесной стружкой. Ожидается, что в результате значительное увеличение удельной доли цемента в готовой смеси положительно повлияет на значение прочности. Следовательно, результатом снижения значения прочности является сочетание одновременного и неблагоприятного воздействия двух вышеуказанных явлений.Кажется, что решение о замене мелкого заполнителя древесной стружкой не должно основываться только на расчетах в соответствии с объемами этих двух материалов в том виде, в каком они появляются до смешивания. Этот расчет должен производиться в соответствии с кажущимся объемом каждого составляющего объема смеси как условиями, в которых он появляется в смеси.
Как показано на Рисунке 6, во всех случаях прочность на сжатие раствора, содержащего стружку, была выше, чем прочность на сжатие раствора, содержащего буковую стружку.Средняя разница, рассчитанная для 12 групп по шесть образцов, каждая из которых имеет одинаковое значение для фракции мелких агрегатов и возраста образца, составила 20 ± 7%. Этот результат не имеет значимого статистического отношения ни к значениям фракции замещения мелких агрегатов (Пирсон r = 0,255, значимость p = 0,423), ни к значениям возраста образца (Pearson r = 0,217, значимость p = 0,498).
Рисунок 6:
Сравнение результатов испытаний на прочность при сжатии для групп из шести образцов с заданной долей мелких заполнителей и возрастом образцов (каждая группа соответствует одной цифре).
Согласно результатам экспериментов и уравнению, основанному на уравнении, первоначально предложенном Фрейслебеном Хансеном и Педерсеном [18], прочность на сжатие дается как функция доли замещения мелкозернистого заполнителя ( W ) и возраста образца ( t ) по формуле Уравнение (5):
(5) C S ( т , W ) знак равно ( C S ∞ , 1 — k W п ) exp [ — ( τ / т ) а ]
, где CS ( т , W ) — прочность на сжатие в возрасте т (дни), когда фракция замещения мелкозернистых заполнителей составляет W , CS ∞ , 1 — предельное значение сжатия. прочность для эталона (максимальное асимптотическое значение прочности для функции, которая соответствует данным), n — параметр формы для функции прочности на сжатие, когда доля замены мелких заполнителей составляет W , k — уменьшение прочности на сжатие параметр такой, что кВт n равняется снижению предельной прочности образца из-за замены мелкого заполнителя, равному W , τ является постоянной времени, а является параметром формы для сигмоидального функция прочности на сжатие в зависимости от возраста образца т , CS ∞ , 1 — кВт n co r соответствует предельной прочности на сжатие образца с долей замещения мелкозернистого заполнителя, равной W .
Это означает, что для данного возраста образца соотношение между прочностью на сжатие и заменой мелкого заполнителя является функцией доли замены мелкого заполнителя в степени n (рис. 7A). Одновременно для данной фракции замены мелких заполнителей прочность на сжатие является функцией возраста, что соответствует сигмоидальной кривой (рис. 7B).
Рисунок 7:
(A) Прочность на сжатие в зависимости от фракции замещения мелких заполнителей, (B) прочность на сжатие в зависимости от возраста образца.
Процедура регрессии с использованием уравнения. (2) на основе экспериментальных результатов настоящего исследования предоставили статистически значимую модель (Пирсон r = 0,96) со значениями параметров: CS ∞ , 1 = 74 ± 3 МПа, k = 55 ± 4 МПа, n = 0,8 ± 0,1, a = 0,7 ± 0,2 и τ = 3,1 ± 0,6 суток.
В формуле. (5) параметр типа древесной стружки не исследовался, хотя статистическая значимость этого результата была достаточно удовлетворительной, чтобы его можно было использовать в качестве общей модели для прогнозирования потери предельной прочности при использовании любого вида древесной стружки для мелкозернистого заполнителя. замена.Сделав еще один шаг, параметр типа древесной стружки был введен в формулу. (5), образуя уравнение. (6):
(6) C S ( т , W ) знак равно [ C S ∞ , 2 — ( k 1 м 1 + k 2 м 2 ) W п ] exp [ — ( τ / т ) а ]
, где м 1 , м 2 равняется единице, если тип стружки — айс или бук, соответственно, в противном случае каждый равен нулю.Комбинация м 1 = 0 и м 2 = 0 соответствует случаю контрольных образцов (без использования стружки). k 1 и k 2 — параметры формы, аналогичные k в уравнении. (5).
Это уравнение было опробовано только для одного типа древесины на смесь, а не для двух типов вместе в одной и той же строительной смеси. Когда два или более типа древесных стружек должны использоваться одновременно в одной и той же строительной смеси, тогда использование уравнения.(5) предлагается, но также предлагается провести дальнейшие исследования для нескольких видов древесных стружек в одной и той же строительной смеси, в основном для того, чтобы исследовать значимость, в которой этот фактор вносит вклад в неопределенность уравнения. (5) параметры. Любая комбинация значений м 1 или м 2 , кроме значений 0 и 1, не изучалась и предлагается для дальнейшего изучения.
Процедура регрессии с использованием уравнения. (6) на основе экспериментальных результатов настоящего исследования предоставили статистически значимую модель (Пирсон r = 0.976) со значениями параметров: CS ∞ , 2 = 74 ± 3 МПа, k 1 = 48 ± 3 МПа, k 2 = 60 ± 3 МПа, n = 0,76 ± 0,07, a = 0,7 ± 0,1 и τ = 3,1 ± 0,5 дня (рисунок 8).
Рисунок 8:
Предел прочности на сжатие по сравнению с долей замены мелких заполнителей (A) только для стружки большой древесины и (B) только для стружки бука.
Результаты тестов UPV показаны на рисунке 9.
Рисунок 9:
Скорость ультразвукового импульса в сравнении с долей замещения мелких заполнителей.
УПВ линейно уменьшается по мере увеличения доли замещения мелких агрегатов. Это объясняется различными свойствами древесины по сравнению со свойствами обычных мелких заполнителей.Важность УПВ заключается в том, что он в значительной степени коррелирует с эластичными свойствами строительного раствора. Модель регрессии была применена к экспериментальным данным с использованием уравнения. (7):
(7) УПВ ( т , W ) знак равно [ УПВ ∞ + ( л 1 м 1 + л 2 м 2 ) W ] [ 1 — exp ( — т / т 0 ) ]
, где UPV ∞ — это ограничивающее UPV для эталона, которое является максимальным асимптотическим значением UPV для функции, которая соответствует данным, UPV ∞ · [1 − exp (- t / t 0 )] является UPV эталона ( W = 0) для указанного возраста отверждения ( т ), м 1 и м 2 равно единице при стружке древесины. тип — ayous или бук соответственно, в противном случае равен нулю, l 1 , l 2 — параметры формы, а t 0 — постоянная времени.
Процедура регрессии с использованием уравнения. (4) на основе экспериментальных результатов настоящего исследования для UPV предоставили статистически значимую модель (Pearson r = 0,981) со значениями параметров UPV ∞ = (5,33 ± 0,08) · 10 3 м / с, l 1 = (- 1,73 ± 0,17) · 10 3 м / с, l 2 = (- 2,18 ± 0,16) · 10 3 м / с, t 0 = 11,4 ± 0,7 сут.
Наблюдение с помощью стереоскопа показывает однородную смесь, в которую хорошо намотаны стружки (рис. 10).
Рисунок 10:
Стереоскопические изображения строительного раствора с (A) 70% -ной заменой по объему мелких заполнителей большой стружкой и (B) заменой 20% по объему мелких заполнителей буковой стружкой.
4 Выводы
На основании представленных результатов можно сделать следующие выводы:Прочность на сжатие и изгиб уменьшается по мере увеличения процентной доли замены обычных заполнителей по объему, но конструкция смеси может компенсировать это снижение прочности.
Удельный вес свежего раствора, содержащего стружку, уменьшается с увеличением содержания стружки.
Поскольку доля цемента в смеси увеличивается, когда древесная стружка используется в качестве замены обычных мелких заполнителей по объему, стоимость смеси следует тщательно контролировать.
Сделан вывод, что сигмоидальная кривая (модель) очень хорошо соответствует результатам для прочности на сжатие как функции возраста отверждения.
Сигмоидальная кривая без учета типа древесной стружки, используемой в качестве замены мелкозернистого заполнителя, является важным показателем прочности на сжатие. В зависимости от географического региона любого, кто желает использовать эту кривую, дальнейшее уточнение значений параметров кривой может быть выполнено путем повторения той же экспериментальной процедуры, что и в рамках настоящего исследования, с использованием типов древесины, в основном используемых в промышленных процессах в конкретном регионе. .В качестве дальнейших исследований можно провести дополнительные исследования для получения объединенных результатов относительно механических свойств, а также долговечности или термических свойств раствора, содержащего стружку, и замены обычных заполнителей смесями различных типов древесины.
Ссылки
[1] Коринальдези В., Маццоли А., Сиддик Р. Констр. Строить. Матер. 2016, 123, 281–289. Искать в Google Scholar
[2] Bederina M, Marmoret L, Mezreb K, Khenfer MM, Bali A, Queneudec M. Констр. Строить. Матер. 2007, 21, 662–668. Искать в Google Scholar
[3] Taoukil D, El bouardi A, Sick F, Mimet A, Ezbakhe H, Ajzoul T. Constr. Строить. Матер. 2013, 48, 104–115. Искать в Google Scholar
[4] Coatanlem P, Jauberhie R, Rendell F. Constr. Строить. Матер. 2006, 20, 776–781. Искать в Google Scholar
[5] Paramasivam P, Loke YO. Внутр. J. Lightweight Concr. 1980, 2, 57–71. Искать в Google Scholar
[6] Mohammed BS, Abdullahi M, Hoong CK. Констр. Строить. Матер. 2014, 55, 13–19. Искать в Google Scholar
[7] Bederina M, Laidoudi B, Goullieux A, Khenfer MM, Bali A, Queneudec M. Constr. Строить. Mater . 2009, 23, 1311–1315. Искать в Google Scholar
[8] Ganiron TU. Внутр. J. Adv. Sci. Technol. 2014, 63, 73–82. Искать в Google Scholar
[9] Bederina M, Gotteicha M, Belhadj B, Dheily RM, Khenfer MM, Queneudec M. Constr. Строить. Матер. 2012, 36, 1066–1075.Искать в Google Scholar
[10] Taoukil D, El-bouardi A, Ezbakhe H, Ajzoul T. Res. J. Appl. Sci. Англ. Tech. 2011, 3, 113–116. Искать в Google Scholar
[11] Belhadj B, Bederina M, Montrelay N, Houessou J, Queneudec M. Constr. Строить. Матер. 2014, 66, 247–258. Искать в Google Scholar
[12] Гавела С., Пападакос Г., Касселури-Ригопулу В. В Термопластические композиты: новые технологии, использование и перспективы , 1-е изд., Риттер Э, под ред., Nova Publications: New York, 2017, стр. 143–164. Поиск в Google Scholar
[13] JCGM / WG1, JCGM 100: 2008 (GUM 1995 с небольшими исправлениями): Оценка данных измерений — Руководство по выражению неопределенности измерения, Первое издание, 2008 г. Поиск в Google Scholar
[14] JCGM / WG1, JCGM 200: 2012 (версия 2008 г. с небольшими исправлениями): Международный словарь метрологии — Основные и общие концепции и связанные с ними термины (VIM), Третье издание, 2012 г. Поиск в Google Scholar
[15] ASTM C 1437-15, Стандартный метод испытаний гидравлического цементного раствора, 2015.Искать в Google Scholar
[16] ASTM C 597-16, Стандартный метод испытания скорости импульса через бетон, 2016. Искать в Google Scholar
[17] ASTM C 293 / C293M — 16, Стандартный метод испытания прочности на изгиб Бетон (использование простого луча с нагрузкой на центральную точку), 2016. Поиск в Google Scholar
[18] Freiesleben Hansen P, Pedersen J. Информационный бюллетень CEB 1985, 166, 42. Поиск в Google Scholar
Опубликовано в сети: 2017-8-31
Напечатано: 25 апреля 2017 г.
© 2017 Walter de Gruyter GmbH, Берлин / Бостон
Эта статья распространяется в соответствии с условиями некоммерческой лицензии Creative Commons Attribution, которая разрешает неограниченное некоммерческое использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.
Сталь, дерево и бетон: сравнение
ширина: 80%;}
]]>
Какие материалы чаще всего используются в строительстве?
Конструктивное проектирование зависит от знания материалов и соответствующих им свойств, чтобы мы могли лучше предсказать поведение различных материалов при нанесении на конструкцию. Как правило, три (3) наиболее часто используемых строительных материала — это сталь , бетон и древесина / древесина . Знание преимуществ и недостатков каждого материала важно для обеспечения безопасного и экономичного подхода к проектированию конструкций.
Конструкционная сталь
Сталь — это сплав, состоящий в основном из железа и углерода. Другие элементы также примешиваются к сплаву для получения других свойств. Одним из примеров является добавление хрома и никеля для создания нержавеющей стали. Увеличение содержания углерода в стали имеет предполагаемый эффект увеличения прочности материала на разрыв. Увеличение содержания углерода делает сталь более хрупкой, что нежелательно для конструкционной стали.
Преимущества конструкционной стали
- Сталь имеет высокое соотношение прочности и веса.Таким образом, собственный вес металлоконструкций относительно невелик. Это свойство делает сталь очень привлекательным конструкционным материалом для высотных зданий, длиннопролетных мостов, сооружений, расположенных на земле с низким содержанием грунта и в районах с высокой сейсмической активностью.
- Пластичность. Перед разрушением сталь может подвергаться значительной пластической деформации, что обеспечивает большой резерв прочности.
- Прогнозируемые свойства материала. Свойства стали можно предсказать с высокой степенью уверенности.На самом деле сталь демонстрирует упругие свойства до относительно высокого и обычно четко определенного уровня напряжения. В отличие от железобетона свойства стали существенно не меняются со временем.
- Скорость возведения. Стальные элементы просто устанавливаются на конструкцию, что сокращает время строительства. Обычно это приводит к более быстрой окупаемости в таких областях, как затраты на рабочую силу.
- Легкость ремонта. Стальные конструкции в целом можно легко и быстро отремонтировать.
- Адаптация заводской сборки.Сталь отлично подходит для заводского изготовления и массового производства.
- Многократное использование. Сталь можно повторно использовать после разборки конструкции.
- Расширение существующих структур. Стальные здания можно легко расширить, добавив новые отсеки или флигели. Стальные мосты можно расширять.
- Усталостная прочность. Металлоконструкции обладают относительно хорошей усталостной прочностью.
Недостатки конструкционной стали
- Общие расходы. Сталь очень энергоемкая и, естественно, более дорогая в производстве.Стальные конструкции могут быть более дорогостоящими в строительстве, чем другие типы конструкций.
- Противопожарная защита. Прочность стали существенно снижается при нагревании до температур, обычно наблюдаемых при пожарах в зданиях. Сталь также довольно быстро проводит и передает тепло от горящей части здания. Следовательно, стальные конструкции в зданиях должны иметь соответствующую противопожарную защиту.
- Техническое обслуживание. Сталь, подвергающаяся воздействию окружающей среды, может повредить материал и даже загрязнить конструкцию из-за коррозии.Стальные конструкции, подверженные воздействию воздуха и воды, такие как мосты и башни, регулярно окрашиваются. Применение устойчивых к атмосферным воздействиям и коррозионно-стойких сталей может устранить эту проблему.
- Склонность к короблению. Из-за высокого отношения прочности к весу стальные сжимающие элементы, как правило, более тонкие и, следовательно, более подвержены короблению, чем, скажем, железобетонные сжимающие элементы. В результате требуется больше конструктивных решений для улучшения сопротивления продольному изгибу тонких стальных компрессионных элементов.
Программное обеспечение SkyCiv Steel Design
Рис. 1. Обзор стальных конструкций
Железобетон
Бетон представляет собой смесь воды, цемента и заполнителей. Пропорция трех основных компонентов важна для создания бетонной смеси желаемой прочности на сжатие. Когда в бетон добавляют арматурные стальные стержни, эти два материала работают вместе с бетоном, обеспечивающим прочность на сжатие, и сталью, обеспечивающей прочность на растяжение.
Преимущества железобетона
- Прочность на сжатие. Железобетон имеет высокую прочность на сжатие по сравнению с другими строительными материалами.
- Предел прочности на разрыв. Благодаря предусмотренной арматуре железобетон также может выдерживать значительную величину растягивающего напряжения.
- Огнестойкость. Бетон обладает хорошей способностью защищать арматурные стальные стержни от огня в течение длительного времени. Это выиграет время для арматурных стержней, пока огонь не потушат.
- Материалы местного производства. Большинство материалов, необходимых для производства бетона, можно легко найти на месте, что делает бетон популярным и экономичным выбором.
- Прочность. Система здания из железобетона более долговечна, чем любая другая система здания.
- Формуемость. Железобетон, изначально как текучий материал, можно экономично формовать в практически неограниченном диапазоне форм.
- Низкие эксплуатационные расходы. Железобетон является прочным, с использованием недорогих материалов, таких как песок и вода, которые не требуют обширного обслуживания.Бетон предназначен для того, чтобы полностью покрыть арматурный стержень, так что арматурный стержень не будет нарушен. Это делает стоимость обслуживания железобетонных конструкций очень низкой.
- По конструкции, такой как фундаменты, плотины, опоры и т. Д., Железобетон является наиболее экономичным строительным материалом.
- Жесткость. Он действует как жесткий элемент с минимальным прогибом. Минимальный прогиб хорош для удобства эксплуатации зданий.
- Удобство в использовании. По сравнению с использованием стали в конструкции, при строительстве железобетонных конструкций может быть задействована менее квалифицированная рабочая сила.
Недостатки железобетона
- Долгосрочное хранение. Бетон нельзя хранить после смешивания, так как цемент вступает в реакцию с водой и смесь затвердевает. Его основные ингредиенты нужно хранить отдельно.
- Время отверждения. У бетона есть 30-дневный период отверждения. Этот фактор сильно влияет на график строительства здания. Это снижает скорость возведения монолитного бетона по сравнению со сталью, однако ее можно значительно улучшить с помощью сборного железобетона.
- Стоимость форм. Стоимость форм, используемых для отливки ЖБИ, относительно выше.
- Увеличенное поперечное сечение. Для многоэтажного здания секция железобетонной колонны (RCC) больше, чем стальная секция, так как в случае RCC прочность на сжатие ниже.
- Усадка. Усадка вызывает развитие трещин и потерю прочности.
Программное обеспечение SkyCiv RC для проектирования
Рис. 2. Типичный пример железобетона
Древесина
Древесина — это органический, гигроскопичный и анизотропный материал.Его тепловые, акустические, электрические, механические, эстетические, рабочие и т. Д. Свойства очень подходят для использования, можно построить комфортный дом, используя только деревянные изделия. С другими материалами это практически невозможно. Очевидно, что дерево — это и распространенный, и исторический выбор в качестве конструкционного инженерного материала. Однако в последние несколько десятилетий произошел отход от дерева в пользу инженерных продуктов или металлов, таких как алюминий.
Преимущества древесины
- Предел прочности на разрыв.Поскольку дерево является относительно легким строительным материалом, он превосходит даже сталь по длине разрыва (или длине самонесущей конструкции). Проще говоря, он может лучше выдерживать собственный вес, что позволяет использовать большие пространства и меньше необходимых опор в некоторых конструкциях зданий.
- Электрическое и тепловое сопротивление. Он обладает естественным сопротивлением электропроводности при сушке до стандартного уровня содержания влаги (MC), обычно от 7% до 12% для большинства пород древесины. Его прочность и размеры также не подвержены значительному влиянию тепла, обеспечивая устойчивость готового здания и даже безопасность при определенных пожарных ситуациях.
- Звукопоглощение. Его акустические свойства делают его идеальным для минимизации эха в жилых или офисных помещениях. Дерево поглощает звук, а не отражает или усиливает его, и может помочь значительно снизить уровень шума для дополнительного комфорта.
- Из местных источников. Дерево — это строительный материал, который можно выращивать и повторно выращивать с помощью естественных процессов, а также с помощью программ пересадки и лесного хозяйства. Выборочная уборка и другие методы позволяют продолжить рост, пока собираются более крупные деревья.
- Экологичность. Одна из самых больших проблем для многих строительных материалов, включая бетон, металл и пластик, заключается в том, что, когда они выброшены, они разлагаются невероятно долго. В естественных климатических условиях древесина разрушается намного быстрее и фактически пополняет почву.
Недостатки бруса
Усадка и разбухание древесины — один из ее основных недостатков.
Дерево — гигроскопичный материал.Это означает, что он будет поглощать окружающие конденсируемые пары и терять влагу в воздух ниже точки насыщения волокна. Еще один недостаток — его износ. Агенты, вызывающие порчу и разрушение древесины, делятся на две категории: биотические (биологические) и абиотические (небиологические). Биотические агенты включают гниющие и плесневые грибы, бактерии и насекомые. К абиотическим агентам относятся солнце, ветер, вода, некоторые химические вещества и огонь.
Программное обеспечение SkyCiv Wood Design
Рисунок 3.Деревянная конструкционная рама
Сводка
Для лучшего описания стали, бетона и дерева. Обобщим их основные характеристики, чтобы выделить каждый материал.
Сталь очень прочна как на растяжение, так и на сжатие и, следовательно, имеет высокую прочность на сжатие и растяжение. Сталь имеет предел прочности от 400 до 500 МПа (58 — 72,5 ksi). Это также пластичный материал, который поддается или прогибается перед разрушением. Сталь выделяется своей скоростью и эффективностью в строительстве.Его сравнительно легкий вес и простота конструкции позволяют сократить рабочую силу примерно на 10-20% по сравнению с аналогичной строящейся структурой на бетонной основе. Металлоконструкции также обладают отличной прочностью.
Бетон чрезвычайно прочен на сжатие и, следовательно, имеет высокую прочность на сжатие от 17 МПа до 28 МПа. С более высокой прочностью до 70 МПа или выше. Бетон позволяет проектировать очень прочные и долговечные здания, а использование его тепловой массы, удерживая его внутри оболочки здания, может помочь регулировать внутреннюю температуру.Также в строительстве все чаще используется сборный железобетон, что дает преимущества с точки зрения воздействия на окружающую среду, стоимости и скорости строительства.
Древесина устойчива к электрическим токам, что делает ее оптимальным материалом для электроизоляции. Прочность на разрыв также является одной из основных причин выбора древесины в качестве строительного материала; его исключительно сильные качества делают его идеальным выбором для тяжелых строительных материалов, таких как конструкционные балки.Дерево намного легче по объему, чем бетон и сталь, с ним легко работать и легко адаптировать на месте. Он прочен, дает меньше тепловых мостиков, чем его аналоги, и легко включает в себя готовые элементы. Его структурные характеристики очень высоки, а его прочность на сжатие аналогична прочности бетона. Несмотря на все это, древесина все шире используется для строительства жилых и малоэтажных построек. Его редко используют в качестве основного материала для высотных конструкций.
Это самые распространенные строительные материалы, используемые для строительства.У каждого материала есть свой уникальный набор достоинств и недостатков. В конце концов, они могут быть заменены материалами, которые практически не имеют ограничений с технологическими достижениями будущего. Тем не менее, наши нынешние строительные материалы будут оставаться актуальными еще многие десятилетия.
Средняя прочность на сжатие для различного соотношения древесины и цемента при 28 днях.
Контекст 1
… MOE (МПа) — модуль упругости, b (мм) — ширина образца, d (мм) — толщина образца, L (мм) — длина пролета , P i (N) — нагрузка при пределе пропорциональности, а y (мм) — величина отклонения при пределе пропорциональности.Прочность на сжатие и плотность для образцов матрицы WFC через 7 дней и 28 дней (влажное отверждение) перечислены в таблицах 3 и 4. Из таблиц 3 и 4 можно заметить, что химические вещества, используемые для обработки древесного волокна, не оказывают значительного воздействия. влияют на плотность матрицы, но существенно влияют на прочность матрицы. Проведено сравнение прочности кубиков матрицы WFC (100 × 100 × 100 мм), приготовленных химически и без химикатов. Прочность на сжатие без химикатов для соотношения дерево / цемент 50:50 определить невозможно, потому что кубики были очень мягкими и уже сломались во время фиксации с помощью испытательной машины.Таким образом, значения записаны как незначимые (NS) в таблице 4 и приняты равными нулю на фиг. 5 и 6. На рисунках 5 и 6 показаны тенденции средней прочности на сжатие трех образцов двух типов смеси WFC с различным соотношением древесина / цемент (50:50, 40:60 и 30:70) через 7 дней и 28 дней. лечение. Средняя за 7 дней прочность на сжатие смеси WFC, изготовленной с использованием химикатов, составляет 1,71 МПа, 4,3 МПа и 3,43 МПа, что превышает прочность матрицы WFC, изготовленной без использования химикатов.Через 7 дней прочность на сжатие с химическими добавками увеличилась на 65% по сравнению с без добавок. Через 28 дней средняя прочность смесей (40:60), приготовленных с химическими добавками, является самой высокой и составляет 4,65 МПа, а WFC, полученная с соотношением 50:50, является самой низкой. Прирост прочности 62,7% через 28 дней. Избыточное количество цемента в матрице WFC с включением химикатов при соотношении древесина / цемент 30:70 отрицательно сказалось на прочности и сделало матрицу хрупкой и разрушилась при низкой прочности.Максимальное значение прочности на сжатие 5,53 МПа для соотношения дерево / цемент 40:60, наблюдаемое в этом исследовании, выше, чем прочность цементного композита из кокосовой шелухи, обработанного CaCl 2, составляющая 4,1 МПа, о которой сообщалось в [20]. Однако это значение намного ниже, чем у Sotannde et al. 2012 [21] с прочностью на сжатие 19,9 Н / мм для древесно-цементно-древесно-стружечных плит. Причина более высокой прочности плит из древесно-стружечных плит по сравнению с матрицей WFC может быть связана с циклом прессования в течение 24 часов во время производства древесно-цементно-древесно-стружечных плит, что позволило устранить пустоты в максимально возможной степени.Другой причиной низкой прочности матрицы WFC является процесс влажного отверждения. Поскольку отверждение сухим воздухом является хорошим предиктором прочностных свойств древесно-цементного композита, этот тип отверждения будет исследован в будущих исследованиях. Характеристики образца матрицы WFC при различном соотношении древесина / цемент с химически обработанным древесным волокном и без химически обработанного древесного волокна при средней плотности суммированы на рис. 6. Предварительная обработка химикатами не оказывает значительного влияния на плотность плит, однако древесина Соотношение / цемент значительно увеличивает плотность матрицы WFC после 7 дней и 28 дней отверждения.Обычно чем выше содержание волокна, тем ниже плотность матрицы. Это обычное наблюдение в матрице из древесных волокон, поскольку древесные частицы обычно имеют более низкую насыпную плотность, чем цемент. Как показано на рис. 7, полученные образцы матрицы с соотношением древесина / цемент 30:70 представляют собой относительно более плотные композиты, чем образцы матрицы 50:50 и 40:60. Максимальная плотность, оцененная для матрицы WFC, составляет 1450 3 кг / м, что соответствует диапазону легкого бетона в соответствии с ACI 213R [22], но прочность на сжатие не соответствует стандарту.Химические вещества, входящие в матрицу WFC, существенно влияют на водопоглощение матрицы. В таблице 5 показано водопоглощение кубиков WFC как для обработанного, так и для необработанного древесного волокна. Существуют весьма существенные различия и взаимодействия между матрицей WFC с химическими веществами и без химикатов и соотношением древесина / цемент, которое повлияло на водопоглощение, как показано на рис. 8. Плиты, изготовленные из волокна без химической обработки, демонстрируют высокое значение водопоглощения — 64,32%, но значение уменьшается при меньшем соотношении дерево / цемент.Это можно объяснить тем, что древесное волокно, как и все лигноцеллюлозы, гигроскопично, с относительно высоким сродством к воде. Испытания на статический изгиб были проведены для определения кажущегося модуля упругости и прочности на изгиб небольших панелей WFC. В таблице 6 показаны статические свойства изгиба композитных плит WFC, которые различаются в зависимости от условий и соотношения дерево / цемент. Экспериментальный результат (рис.9) показывает, что модуль упругости (E) немного выше для соотношений дерево / цемент 30:70 для сухой плиты (22%) при облицовке вверх и влажной плиты (7.2%) на досках лицевой стороной вниз. С другой стороны, платы ускоренного старения показывают самые высокие значения для любого состояния и случая. На изменение значений Е для бетона влияют тип крупного заполнителя, тип цемента, водо-влажностное соотношение смеси, размер добавляемого заполнителя и возраст выдержки [25]. На рис. 9 изменение соотношения древесина / цемент и содержание влаги существенно влияют на модуль упругости. Образцы для древесины / цемента 40:60 демонстрируют более высокую прочность на изгиб по сравнению с соотношениями древесина / цемент 30:70, как показано на рис.10. Прочность зависит от процентного содержания древесного волокна в смеси WFC, и в любом случае плиты с ускоренным старением дают наивысшее значение. Уменьшение прочности плит происходит из-за уменьшения процентного содержания волокна и, как следствие, уменьшения прочности соединения плит WFC. Стандарт ASTM [18] для древесных волокон и древесно-стружечных панелей не устанавливает минимальные значения изгиба или жесткости. Согласно ISO 8335 [26] плотность 3 должна быть не менее 1000 кг / м 2. Минимальные MOR и MOE, требуемые этим стандартом, составляют 9 МПа и 3000 МПа соответственно.Влажные и сухие матричные плиты WFC, подготовленные в этом исследовании, не соответствуют минимальным прочностным характеристикам, установленным в ISO 8335 [26]. Тем не менее, плиты WFC после ускоренного старения в условиях влажности соответствовали стандарту ISO. В таблице 7 показано сравнение некоторых предыдущих исследований с текущими результатами. В данном исследовании представлены результаты экспериментального исследования физико-механических свойств матрицы WFC. Установлено, что прочность на сжатие матрицы WFC увеличивается с уменьшением соотношения дерево / цемент с 50:50 до 40:60.Для матриц с соотношением древесина / цемент 30:70 прочность снижается и демонстрирует хрупкое разрушение при предельной нагрузке. На водопоглощение не оказывает существенного влияния соотношение древесина / цемент, но значительно снижается из-за химических добавок. Водопоглощение обработанной древесноволокнистой матрицы находится в том же диапазоне, что и у других древесно-цементных композитных материалов. Плиты с ускоренным старением демонстрируют самые высокие механические свойства по сравнению с сухими и влажными плитами и соответствуют минимальным требованиям стандарта ISO 8335.Авторы предложили использовать плиты ускоренного старения с соотношением дерево / цемент 40:60 в качестве конструкции смеси, которая обеспечивает оптимальный набор механических свойств по сравнению с другими условиями влажности и другими соотношениями. Авторы благодарят Министерство науки, технологий и инноваций (грант 06-01-02-SF0755) и Universiti Kebangsaan Malaysia за финансовую поддержку этого исследования (грант UKM-GUP-BTT-07-25-023). Авторы выражают благодарность Duralite Sdn. Bhd. За поддержку и помощь в предоставлении древесного волокна для…
Различные типы бетона и их применение
Вы можете найти бетон практически везде, включая здания, мосты, стены, бассейны, дороги, взлетно-посадочные полосы аэропорта, полы, внутренние дворики или даже цементный дом. Все эти структуры зависят от искусственного материала с простой формулой. Как делается весь этот бетон?
Бетон состоит из цемента, воды и крупных заполнителей. При смешивании они создают строительный материал, который со временем затвердевает.Количество используемой воды и цемента определяет свойства бетона, например:
- Прочность
- Прочность
- Устойчивость к нагреву или излучению
- Технологичность
Свежий бетон имеет множество применений: его можно заливать кругами, прямоугольниками, квадратами и т. Д. Его также можно использовать для лестниц, колонн, дверей, балок, чечевицы и других привычных конструкций. Бетон бывает нормального, стандартного и высокопрочного марок, которые указывают, насколько прочен бетон и как он будет использоваться в строительстве.Какие тебе нужны? Наш гид может помочь вам принять решение, исходя из требований вашего проекта.
Как сделать бетон?
Когда вы делаете бетон, независимо от того, для чего вы планируете его использовать, вы должны смешивать правильные пропорции, чтобы достичь желаемого качества. Для изготовления бетона можно использовать две разные смеси:
- Номинальная смесь : Эта смесь используется для обычного строительства, такого как небольшие жилые постройки.В большинстве номинальных смесей используется пропорция 1: 2: 4. Первое число — это соотношение цемента, второе число — соотношение песка, а третье число — соотношение необходимого заполнителя в зависимости от веса или объема материалов.
- Расчетная смесь : Расчетная смесь, или дизайн смеси, основывается на пропорциях, окончательно согласованных с помощью лабораторных испытаний для определения прочности смеси на сжатие. Это определит необходимую вам прочность на основе конструктивного решения бетонного компонента.
Помимо пропорций смеси, существуют также два метода замешивания бетона:
- Машинное смешивание : Здесь используются разные типы машин. Ингредиенты помещаются в машину и перемешиваются. Результат — свежий бетон.
- Ручное смешивание : При ручном смешивании ингредиенты помещаются на плоскую поверхность. Затем рабочие добавляют воду и вручную перемешивают цемент с помощью специальных инструментов, предназначенных для этой задачи.
Тип смешивания, который вы используете, зависит от количества и качества бетона, который вы хотите.
Типы бетона
Есть много разных типов бетона, некоторые из которых можно использовать для тех же целей. Это зависит от цели, которую вы хотите достичь. Вы можете выбрать подходящую форму бетона для выполнения поставленной задачи.
1. Бетон нормальной прочности
Этот бетон сочетает в себе все основные ингредиенты — бетон, песок и заполнитель — в соотношении 1: 2: 4.Таким образом получается бетон нормальной прочности. Для схватывания требуется от 30 до 90 минут, но это зависит от погодных условий на бетонной площадке и свойств цемента.
Обычно используется для тротуаров или зданий, которым не требуется высокая прочность на разрыв. Это не очень хорошо для многих других конструкций, так как не очень хорошо выдерживает нагрузки, создаваемые ветровой нагрузкой или вибрациями.
2. Обычный или обычный бетон
Это еще один бетон, в котором используется обычная смесь 1: 2: 4 с компонентами цемента, песка и заполнителей.Вы можете использовать его для изготовления тротуаров или зданий, где нет высоких требований к прочности на разрыв. Он сталкивается с теми же проблемами, что и бетон нормальной прочности — он не очень хорошо выдерживает вибрации и ветровые нагрузки. Обычный или обычный бетон также используется при строительстве плотин. Рейтинг прочности этого вида бетона очень удовлетворительный.
3. Железобетон
Бетон этой формы широко используется в промышленности и современном строительстве. Прочность железобетона повышается за счет размещения в бетоне проволоки, стальных стержней или тросов до его схватывания.Более привычное название для этих предметов — арматура. В последнее время люди использовали волокна для армирования этого бетона.
Эти арматуры противостоят растягивающим силам, в то время как сам бетон помогает противостоять сжимающим силам. Они создают прочную связь, и в результате два материала противостоят различным приложенным силам. По сути, они становятся единым конструктивным элементом.
Изобретенный в 19 -м веке, он коренным образом изменил строительную отрасль. Здания, мосты и проезжие части опираются на железобетон.Когда вы путешествуете по строительной площадке, вы, скорее всего, увидите железобетон с арматурой.
4. Предварительно напряженный бетон
Во многих крупных бетонных проектах используются предварительно напряженные бетонные блоки. Предварительно напряженный бетон создается в специальной технике. Как и железобетон, он включает стержни или арматуру. Но эти стержни или связки подвергаются нагрузке перед нанесением бетона.
Когда бетон смешивается и укладывается, эти стержни размещаются на каждом конце структурной единицы, где они используются.Когда бетон схватывается, эта единица подвергается сжатию.
Этот процесс делает нижнюю часть устройства более устойчивой к растягивающим усилиям. Однако это требует тяжелого оборудования и квалифицированной рабочей силы. Обычно предварительно напряженные элементы создаются и собираются на месте. Предварительно напряженный бетон используется для строительства мостов, тяжеловесных конструкций или крыш с длинными пролетами.
5. Сборный бетон
Этот бетон создается и отливается на заводе в соответствии с точными спецификациями.Затем сборные железобетонные блоки доставляются на площадку и собираются.
Вы часто видите, как эти агрегаты перевозят на рабочие места, когда вы едете по шоссе. Сборный железобетон используется для:
- Бетонные блоки
- Сборные стены
- Лестничные клетки
- Поляки
Преимущество сборного железобетона — его быстрый монтаж. Поскольку агрегаты производятся на заводе, они отличаются очень высоким качеством.
6. Легкий бетон
Легкий бетон — это любой бетон с плотностью менее 1920 кг / м 3 . Легкий бетон создается с использованием легких заполнителей. Заполнители — это ингредиенты, которые увеличивают плотность бетона. Эти легкие заполнители включают натуральные материалы, такие как шлак или пемза, искусственные материалы, такие как глины и вспученные сланцы, или обработанные материалы, такие как вермикулит и перлит. Его важнейшее свойство — очень низкая теплопроводность.
Обычное применение легкого бетона включает создание длинных пролетных мостовых настилов и строительных блоков.Также его можно использовать для защиты стальных конструкций.
7. Бетон высокой плотности
Бетон высокой плотности имеет очень конкретное назначение. Его часто используют при строительстве атомных электростанций. Тяжелые заполнители, используемые при создании бетона высокой плотности, помогают конструкции противостоять радиации.
Обычно используется щебень. Барит, бесцветный или белый материал, состоящий из сульфата бария и являющийся основным ингредиентом бария, представляет собой наиболее часто используемый щебень.
8. Бетон с воздухововлекающими добавками
Некоторые виды бетона содержат миллиарды микроскопических ячеек с воздухом на каждый кубический фут. Эти крошечные воздушные карманы снижают внутреннее давление на бетон. В них есть крошечные камеры, в которых вода может расширяться при замерзании.
Воздух захватывается бетоном за счет добавления в процессе смешивания различных пенообразователей, таких как спирты, смолы или жирные кислоты. Это должно выполняться под тщательным техническим надзором, поскольку бетон смешивается на строительной площадке.Вовлеченный воздух составляет от 3% до 6% от объема бетона. Почти весь бетон, используемый в условиях замерзания или при циклах замораживания-оттаивания, содержит воздух.
9. Готовый бетон
Бетон, подготовленный и залитый на центральном заводе, известен как товарный бетон. Этот бетон смешивается, поскольку он доставляется к месту на знакомых цементовозах, которые часто можно увидеть на дорогах и шоссе. Как только грузовики прибывают на место работы, цемент можно использовать немедленно, потому что он не требует дополнительной обработки.Товарный бетон — это специальный бетон, который смешивается с высокой точностью в соответствии со спецификациями, разработанными.
Для производства товарного бетона требуется централизованное место, где можно приготовить бетон. Эти места необходимо размещать на регулируемом расстоянии от рабочего места. Если бетон достигает рабочего места слишком долго, он бесполезен. В большинстве случаев рабочее место находится далеко от подготовительного завода. Иногда используются замедлители схватывания, чтобы замедлить схватывание бетона.
Готовый бетон предпочтительнее, чем бетон, смешанный на месте, потому что смесь имеет более высокую точность, а готовность бетона к заливке снижает беспорядок на рабочем месте. Товарный бетон можно использовать для строительства зданий, проезжей части, стен и т. Д.
10. Бетон объемный
Этот бетон был создан как альтернатива товарному бетону для решения проблемы больших расстояний между бетонным заводом и строительными площадками. Для этого требуются специализированные грузовые автомобили, известные как объемные мобильные миксеры.Они несут бетонные ингредиенты и воду, которая будет смешиваться на строительной площадке.
Объемный бетон чрезвычайно полезен, когда строителю требуется бетонная смесь двух разных типов на одном участке. Поскольку бетон можно смешивать и доставлять по мере необходимости, это позволяет одному грузовику производить две разные смеси бетона. Это очень удобно на больших участках, в подвальных помещениях и в многопроектах, где требуются разные типы бетона.
11. Бетон декоративный
Декоративный бетон создает визуально и эстетически привлекательные бетонные смеси.Декоративный бетон может пройти несколько процессов, например:
- Окраска
- Багет
- Полировка
- Офорт
- Нанесение декоративной начинки
Идеально подходит для любого проекта, в котором вы хотите заявить о себе с эстетической точки зрения. Это также отличный способ добавить немного индивидуальности тусклым поверхностям или структурам. Например, для бассейнов и полов можно использовать декоративный бетон.
12. Бетон быстрого схватывания
Спешите? Тогда вам понадобится быстротвердеющий бетон.Это идеальный вариант, когда у вас мало времени на выполнение проекта. Он имеет более быстрое время схватывания и очень устойчив к низким температурам, поэтому его можно использовать в любое время года. Это особенно полезно зимой, когда холода не позволяют использовать многие другие виды бетона.
13. Умный бетон
Это бетонная технология будущего. Он предлагает другой способ наблюдения за состоянием железобетонных конструкций. Короткие углеродные волокна добавляют в бетон с помощью обычной бетономешалки.Это влияет на электрическое сопротивление бетона, когда он испытывает деформацию или напряжение. Этот вид бетона можно использовать для обнаружения возможных проблем до его разрушения.
Очень хорошо обнаруживает крошечные структурные дефекты. Хотя он еще не широко доступен, он обещает стать строительным материалом будущего для городов, которые столкнутся с риском повторных землетрясений. Умный бетон позволяет инженерам в этих городах проверять состояние конструкций после землетрясений, обеспечивая гораздо лучшую оценку их состояния, чем визуальный осмотр.
14. Проницаемый бетон
Это один из наиболее распространенных видов бетона, который используется для строительства дорог и тротуаров. Он разработан для решения проблем, связанных с ливневым стоком, лужами воды и лужами на дорогах или взлетно-посадочных полосах аэропортов.
Другой бетон впитывает воду. У дорог, в которых используется проницаемый бетон, меньше проблем с аквапланированием, распылением покрышек и накоплением снега. Это также снижает потребность в бордюрах и ливневой канализации.
Состоит из смеси цемента, воды и крупных заполнителей.Он не содержит песка, что создает открытую пористую структуру. Это позволяет воде легче проходить через слои. Некоторые виды проницаемого бетона пропускают через свою поверхность несколько галлонов воды в минуту.
15. Бетон, накачиваемый насосом
Если вы когда-нибудь задумывались, какие типы цементных смесей используются для полов в очень высоких зданиях, ответ, вероятно, — бетон с помощью насоса. Секрет перекачиваемого бетона в том, что он очень удобен в использовании, поэтому его можно легко транспортировать по трубе на верхний этаж.Эта труба будет гибким или жестким шлангом, по которому бетон выводится на необходимую площадь.
Также можно использовать перекачиваемый бетон:
- Для создания суперплоских перекрытий на нижних конструкциях
- В строительных проектах, таких как дороги и мосты
- Для личных вещей, например бассейнов
Это надежный, эффективный и экономичный способ укладки бетона и часто единственный способ укладки бетона в определенных местах. В перекачиваемом бетоне используются очень мелкие заполнители.Чем мельче заполнитель, используемый в смеси, тем свободнее вытекает бетон из трубы.
16. Лимебетон
В этом бетоне вместо цемента используется известь, а также легкие заполнители, такие как стекловолокно или острый песок. В основном он используется для устройства полов, сводов и куполов. Limecrete имеет множество экологических преимуществ, поскольку его легко чистить и его можно возобновлять. Его также можно использовать с лучистым теплым полом.
17. Рулонный уплотненный бетон
Это знакомое зрелище на многих американских автомагистралях — тяжелый каток, уплотняющий слой бетона.Рулонный бетон — это прочный плотный бетон, который используется на автомагистралях с интенсивным движением транспортных средств, перевозящих большие грузы. Этот бетон выделяет меньше выбросов в процессе производства, что приносит пользу окружающей среде.
Рулонный уплотненный бетон можно найти на дорожных работах, взлетно-посадочных полосах аэропортов, автостоянках, тротуарах и при промышленном обслуживании.
18. Стеклобетон
Другой, более современный вид бетона — стеклобетон, в котором используется переработанное стекло. Эта форма бетона используется, когда эстетическая привлекательность является важным элементом конструкции бетона.
Обычно используемый в широкоформатных плитах для полов или на декоративных фасадах, этот бетон может иметь блестящее или цветное стекло, залитое в процессе смешивания, чтобы придать ему характерный всплеск цвета или блеск.
19. Асфальтобетон
Более известный как «асфальт» или «асфальт», это форма бетона, часто используемая на дорогах, взлетно-посадочных полосах аэропортов, на автомагистралях, на стоянках, тротуарах — практически везде, где требуется тротуар. Асфальт — это темный минерал, состоящий из смеси углеводородов, называемых битумами.
Потребность в асфальте росла вместе с автомобильной промышленностью. Известный своей долговечностью, удобоукладываемостью, сопротивлением скольжению, стабильностью, сопротивлением усталости, гибкостью и проницаемостью, он по-прежнему требует правильно разработанной смеси. Это композитная смесь заполнителей и асфальта. Различные смеси асфальта используются для разных целей.
20. Торкрет-бетон
Торкрет-бетон отличается от других форм бетона прежде всего способом его нанесения. Торкретбетон впрыскивается через сопло на раму или опалубку.Поскольку для этого применения требуется более высокое давление воздуха, процесс уплотнения происходит одновременно с укладкой.
Торкрет-бетон можно использовать для ремонта поврежденных деревянных, бетонных или стальных конструкций. Он также обычно используется, когда доступ к рабочей зоне затруднен, или когда опалубка непрактична или недорога.
Нужен надежный источник для бетононасоса? Свяжитесь с Dynamic Concrete Pumping, Inc.
Обладая более чем 40-летним опытом работы в районе Калгари, наши специалисты могут предоставить вам услуги по бетононасосу, необходимые для повышения вашей производительности и улучшения результатов.Если вам потребуется бетононасос на всей территории Альберты, вы можете доверить нам предоставление эффективных, доступных и безопасных решений, которые помогут вам улучшить вашу прибыль и решить самые сложные задачи.
Если вы хотите поговорить о том, как мы можем помочь вам с бетононасосом, вы можете позвонить нам по телефону 403-236-9511 или по бесплатному телефону 1-877-236-9511. Вы также можете посетить нашу страницу контактов. Член нашей команды свяжется с вами в ближайшее время.
-Обновлено 25.09.2020
dee Бетон | Общая информация о бетоне
На главную> Общая информация по бетону> Глоссарий по бетону
Чтобы помочь посетителям сайта, промышленным дистрибьюторам и подрядчикам понять или прояснить многие термины, используемые в индустрии бетона и мощения, компания dee Concrete Accessories включила этот уникальный глоссарий.Глоссарий организован в виде альфа-списка, чтобы помочь вам быстро найти искомый термин.
Щелкните букву ниже, чтобы перейти на соответствующую страницу в глоссарии:
A | B | C | D | E | F | G | H | Я | J | K | L | M | N | O | PQ | R | S | Т | U | V | W | XYZ
Кессон
Отверстие диаметром 10 или 12 дюймов, просверленное в земле и заглубленное в коренную породу от 3 до 4 футов. Структурная опора для фундаментной стены, крыльца, террасы, монопоста или другой конструкции.Две или более «палочек» арматурных стержней (арматурных стержней) вставляются и проходят по всей длине отверстия, а затем заливается бетон в отверстие кессона. Кессон предназначен для опоры на нижележащий пласт породы или удовлетворительного грунта и используется при наличии неудовлетворительного грунта. См. Арматуру и заливку.
Кальцит
Основное сырье, используемое при производстве портландцемента. Кальцит представляет собой кристаллизованную форму карбоната кальция и является основным компонентом известняка, мела и мрамора.
Цемент на основе алюмината кальция
Комбинация карбоната кальция и алюминатов, термически сплавленных или спеченных и измельченных для изготовления цемента.
Хлорид кальция
Добавка, используемая в готовой смеси для ускорения отверждения, обычно используется во влажных условиях. См. Товарный бетон.
Капиллярное пространство
Термин, используемый для описания пузырьков воздуха, застрявших в цементном тесте.
Монолитный бетон
Бетон, заливаемый в формы, которые устанавливаются на стройплощадке. Это то же самое, что и термин sitecasting. См. Сборный бетон.
Отливка
Заливка жидкого материала или суспензии, например бетона, в форму или форму, физическую форму которой они будут принимать по мере затвердевания. Смотрите заливку.
Станина
Постоянная фиксированная форма, в которой изготавливаются постоянные сборные бетонные формы.См. Сборный бетон, монолитный бетон.
Cefi
Сокращение, означающее цементный финишер.
Cem. Плавник.
Строительное сокращение для цементной отделки.
Цемент
Материал, состоящий из тонко измельченных порошков, затвердевающий при смешивании с водой. Цемент — это только один компонент бетона. Серый порошок, который является «клеем» в бетоне.
Соотношение цемент-заполнитель
Отношение цемента к заполнителю в смеси, определяемое по массе или объему.
Содержание цемента / коэффициент цемента
Количество цемента, содержащегося в единице объема бетона или раствора, обычно выражаемое в фунтах, бочках или мешках на кубический ярд.
Бетономешалка
Бетономешалка. Емкость, используемая для смешивания ингредиентов бетона с помощью лопастей или вращательного движения. Контейнер может быть с ручным или механическим приводом.
Цементные смеси
Смеси всегда указываются как части от цемента к песку и агрегату.Ниже приводится описание типичных цементных смесей:
Rich
1 часть цемента, 2 части песка, 3 части крупного заполнителя. Богатая смесь используется для бетонных дорог и водонепроницаемых конструкций.
Стандартный
1 часть цемента, 2 части песка, 4 части крупного заполнителя. Стандартная смесь используется для армированных рабочих полов, крыш, колонн, арок, резервуаров, канализации, трубопроводов и т. Д.
Средний
1 часть цемента, 2 1/2 части песка, 5 частей крупного заполнителя.Смесь среднего размера используется для фундаментов, стен, опор, опор и т. Д.
Lean
1 часть цемента, 3 части песка, 6 частей крупного заполнителя. Нежирная смесь используется для всех массовых бетонных работ, больших фундаментов, основы для каменной кладки и т. Д.
Цементный раствор
Разбавленная водянистая цементная смесь для перекачивания или для промывания поверхности.
Типы цемента
Тип I Нормальный
— цемент общего назначения, подходящий практически для всех применений в жилищном строительстве, но не должен использоваться там, где он будет контактировать с высокосульфатными почвами или подвергаться воздействию чрезмерных температур во время отверждения.
Тип II Умеренный
используется там, где важны меры предосторожности против умеренного воздействия сульфатов, например, в дренажных сооружениях, где концентрация сульфатов в грунтовых водах выше нормы.
Тип III High Early Strength
используется, когда требуется высокая прочность на очень ранних сроках, обычно в течение недели или меньше. Применяется, когда желательно как можно быстрее снять опалубку или быстро ввести бетон в эксплуатацию.
Низкотемпературный тип IV
— это специальный цемент, предназначенный для использования там, где количество и скорость тепла, выделяемого во время отверждения, должны быть сведены к минимуму.Развитие прочности происходит медленно и предназначено для больших масс бетона, таких как плотины.
Сульфатостойкость типа V
— это специальный цемент, предназначенный для использования только в строительстве, подверженном сильному воздействию сульфатов, например, в западных штатах, где почвы имеют высокое содержание щелочи.
Цементные
Любой материал, обладающий вяжущими свойствами, обычно относящийся к таким веществам, как портландцемент и известь. См. Портландцемент.
Центральный завод
Предприятие, которое производит и распределяет товарный или предварительно смешанный бетон, загружая материал в тележки с мешалкой.См. Товарный бетон и автобетоносмеситель.
Стул
Маленькая металлическая или пластиковая опора для армирования стали в бетонных конструкциях. Опора используется для сохранения правильного положения во время укладки бетона. См. Барную стойку / барный стул и детский стульчик.
Шлакоблок
Кладочный блок из дробленого угля и портландцемента. Этот тип блоков легче и имеет более высокие изоляционные свойства, чем бетон.Поскольку влага приводит к порче шлакоблока, он используется в основном для внутренних, а не внешних стен. См. Бетонный блок.
Клинкер
Смесь, полученная при обжиге смеси известняка с кремнеземом, глиноземом и материалами, содержащими оксид железа. Комок или шар расплавленного материала, обычно от 1/8 дюйма до 1 дюйма в диаметре, образуется при нагревании цементного раствора в печи. Когда клинкер остынет, его измельчают в мелкий порошок и перемалывают с гипсом для образования цемента.См. Примесь.
Зажимы
Острые, отрезанные металлические провода, выступающие из бетонной фундаментной стены (которая когда-то удерживала фундаментные панели на месте).
Крупный заполнитель
Неорганические частицы природного происхождения, обработанные или произведенные в заданной градации или диапазоне размеров. Частицы наименьшего размера останутся на сите № 4.
Холодный стык
Видимая линия, которая образуется при задержке укладки бетона.Бетон на месте затвердевает перед следующей укладкой бетона на него.
Штифты стальные холоднокатаные цельнометаллические
Металлические штифты для формования бетона, изготовленные из стали, прокатанной до окончательной формы при температуре, при которой она перестает быть пластичной, что придает штифтам плотную, гладкую поверхность и высокую прочность на разрыв. См. Горячекатаные цельнометаллические опалубочные штифты.
Зажим колонны
Стопорное устройство для удерживания частей бетонной опалубки вместе во время укладки бетона.
Форма колонки
Специализированные формы для создания колонн низкой высоты, обычно используемых в качестве якорей для освещения парковок, оснований коммуникационных вышек и аналогичных приложений, где требуются короткие колонны.
Уплотнение
Устранение пустот в строительных материалах, таких как бетон, штукатурка или грунт, с помощью вибрации, утрамбовки, прокатки или каким-либо другим методом или комбинацией методов. Процесс устранения пустот в незатвердевшей бетонной смеси, которая часто укладывалась с помощью различных вибрационных устройств.По аналогии с укладкой, степень уплотнения должна быть примерно равна времени, необходимому для размещения. См. Размещение и удилище.
Композитная конструкция
Любой элемент, в котором бетон и сталь, кроме арматурных стержней, работают как единое целое. См. Арматуру.
Прочность на сжатие
Способность конструкционного материала противостоять силам сжатия. Максимальное сжимающее напряжение, которое может выдержать материал, портландцемент, бетон или раствор.
Бетон
Бетон — это затвердевший строительный материал, созданный путем объединения минерала (который обычно представляет собой песок, гравий или щебень), связующего вещества (природного или синтетического цемента), химических добавок и воды. Это отличный материал для строительства дорог, мостов, аэропортов, заводов, водных путей и других строительных объектов. Бетон — это смесь портландцемента, песка, гравия и воды, используемая для изготовления полов в гаражах и подвалах, тротуаров, террас, фундаментных стен и т. Д.Обычно его армируют стальными стержнями (арматура) или проволочным экраном (сеткой). См. Вяжущее, цемент, портландцемент и арматуру.
Бетонный блок
Бетонная кладка, чаще всего пустотелая, размером больше кирпича. См. Бетонную кладку (CMU).
Усадка бетона
Усадка бетона, возникающая при его отверждении и высыхании. См. Усадку.
Бетонная отделка
Описание гладкости, текстуры или твердости бетонной поверхности.Полы затирают стальными лезвиями, чтобы получить плотный защитный слой. См. Шпатель, шпатель и отделку шпателем.
Станок для отделки бетона
Портативная машина с большими лопастями, такими как лопасти вентилятора, используемая для плавания и отделки бетонных полов и плит. Большая машина с механическим приводом, установленная на колесах, которые едут по стальным формам дорожного покрытия. Эти машины используются для отделки бетонных покрытий. Смотрите плавание и отделку.
Бетонная кладка (ББК)
Блок из затвердевшего бетона с полыми стержнями или без них, предназначенный для укладки так же, как кирпич или камень.CMU также называют бетонным блоком. См. Бетонный блок.
Бетонная смесь
Процент содержания цемента в бетоне. Богатая смесь содержит большое количество цемента. Нежирная смесь — это смесь бетона или раствора с относительно низким содержанием цемента. Жесткая бетонная смесь — это смесь без мелких частиц раствора или заполнителя, что приводит к нежелательной консистенции и удобоукладываемости. См. Заполнитель, цемент, содержание цемента / коэффициент цемента, цементные смеси, типы цемента.
Транспортировка бетона
Процесс перемещения бетонной смеси с центрального завода или места смешивания на строительную площадку. Транспортные устройства включают тележки с мешалкой, ковши, тачки, конвейеры и насосные устройства. См. Тележку с мешалкой.
Болт соединительный
(1) Крепежные устройства, используемые для соединения форм и формовочных принадлежностей. Типичный стиль — это болт с прорезью и стопорным клином, поэтому на стандартном болте не может образовываться остаток бетона.
(2) Болты с вертикальными прорезями, которые используются вместе с небольшим металлическим клином для соединения двух плоских форм вместе во время штабелирования.
Консистенция
Степень пластичности свежего бетона или раствора. Обычной мерой консистенции является оседание бетона и текучесть раствора. См. Тест на спад и спад.
Консолидация
Уплотнение, как правило, достигается за счет вибрации только что уложенного бетона до минимального практического объема, для его формования в форме формы и вокруг закладных деталей и арматуры, а также для устранения пустот, отличных от увлеченного воздуха.
Строительный шов
Контакт между уложенным бетоном и бетонными поверхностями, напротив или на которые должен быть уложен бетон и к которым должен прилипать новый бетон, стал настолько жестким, что новый бетон не может быть объединен посредством вибрации за одно целое с ранее уложенным. Несформированные строительные швы располагаются горизонтально или почти горизонтально.
Подрядчик
Физическое или юридическое лицо, имеющее лицензию на выполнение определенных видов строительной деятельности, которое берет на себя юридическое обязательство выполнять указанные строительные работы.Типы подрядчиков включают:
Генеральный подрядчик
Отвечает за выполнение, надзор и общую координацию проекта, а также может выполнять некоторые индивидуальные строительные задачи. Большинство генеральных подрядчиков не имеют лицензии на выполнение всех специальных работ и должны нанимать специализированных подрядчиков для таких задач, например электрика, сантехника.
Подрядчик по ремонту
Генеральный подрядчик, специализирующийся на ремонте.
Специализированный подрядчик
Лицензия на выполнение специальной работы e.грамм. электричество, канализация боковая, очистка от асбеста.
Субподрядчик
Генеральный или специализированный подрядчик, работающий на другого генерального подрядчика.
Управляющий шарнир
Вырезанные прямые канавки на бетонном полу для «контроля» трещин в бетоне.
Угловые формы
Металлобетонные опалубки, которые представляют собой специализированные формовочные приспособления, которые прикрепляются к прямым опалубкам для образования углов 90 °.Типичные области применения угловых форм включают внутренние дворики, тротуары, складские перекрытия, перекрытия на фундаменте дома и аналогичные плоские конструкции. См. Плиту на уклонных и прямых формах.
Крем
Сленговый термин на строительном сленге для обозначения цементно-песчаного компонента готовой смеси, который поднимается, когда заполнитель обрабатывается путем перемешивания — затирки, затирки, стяжки и т. Д. Это также называется «соком». См. Растворный, плавающий, товарный бетон, стяжку, стяжку, шпатель и затирку.
Бордюр и желоб
Граница улицы или другой поверхности с твердым покрытием, которая включает бордюр, выдавленный или созданный вручную берму и желоб, участок, предназначенный для отвода и отвода воды от основной площади с твердым покрытием. Обе части обычно делают из бетона. См. Комбинацию бордюров и желобов, а также формы бордюров и желобов.
Принадлежности для бордюров и водостоков
Формовочные компоненты, специализированные инструменты и приспособления, которые используются для облегчения установки бордюров и желобов, и включают в себя подвески, распорки, съемники колышков, формы-заполнители, опорные стойки, опорные штифты и мулы для фасада бордюров.
Комбинация бордюра и желоба
Относится к комбинациям бордюров и желобов, которые образуются в одной бетонной заливке. Бордюрный участок имеет высоту от 4 до 12 дюймов и используется для предотвращения выезда транспортных средств с мощеной территории. Часть желоба имеет ширину от 6 дюймов до 12 дюймов и используется для регулирования стока воды с дорожного покрытия. Высота желоба либо немного выше, либо немного ниже уровня дорожного покрытия. Кроме того, сам желоб будет иметь небольшой наклон внутрь или наружу, чтобы направлять поток воды либо к бордюру, либо от него, в зависимости от желаемого потока воды.Смотрите заливку, подачу и подачу.
Профили бордюров и желобов
Металлические формы, используемые при укладке бетона, которые прикрепляются к системе бордюров и водосточных желобов для формирования профиля для бордюров.
Опоры бордюров и желобов
Бетонные формы и аксессуары, используемые для заливки бордюров и водосточных желобов. Система формирования бордюров и желобов состоит из задней части, лицевой формы, передней формы, разделительной пластины и верхнего распределителя. Задняя и передняя формы являются стандартными прямыми формами, при этом задняя форма выше, чем передняя форма для конфигурации комбинации бордюра и желоба.См. Разделительную пластину, прямые формы и верхний распределитель.
Тесто для бордюра
Тесто для бордюра — это расстояние между верхним уклоном бордюра и нижним уклоном бордюра. См. Тесто.
Мюли Curbface
Механический инструмент, используемый для формирования желаемого профиля бордюра для любого бордюра и водосточного желоба. См. Формы бордюров и желобов.
Инструмент для бордюра
Ручной инструмент, соответствующий профилю бордюра, используемый для отделки и сглаживания бордюра после укладки бетона, но до его затвердевания.Смотрите мула.
Переходные формы бордюра
Переходные формы бордюра позволяют подрядчику быстро переходить от прямого к радиусному бордюру и обратно к прямому бордюру. Обычно они идут парами мужчина / женщина.
Лечение
Метод поддержания достаточной внутренней влажности и надлежащей температуры для свежеуложенного бетона для обеспечения надлежащей гидратации цемента и надлежащего твердения бетона. См. Гидратацию.
Отверждение
Отверждение бетона, гипса или другого влажного материала.Отверждение обычно происходит за счет испарения воды или растворителя, гидратации, полимеризации или химических реакций различных типов. Это последний процесс после укладки и уплотнения, который обеспечивает достижение желаемой прочности бетона. Продолжительность времени зависит от типа цемента, пропорции смеси, требуемой прочности, размера и формы бетонной секции, погоды и будущих условий воздействия. Этот период может составлять 3 недели или больше для бедных бетонных смесей, используемых в таких конструкциях, как плотины, или может составлять всего несколько дней для более богатых смесей.Благоприятный диапазон температур отверждения от 50 ° до 70 ° F. Расчетная прочность достигается за 28 дней. См. Цементная смесь, уплотнение, гидратация и схватывание.
Американский институт бетона определяет отверждение как поддержание удовлетворительного содержания влаги и температуры в бетоне на ранних стадиях, чтобы он мог получить желаемые свойства. См. Размещение и уплотнение.
Одеяло для отверждения
Слой соломы, мешковины, опилок или другого подходящего материала, помещенный на свежий бетон и увлажненный, чтобы поддерживать влажность и температуру для надлежащего увлажнения.См. Раздел «Мешковина», «Отверждение», «Отвердитель» и «Отверждающая мембрана».
Отвердитель
Химическое вещество, наносимое на поверхность свежего бетона для минимизации потери влаги на первых этапах схватывания и затвердевания. См. Отверждение, отверждающая мембрана и отверждающее одеяло.
Полимеризационная мембрана
Любой из нескольких видов листового материала или напыляемого покрытия, используемого для временного замедления испарения воды с открытой поверхности свежего бетона, обеспечивая тем самым надлежащее отверждение.См. Раздел «Мешковина», «Полимеризация», «Полимеризационный состав» и «Полимеризационное одеяло».
Пользовательские формы
Разнообразие уникальных форм, используемых для специальной формовки бетона, таких как обратимые формы, суперплоские формы, формы с откидным верхом, обратимые формы с откидыванием вверх, формы набора фундаментов, формы морских дамб и восстановительные формы.
Вырезать и заполнить
Термин, используемый для описания сложения или вычитания из оценки. Кроме того, операция, обычно используемая при строительстве дорог и других горных и землеройных работах, при которой материал, выкопанный и извлеченный из одного места, используется в качестве материала заполнения в другом месте.
Вода в бетоне | For Construction Pros
Количество воды в бетоне контролирует многие свежие и затвердевшие свойства бетона, включая удобоукладываемость, прочность на сжатие, проницаемость и водонепроницаемость, долговечность и атмосферостойкость, усадку при высыхании и возможность растрескивания. По этим причинам ограничение и контроль количества воды в бетоне важны как для конструктивности, так и для срока службы.
Соотношение водоцементных материалов
Отношение количества воды за вычетом количества воды, абсорбированной заполнителями, к количеству вяжущих материалов по весу в бетоне, называется водоцементным соотношением и обычно обозначается как соотношение Вт / см.Отношение w / cm представляет собой модификацию исторического водоцементного отношения (соотношение w / c), которое использовалось для описания количества воды, исключая то, что было поглощено заполнителями, к количеству портландцемента по весу в бетоне. . Поскольку сегодня большинство бетонов содержат дополнительные вяжущие материалы, такие как летучая зола, шлаковый цемент, микрокремнезем или природные пуццоланы, соотношение в / см является более подходящим. Чтобы избежать путаницы между соотношениями w / cm и w / c, используйте соотношение w / cm для бетонов с дополнительными вяжущими материалами и без них.Уравнение соотношения вес / см: отношение вес / см = (вес воды — вес воды, абсорбированной в заполнителях), деленное на вес вяжущих материалов.
При затвердевании паста или клей, состоящий из вяжущих материалов и воды, связывает заполнители вместе. Затвердевание происходит из-за химической реакции, называемой гидратацией, между вяжущими материалами и водой. Очевидно, что увеличение соотношения вес / см или количества воды в пасте разбавляет или ослабляет затвердевшую пасту и снижает прочность бетона.Как показано на Рисунке 1, прочность бетона на сжатие увеличивается по мере уменьшения отношения Вт / см как для не воздухововлекающего, так и для воздухововлекающего бетона.
Уменьшение отношения Вт / см также улучшает другие свойства затвердевшего бетона за счет увеличения плотности пасты, которая снижает проницаемость и увеличивает водонепроницаемость, повышает долговечность и устойчивость к циклам замерзания-оттаивания, зимнему образованию накипи и химическому воздействию.
В целом, чем меньше воды, тем лучше бетон. Однако бетону требуется достаточно воды для смазки и получения рабочей смеси, которую можно без проблем перемешивать, укладывать, укреплять и отделывать.
Требования к кодам
Поскольку соотношение Вт / см контролирует как прочность, так и долговечность, строительные нормы и правила устанавливают верхние пределы или максимальные отношения Вт / см и соответствующие минимальные значения прочности на сжатие, как показано в Таблице 1. Например, бетон, подверженный замерзанию и оттаиванию во влажном состоянии или к химикатам для борьбы с обледенением должны иметь отношение не более 0,45 Вт / см и минимальную прочность на сжатие 4500 фунтов на кв. дюйм для обеспечения долговечности. Дизайнеры выбирают максимальное соотношение Вт / см и минимальную прочность, прежде всего, исходя из условий воздействия и соображений долговечности, а не требований несущей способности.Для различных условий воздействия используйте нормативные требования к максимальному соотношению Вт / см и минимальной прочности, чтобы снизить проницаемость бетона. Это повысит устойчивость бетона к атмосферным воздействиям.
Содержание воды и усадка при высыхании
Самым важным фактором, влияющим на величину усадки при высыхании и последующую вероятность растрескивания, является содержание воды или количество воды на кубический ярд бетона. По сути, усадка бетона увеличивается с увеличением содержания воды.Около половины воды в бетоне расходуется на химическую реакцию гидратации, а другая половина обеспечивает удобоукладываемость бетона. За исключением воды, потерянной при кровотечении и абсорбированной основным материалом или формами, оставшаяся вода, которая не потребляется в процессе гидратации, способствует усадке при высыхании. Поддерживая как можно более низкое содержание воды, усадку при высыхании и вероятность растрескивания можно свести к минимуму.
Технологичность
Легкость смешивания, укладки, уплотнения и отделки бетона называется удобоукладываемостью.Содержание воды в смеси является самым важным фактором, влияющим на удобоукладываемость. Другие важные факторы, влияющие на удобоукладываемость, включают: пропорции смеси, характеристики крупных и мелких заполнителей, количество и характеристики вяжущих материалов, увлеченный воздух, примеси, осадку (консистенцию), время, температуру воздуха и бетона. Добавление большего количества воды в бетон увеличивает удобоукладываемость, но большее количество воды также увеличивает вероятность сегрегации (осаждения крупных частиц заполнителя), увеличения просачивания, усадки при высыхании и растрескивания в дополнение к снижению прочности и долговечности.
Добавление воды на месте
Если измеренные осадки меньше, чем допускаются спецификациями, они могут быть скорректированы однократным добавлением воды. Однако существуют требования, связанные с добавлением воды на месте:
- Не превышать максимальное содержание воды для замеса, установленное принятыми пропорциями бетонной смеси.
- Бетон не выгружался из смесителя, за исключением испытаний на осадку.
- Все доливки воды должны быть завершены в течение 15 минут после начала первого добавления воды.
- Вода должна подаваться в смеситель с таким давлением и направлением потока, чтобы обеспечить надлежащее распределение внутри смесителя.
- Барабан должен быть повернут еще на 30 или более оборотов при скорости перемешивания, чтобы обеспечить однородную смесь.
Перед добавлением воды на месте необходимо знать допустимое количество воды, которое можно добавить. Эта сумма должна быть напечатана в накладной или быть определена на совещании перед началом строительства и согласована всеми сторонами.
Вода — ключевой компонент бетона. Однако слишком много воды может отрицательно сказаться на свойствах свежего и затвердевшего бетона, особенно на прочности, долговечности и возможности растрескивания. На следующей работе обязательно знайте требования к воде для используемых бетонных смесей, особенно допустимую воду, которая может быть добавлена для корректировки осадки.