Что можно сделать из холодильного компрессора: фото пошагового изготовления с описанием

Содержание

Водяной насос из старого компрессора от холодильника

Если у вас на даче или на придомовом участке есть скважина, то обязательно должен быть и скважинный насос, чтобы можно было перекачивать воду со дна скважины наверх.

Но ситуации бывают разные: скважинный насос может выйти из строя, а новый купить пока не получается. Как быть в этом случае?

Автор предлагает временно использовать компрессор от холодильника. Таким образом, можно обеспечить себе хоть какие-то поставки воды «с глубин», если других вариантов нет.

Конечно, производительность самодельного водяного насоса крайне мала. Однако 17 литров воды за 6 минут — это лучше, чем совсем ничего.

Впрочем, справедливости ради нужно отметить, что КПД водяного насоса напрямую будет зависеть от глубины самой скважины и мощности компрессора.

Рекомендуем прочитать: гидравлический самодействующий насос своими руками.

Основные этапы работ

Первым делом потребуется отрезать два куска резиновой трубки. Причем один из кусков должен иметь отвод на 90 градусов.

Прямой кусок трубки надеваем на патрубок компрессора (который нагнетает воздух), а изогнутый вставляем в ПВХ шланг.

После этого в резиновый отвод автор вставляет прямую медную трубку диаметром 8 мм.

Другой ее конец нужно вставить в пластиковую трубу диаметром 28 мм, которая будет опускаться в скважину.

При помощи стяжек крепим к пластиковой трубе ПВХ шланг, а потом опускаем ее на дно скважины. В данном случае глубина составляет 6 метров.

Подсоединяем свободный конец ПВХ шланга к резиновому патрубку на компрессоре. Потом включаем компрессор, и можно набирать воду в ведро или другую емкость.

Подробнее о том, как своими руками сделать водяной насос из старого компрессора от холодильника, смотрите в данном видеоролике.

Оцените запись

[Голосов: 18 Средняя оценка: 4]

Ремонт холодильных компрессоров своими руками

Самое подробное описание: ремонт холодильных компрессоров своими руками от профессионального мастера для своих читателей с фотографиями и видео из всех уголков сети на одном ресурсе.

«Как выполнить ремонт мотора-компрессора холодильника? Если вы не знаете, что такое компрессор и для чего он нужен, ознакомьтесь с информацией приведенной ниже».

Мотор-компрессор один из наиболее важных агрегатов в «организме» холодильника. Поэтому его поломка парализует полностью весь аппарат, а дальнейшая работоспособность зависит только от качественного и профессионального ремонта. Как бы вам не хотелось отремонтировать данный компонент самостоятельно – это непосильная задача. Устранить неисправность сможет лишь мастер высшей категории, который имеет большой опыт работы и необходимый набор профессиональных инструментов.

В некоторых случаях мотор можно отремонтировать, но выгодно это не всегда, именно из-за этого чаще всего выгоднее замена мотора холодильника.

Компрессор – это сложное электромеханическое устройство, которое сжимает и перекачивает пары хладагента в холодильнике. При сжатии паров наблюдается их конденсация, после чего жидкость перетекает в испаритель, где происходит испарение и поглощается тепло из камер. Современные холодильники бывают одно -двух и даже трех – компрессорными, хотя холодильник с тремя моторами в магазинах встретишь не часто.

Большим спросом пользуются двухкомпрессорные аппараты, потому что они наиболее надежны и экономичны в плане энергопотребления. Если один компрессор обеспечивает холодом весь холодильный шкаф с двумя отсеками, то два компрессора работают независимо друг от друга, и каждый нагнетает холод в отведенную ему камеру, будь то морозилка или холодильный отсек.

Если один из моторов вышел из строя, вам необходим профессиональный ремонт мотор-компрессора холодильника.

Видео (кликните для воспроизведения).

Признаки неисправности мотора:

Выход из строя мотор-компрессора – серьезная проблема, потому как его замена или ремонт обойдутся несколько дороже, чем ремонт каких-то других узлов. Главное вовремя предотвратить поломку, таким образом можно сэкономить на его ремонте. Чтобы оперативно отреагировать на сигналы холодильника нужно знать несколько простых признаков, которые указывают на неисправность компрессора.

•Мотор не включается или не отключается по прошествии определенного временного интервала.

•Повышенный шум во время работы компрессора, сильная вибрация или дребезжание.
•Превышение температурного режима в холодильной камере.

Если вы заметили один из признаков, значит, есть повод для волнения.

Вам необходимо, как можно быстрее, вызвать мастера на дом для проведения глубокой диагностики. После диагностики специалист сможет установить точную причину неисправности и определить степень ее критичности. Мастера высшей категории в состоянии выполнить даже самый сложный ремонт не забирая ваш холодильник в стационар, а это всегда удобно и выгодно для самого клиента. С помощью специального оборудования, соблюдая современные технологии диагностики и ремонта, используя профессиональный инструментарий, наши механики вернут былую мощь вашему неисправному агрегату и повысят его производительность до изначальной.

«Неисправен мотор-компрессор? Наши специалисты качественно и быстро его отремонтируют с последующей ГАРАНТИЕЙ. Только оригинальные комплектующие и запчасти ко всем маркам и моделям отечественных и импортных холодильников».

Нередко ремонт мотора холодильника требуется по вине самого пользователя. Дело в том, что некоторые модели оснащены дополнительной полезной функцией «Суперзаморозка» или «Быстрая заморозка». Эта функция помогает за короткий промежуток времени заморозить продукт для того, чтобы он не потерял своих вкусовых качеств и полезных свойств. Используя данную функцию, хозяйка просто забывает её отключить, в результате чего двигатель работает на полной мощности в изнурительном темпе, а это губительно сказывается на его работоспособности. Следствие этого – полный выход из строя.

При осмотре аппарата мастер, скорее всего, примет решение, что мотор необходимо заменить, а соглашаться с этим или нет, каждый клиент думает самостоятельно. Каким бы дорогостоящим не была замена компрессора холодильника, все же это дешевле, чем купить новый холодильник. Менее затратным видом ремонта нужно назвать – устранение шумов, грохота и других неприятных звуков при включении. Это решается простым действием – регулировкой подвески кожуха мотора. Для этого нужно просто отрегулировать болты подвески и хорошо их затянуть. Дребезжание может издавать реле, если его положение неустойчивое. В этом случае мастер осторожно и грамотно поставит его на своё место, во избежание замыкания контактов. Отдельные случаи подразумевают полную замену одного из компонентов, но это можно определить только после профессионального осмотра и диагностики.Не нужно надеяться на собственные силы.

Большинство случаев, когда пользователь вмешивается во внутреннее устройство холодильника, заканчиваются неудачей, и, как следствие, последующей переплатой за ремонт, а так же большой вероятностью удара электрическим током, что небезопасно для собственного здоровья. Лучше сразу обратиться за помощью специалистов и радоваться положительному и долговечному результату.

«Ремонт мотор-компрессора холодильника – профессионально, качественно и недорого. Самые лучшие цены в Москве и Подмосковья для наших клиентов!»

Специалисты нашей компании возьмутся даже за самый сложный ремонт мотора холодильника. В их компетенции восстановить компрессор разных видов в различных марках холодильников. Обратившись за помощью к мастерам нашей службы, вы можете быть уверены в 100% – ном результате и продолжительном сроке службы после устранения неисправностей.Технологические операции, которые мы предоставляем:

•Глубокая диагностика и дефектовка компрессора
•Определение и оценка уровня износа агрегата
•Перемотка статора высококачественным фреоностойким проводом
•Вакуумная пропитка мотора
•Сборка компрессора после ремонта и его испытание

Все вопросы, связанные с ремонтом холодильников и вызовом мастера на дом вы можете задать нашему диспетчеру по телефонам: 8(495)162-06-44 или 8(926)743-21-17. Прием звонков круглосуточно. Мастер выезжает на вызов в удобное время, которое будет заранее оговорено непосредственно с мастером.

Произведя пошаговую диагностику вашего Атланта, вы установили, что причина поломки в компрессоре?

Из школьного курса физики мы знаем об устройстве двигателя внутреннего сгорания. Компрессор функционирует аналогичным образом. Схема его работы для Индезита или Атланта одинакова. Поршень и система клапанов сжимают фреон, отправляя нагретый хладагент в конденсатор. Там он переходит в жидкое состояние, поступает в капиллярный расширитель. Компрессор сжимает фреон, затем охлаждает газ в конденсаторе, обеспечивая его циркулирование в системе холодильного аппарата. Процесс имеет непрерывный цикличный характер. Компрессор отключается, включаясь время от времени для выполнения функции сжатия хладагента.

Видео (кликните для воспроизведения).

Устройство двигателя внутреннего сгорания

Какой у вас холодильник — белорусский Атлант или собранный по итальянскому патенту Индезит, все они имеют одинаковый мотор, схожее устройство внутренних схем. В Атланте и Индезите применяются компрессоры поршневого типа. Поршневой компрессор снабжен электродвигателем с вертикальным валом. Конструкция изолируется герметичным кожухом. Включенный мотор запускает коленчатый вал, который, вращаясь, двигает поршень.

Поршнем хладагент откачивается из испарителя и нагнетается в конденсатор.

Ремонт холодильников и замену компрессора можно произвести самостоятельно, установив причину неисправности. Если после включения в сеть компрессор нагревается, скорее всего вышло из строя реле терморегулятора. Замена реле компрессора холодильника осуществляется даже дилетантом. Мотор при запуске холодильника внезапно без причины отключается? Замену мотора компрессора холодильника лучше оставить профессионалам.

Ремонт компрессора холодильника

Но можно попытаться заменить компрессор целиком.

Ознакомьтесь с видео и фото поэтапного процесса замены компрессора холодильника своими руками.

После подготовьте необходимый инструмент:

  • кислородно-пропановая горелка;
  • два вентиля: для прокалывания и отбора хладагента;
  • течеискатель;
  • термометр электронный;
  • труборез небольшого размера;
  • фильтр-осушитель:
  • медная трубка 6 мм;
  • припой;
  • флюс;
  • пережимные клещи;
  • муфта Ганзена;
  • зарядный цилиндр;
  • емкость-накопитель для фреона;
  • новый компрессор.

Соблюдайте меры безопасности. Не начинайте работу при включенном устройстве. Ремонтная аппаратура должна быть заземлена. Работа производится с газом — помещение должно хорошо проветриваться. Освободите холодильник, чтобы вы могли легко его приподнимать и поворачивать.

При замене компрессора холодильника Атлант, любого другого холодильного аппарата необходимо слегка выдвинуть компрессор. Приподняв его, отломить заправляющую фреон трубочку, предварительно надрезав ее напильником.

Затем нужно выпустить газ. Включите холодильник не более, чем на 5 минут. Хладагент переместится в конденсатор. Присоедините прокалывающий вентиль с подсоединенным к нему шлангом от баллона, открутите его на 30 секунд. Газ соберется в емкость.

На место отломанной трубки припаяйте медную. Здесь задействуется газовая горелка, за неимением горелки – подойдет паяльник. На капиллярном расширителе выполняется надрез в несколько сантиметров, чтобы отломить трубку и отпаять от конденсатора фильтр. Компрессор присоединяется к холодильной установке двумя трубочками (одна — для нагнетания давления, другая – для удаления лишнего газа).

Его нужно отпаять от этих трубок или отрезать труборезом. Фильтр-осушитель отсекается на расстоянии 15 мм от конденсатора. Снимите пускозащитное реле. Демонтируйте компрессор и извлеките его из холодильного шкафа. Перед началом пайки нового компрессора зачистите трубопровод.

При установке нового компрессора все действия повторяются в обратном порядке:

Ваш холодильник готов к работе, запустите мотор. После нужно проконтролировать функционирование реле. Если оно запускается, значит вы справились с выполнением задачи.

Приобретя положительный опыт своими руками, вы теперь можете давать советы, если подобная проблема возникнет у кого-то из ваших близких или друзей. А в тяжелые времена можно подзаработать, выполнив теперь уже не сложную для вас операцию по ремонту холодильного аппарата.

Осуществить ремонт холодильника можно собственноручно, но для этого нужно обладать определёнными навыками и знаниями. Важную часть подготовки к ремонту составляет диагностика, а для этого необходимо знать принцип работы холодильника. Попробуем разобраться, как организована схема работы этого распространённого бытового устройства.

Холодильник можно поделить на три большие составные части. Выход из строя одного блока делает неработоспособным весь холодильник, но не влияет на рабочее состояние других элементов. Морозильный аппарат состоит из испарителя, конденсатора и компрессора. В состав компрессора входит реле и мотор.

Система работы имеет замкнутый характер. Хладагент выкачивается из испарителя при помощи компрессора, а затем подаётся им под воздействием высокого давления в конденсатор. В конденсаторе он подвергается охлаждению, способствующему переходу из газообразного состояния в жидкое, а затем вновь перемещается в испаритель, стекая естественным путём. Так работа повторяется непрерывно.

В отличие от остальных компонентов, компрессор не находится постоянно во включенном состоянии. Он приходит в рабочее состояние по сигналу от температурного датчика, когда температура в холодильнике превышает допустимую норму. В такому случае реле приводит в движение мотор, вследствие чего компрессор начинает выполнять свою рабочую функцию. Когда температура начинает соответствовать норме, реле отключается.

Первым внешним признаком неправильной работы компрессора является повышение температуры в холодильной камере, вплоть до её размораживания. Прежде, чем приступать к ремонту компрессора своими руками, нужно разобраться, в чём именно состоит неисправность данного устройства. Подобраться к компрессору не так просто — он герметично закрыт кожухом, где находится в масле.

Большинство компрессоров имеют схожее между собой устройство. Главными составляющими являются мотор и пусковое реле. Реле замыкается при поступлении сигнала от датчика и запускает мотор. Если мотор не запускается, то система не функционирует. В большинстве случаев проблема при неработающем компрессоре заключается именно в моторе. В такой ситуации требуется поставить новый мотор, чуть реже нужна полная замена компрессора холодильника. Разберём случаи, когда ремонт и замену компрессора холодильника осуществить проще всего.

Причиной неисправности может служить кабель, не так редко источником серьёзных проблем становится банальный обрыв. Замена кабеля является самой простой ситуацией из тех, когда может пригодится ремонт. В любом случае, перед началом каких-либо работ своими руками требуется проверить ток и сопротивление, чтобы не получить травму.

Чтобы проверить сопротивление, нужно найти место без краски или немного стереть её своими руками. Приложите мультиметр к контакту и к корпусу, прибор не должен показывать никаких значений, в противном случае дальше делать ремонт компрессора холодильника своими руками достаточно опасно. При дальнейшей работе с мотором и пусковым реле следует соблюдать меры предосторожности.

Для проверки тока необходимо рабочее реле, то есть перед началом испытаний вы должны быть уверены в его работоспособности. Проверять ток удобнее всего мультиметром, где контакт осуществляется клещами. При мощности двигателя в 140 Вт, ток равняется 1,3 Ампера. Соотношение величин остаётся таким же при других показателях мощности двигателя.

Все неисправности в работе устройства можно условно поделить на два вида. В первом случае всё работает на первый взгляд хорошо, то есть мотор гудит, лампочка горит. Причиной может быть утечка хладагента, проверить это достаточно просто своими руками. Достаточно потрогать конденсатор, он должен быть очень горячим. При утечке хладагента конденсатор будет комнатной температуры. Второй распространённой причиной является поломка терморегулятор, то есть сигнал о повышении температуры просто не поступает.

Если холодильник совсем не включается, то в 20% случаев проблема сводится к поломке мотора. Если же мотор исправен, но необходимо произвести ремонт компрессора холодильника своими руками, нужно последовательно проверить главные элементы — термодатчик и реле. Каждое устройство при поломке подлежит замене. Если всё работает хорошо, менять надо сам компрессора, расскажем, как это сделать своими руками.

Чтобы осуществить ремонт компрессора своими руками, нужно подготовить соответствующие инструменты:

  • накопитель для фреона;
  • вентили для прокалывания и отбора;
  • горелка.

Горелку рекомендуется использовать кислородно-пропановую. Теперь нужно отключить устройство от электрической сети, освободить его от продуктов и ящиков с решётками, а затем приступить к выполнению ремонтных работ.

Компрессор нужно выдвинуть и немного приподнять и надломать заправочную трубу. Устройство запускается на пять минут, в течение которых фреон полностью переходит в конденсатор. Подключается прокалывающий вентиль, к которому подсоединяется шланг от баллона. Вентиль откручивается на 30 секунд, этого времени хватит, чтоб собрать весь газ.

Вместо заправочной трубы необходимо припаять медную, именно для этих целей используется горелка, но можно воспользоваться и обычным паяльником. Затем на капиллярном расширителе делается надрез длинной несколько сантиметров, затем трубка ломается, а фильтр отпаивается от конденсатора.

Теперь нужно полностью отсоединить компрессор от труб (чаще всего их две — для нагнетания давления и отсасывания лишнего газа), то есть компрессор необходимо отпаять. Для установки нового компрессора необходимо повторить все действия в обратном порядке. После всех работ убедитесь, что работает реле. Если запуск произошёл успешно, значит всё было выполнено правильно.

Если в доме неожиданно выходит из строя холодильник, вы не можете игнорировать эту неприятность. Часто поломка случается в самый неожиданный момент. Вызов мастера может стоить недешево, а денег, увы, нет. Остается единственный выход — ремонт холодильника своими руками. Главное, правильно диагностировать поломку и четко следовать советам профессионалов.

Создание первой бытовой модели электрического холодильника произошло в 1913 году. В этой модели применялись весьма токсичные вещества для охлаждения. В 1926 году Альберт Эйнштейн и Лео Силард представили конструкцию абсорбционного холодильника, в котором использовалось безвредное спиртовое топливо.

В том же 1926 датчанин Кристиан Стинструп представил безвредную и бесшумную модель холодильника. Компания General Electric запатентовала это изобретение, после чего уже в 1927 году была выпущена первая известная модель Monitor — Top. Было продано более миллиона холодильников этой модели.

С 1930 года в домашних холодильниках стал использоваться фреон. В 1940-х годах в холодильниках появились морозильные отделения. В 1950-х годах стала доступна функция размораживания.

Перед тем как отремонтировать холодильник необходимо понять основные принципы его устройства и работы. Выработку холода производят четыре основных составляющих:

  1. Конденсатор — узел, отвечающий за отдачу тепла.
  2. Испаритель — механизм, отбирающий тепло из камеры.
  3. Компрессор — агрегат, генерирующий требующуюся разницу давлений.
  4. Хладагент (фреон, хладон) — газ без цвета, передающий тепло конденсатору от испарителя.

Работа холодильника координируется встроенными электроприборами:

  • пускозащитное реле, регулирующее запуск двигателя;
  • термостат, отвечающий за автоматическое включение и выключение;
  • электрический мотор компрессора;
  • система оттаивания, которая предотвращает возникновение изморози на испарителе;
  • датчик открытия двери, отвечающий за включение и выключение света при открытии или закрытии.

Стенки холодильной камеры охлаждаются компрессором, который благодаря электромотору выкачивает хладагент, а конденсатор этот газ нагнетает. Радиаторы охлаждают газ и возвращают его в испаритель. Когда термостат фиксирует повышение температуры в камере, реле производит запуск компрессора. Хладагент имеет отрицательную температуру кипения, что позволяет ему забрать имеющееся тепло внутри холодильной камеры, закипеть, отдать тепло во внешний мир и снова превратиться в жидкость.

Если у вас возникает потребность в ремонте холодильника Индезит своими руками либо устранении неполадок в моделях любой другой торговой марки, можете смело использовать советы этой статьи для любых современных холодильников. Особой разницы в принципах работы, поиске неполадок и их устранении между разными моделями не замечено.

Перед тем как починить холодильник самостоятельно, необходимо выяснить точную причину поломки. Это позволит оценить размер проблемы и возможность ее самостоятельного устранения. Может быть, своими руками произвести ремонт будет технически невозможно и придется воспользоваться услугами сервисного центра.

Перед началом работы необходимо напомнить, что любые действия по диагностике и ремонту электрических приборов необходимо производить, предварительно прекратив подачу тока. Рассмотрим распространенные поломки холодильника, методы их диагностики, а также правильные варианты решения этих проблем.

Самой серьезной проблемой, которая может обнаружиться при диагностике неисправностей, является поломка компрессора. Можно уверенно сказать, что замена компрессора в холодильнике своими руками, как и его ремонт, невозможна и, скорее всего, придется менять холодильник.

Чтобы проверить исправность компрессора, нужно открутить заднюю нижнюю крышку, под которой он находится. Можно сразу увидеть группу контактов, с помощью которых компрессор подключается к питанию. Зеленый и желтый провода являются заземлением, первый коричневый и синий — питаются от сети, второй коричневый и черный — питают компрессор.

Необходимо отсоединить все провода и замкнуть два коричневых контакта. Затем включаем в розетку. Если компрессор не заработал, придется купить другой холодильник.

Подавляющее большинство современных холодильников оснащены системой No Frost. Следующим этапом диагностики будет проверка вентилятора, разгоняющего холодный воздух в морозильной камере. Вентилятор всегда соединяется с компрессором, чтобы в случае поломки вентилятора трубки испарителя преждевременно не обмерзли.

Необходимо открыть морозильную камеру и снять заднюю стенку с расположенным на ней вентилятором. Он имеет лишь два контакта, к ним надо подать питание. Для этого вполне подойдет обрывок любого шнура. Если вентилятор не заработал, необходимо произвести замену.

Предохранитель расположен в морозильной камере. Он представляет собой маленький цилиндр из металла, который находится в прозрачном пластике. Его необходимо отсоединить и проверить стандартным тестером, в случае неисправности потребуется заменить предохранитель.

Термостат отвечает за поддержание необходимой температуры внутри холодильной камеры. В зависимости от температурных показаний термостат включает и выключает электрический мотор компрессора. В случае его поломки холодильник либо прекратит работу, либо будет работать безостановочно.Какотремонтировать

Термостат находится внутри холодильной камеры. Его можно отличить по наличию регулятора температуры. Вам надо снять термостат и замкнуть подходящие к нему провода напрямую. В том случае, если работает мотор — необходима замена термостата.

Главной причиной выхода из строя этого реле являются перебои напряжения в сети. В таком случае холодильная камера просто прекращает работу.

Реле располагается на компрессоре или рядом. Его можно отличить по пластиковому корпусу. Диагностировать неисправность можно по наличию оплавленных контактов или нагара на корпусе. Необходимо отсоединить реле, предварительно зафиксировав схему подключения контактов. Замена этой детали не должна стать особой проблемой.

Есть некоторые виды неисправностей, которые можно отремонтировать самостоятельно.

Из этого факта можно сделать вывод, что произошел прорыв дренажной трубы. Система водоотвода доставляет лишний объем конденсата в специальный резервуар. Если в трубе появляется трещина, то конденсат будет течь на дно холодильника.

Необходимо внизу холодильной камеры вытянуть заднюю панель. Под ней можно увидеть пластиковую трубку, соединенную с отверстием стока. Надо обнаружить место утечки воды и произвести паяльные работы. Также можно просто заменить трубу вручную.

Иногда случается сдвиг дренажной трубы. В этом случае ее необходимо просто поставить на место.

Также бывает необходимо совершить чистку дренажной трубы. Для этого лучше всего использовать мягкую щетку с длинной ручкой. Для очистки стока запрещается использование щетки с металлическим покрытием или химические чистящие средства.

Рекомендации этой статьи касаются диагностики и замены целых частей холодильника. Заниматься ремонтом таких узлов, как термостат или реле под силу лишь профессионалам. Наверное, обычным людям это и не нужно, ведь на сегодняшний день в каждом городе есть множество специализированных магазинов, где можно приобрести практически любую деталь.

Эта статья приводит примеры самых распространенных вариантов поломок. Безусловно, есть множество нюансов диагностики и ремонта, о которых можно написать учебник. Возможно, вы не получили исчерпывающий ответ, как отремонтировать холодильник своими руками. Видео в интернете помогут вам разобраться в возникающих вопросах.

Спасибо за советы. Нынешние цены располагают включать голову. Сломался термостат. Точнее, после прочтения статьи и диагностики я понял, что сломался термостат. Теперь смогу его заменить. Вызов мастера ударил бы по карману.

В системе «No Frost «поломка видна сразу — на радиаторе будет много льда. Он не даст воздуху поступать в камеру.

Вода потекла из холодильника. Нет денег на ремонт. Буду паять эту трубу сам. Не знаю, получится или нет…

Несмотря на то, что современные холодильники достаточно надежные и способны служить несколько десятков лет, они тоже периодически выходят из строя. Решать проблемы с бытовой техникой стоит сразу же. С некоторыми неполадками можно справиться своими силами, а другие требуют вмешательства специалистов.

К типичным неполадкам, с которыми можно справиться своими силами, относятся:

  • появление посторонних звуков и дребезжание;
  • недостаточное или сильное охлаждение продуктов питания;

А вот к серьезным проблемам, которые требуют вмешательства профессионалов, относятся:

  • пробивание током через кожух;
  • отключение прибора сразу после его включения;
  • образование снежной шапки на задней стенке;
  • прекращение работы мотора — компрессора;
  • отсутствие охлаждения.

Чаще всего, как бы это не казалось банально, дребезжание агрегата вызывает неправильно отрегулированная подвеска кожуха компрессора. Чтобы решить проблему, достаточно опустить болты подвески с пружинами до необходимого уровня.

Также дребезжание оборудования может быть вызвано соприкосновением корпуса изделия с трубопроводами. Решается это обнаружением проблемных мест и отодвиганием трубок. Вызывать дрожание может и реле. Чтобы устранить проблему, стоит убедиться, что оно расположено правильно и согласно специальным меткам.

Если холодильное оборудование стало сильно или слабо морозить, потребуется проверить сразу несколько показателей:

Иногда потребители сталкиваются с проблемой, что холодильное оборудование бьется током. Это может происходить как и во время его работы, так и в спокойном состоянии.

Внимание: пользоваться прибором, который бьет током, опасно для жизни. Немедленно отключите его от сети и либо самостоятельно устраните неполадку, либо вызовите мастера.

Для самостоятельного устранения неполадки вам потребуется специальный прибор — мегомметр, с помощью которого измеряется величина сопротивления изоляции электропроводки холодильника. Рабочий процесс будет выглядеть следующим образом:

  1. Отключите агрегат от сети и проверьте провода на отсутствие видимых дефектов.
  2. Если изъянов на проводах вы не заметили, потребуется еще один прибор — «Земля». Его провод подсоединяется к корпусу холодильника, а второй провод- «Линия», к проводу холодильника. Провод «Линия» поочередно подключается к проводам терморегулятора, реле и компрессора, и на экране отобразится излишнее сопротивление.
  3. После того, как место неисправности будет вычислено, поврежденный провод потребуется заменить новым или тщательно заизолировать.

Холодильник может начать беспрерывно работать, если в помещении будет постоянно повышена температура воздуха или неправильно выставлена ручка терморегулятора. При таких условиях оборудование будет работать на полную мощность. Если терморегулятор выставлен правильно, а агрегат работает на полную мощность без перерыва, значит, он просто вышел из строя и его необходимо заменить. Также проблема в постоянной работе мотора компрессора может заключаться в утечке хладогена. Определить это можно только с помощью специального прибора. Самостоятельно отремонтировать оборудование, не имея навыка и необходимых расходных материалов, нельзя. Здесь стоит обратиться в мастерскую.

Тепловое реле часто срабатывает по разным причинам:

  • повышено напряжение в цепи электродвигателя;
  • реле плохо закреплено;
  • контакты реле окислились;
  • имеются неисправности пускового реле;
  • заклинивает компрессор.

Важно: чаще всего тепловое реле часто срабатывает по причине повышенного напряжения в цепи электродвигателя. Если вовремя не устранить проблему, перегорит его обмотка.

Попробовать исправить поломку можно, если проверить напряжение в сети электродвигателя. Если оно стабильно, проверьте реле. Для этого мотор подключается напрямую без реле. Если после проведенных манипуляций оборудование начинает работать исправно, потребуется заменить реле.

Иногда в двухкамерных холодильниках на стенках появляется лишняя влага в виде капель воды или снежной шубы. Произойти это может по причине долго открытых дверей, или если уплотнитель потерял эластичность. Также это может быть спровоцировано тем, что в агрегат ставится горячая еда. Исправление случившейся ситуации начинается с проверки всех настроек в системе охлаждения.

Довольно часто в современных моделях шуба на стенках появляется при отключении внутренней подсветки. Увидеть, работает ли подсветка после закрытия дверцы, невозможно. Чтобы проверить, горит лампочка или нет, подложите тонкий предмет между стенкой оборудования и уплотнителем и закройте дверь. Сквозь образовавшуюся щель вы сможете определить, светится лампочка или нет. Если она не горит, то отремонтируйте систему освещения или замените кнопку — выключатель, которая выходит из стенки по направлению к двери.

Если после подключения агрегата к сети он не издает никаких звуков, значит, холодильник полностью не работает. Это чаще всего связано с отсутствием тока в сети электроснабжения или с выходом из строя шнура холодильника. Если ток есть, достаточно просто заменить шнур или вилку.

Если холодильное оборудование работает, но с коротким циклом, это может провоцировать:

  • высокое давление;
  • наличие воздуха в системе;
  • избыток фреона;
  • срабатывание реле;
  • грязный вентилятор;
  • выход из строя вентилятора.

Для устранения неполадок необходимо проверить, правильно ли подключен вентилятор. Если в системе присутствует небольшое количество воздуха или наблюдается переизбыток фреона, их потребуется стравить через клапан. Не забудьте проверить конденсатор на наличие загрязнения пылью. Частое срабатывание реле низкого давления приводит к засорению фильтра или поломки ТРВ. В таком случае следует просто очистить фильтр или заменить его новым, проверить настройки реле.

Собираться влага на дне холодильника может по причине нарушения положения трубки или ее засорения. Справиться с поломкой можно довольно оперативно, если прочистить трубку, отводящую воду в специальный приемник, с помощью длинной и гибкой проволоки. Проволока вставляется в трубку и продвигается по отверстию к днищу агрегата. Через несколько минут рабочего процесса, весь мусор выйдет в приемник для воды.

Внимание: чтобы полностью очистить трубку, лучше промыть ее методом спринцевания несколько раз.

Неприятный запах появляется в холодильнике от его неправильной эксплуатации. Для этого не рекомендуется размещать в нем продукты с резким запахом без специальных контейнеров, вовремя протирать стенки прибора и следить за его чистотой.

Если же неприятный запах все же появился в приборе, от него надо быстро избавиться. Так как это плохо скажется на всех продуктах, которые в нем хранятся. Этот процесс может занять несколько часов вашего свободного времени:

  1. Отключаем агрегат от сети и оставляем на некоторое время. Если на стенках образовался ледяной покров, снимать его силой не рекомендуется. Так как мы можем нанести механические повреждения технике.
  2. После того, как оборудование полностью разморозится, протираем его стенки специальными средствами. Порошковые абразивные смеси выбирать не стоит. Лучше остановите выбор на гелиевых пастах.
  3. Протираем холодильник насухо чистой тряпкой, проветриваем его 5-10 часов.
  4. Включаем агрегат в розетку и продолжаем его эксплуатацию.

В некоторых моделях холодильников довольно часто перегорают лампочки в подсветке. Их замена не должна вызвать трудностей. Достаточно просто открутить болт, держащий плафон, снять его и выкрутить сгоревшую лампочку. На ее место вкручивается новая лампа, мощность которой не должна превышать 15 Вт., и закрепить плафон на место.

Прежде, чем приступить к ремонту холодильного оборудования, необходимо провести его диагностику, чтобы понять, можно справиться с поломкой своими силами или стоит прибегнуть к помощи специалистов.

  1. Для диагностики оборудования в домашних условиях, потребуется подготовить универсальный тестер и отвертку. Начинается диагностика с определения качества напряжения в сети. Если оно составляет 220 Вт, значит, все в норме. Если же напряжение меньше этого показателя, это может стать основной причиной выхода бытового прибора из строя.
  2. Далее внимательно изучаем шнур и вилку агрегата на целостность. На нем не должно быть дефектов, он не должен нагреваться при работе.
  3. Далее осматриваем клеммы на компрессоре. Делать это лучше при отключенном от сети оборудовании.
  4. Осматриваем компрессор, который располагается в нижней задней части холодильника. На нем не должно быть дефектов и повреждений. После зрительного осмотра проверяем обмотку. Перед осмотром необходимо отсоединить гибкие провода. Проверить цепь обмотки на целостность необходимо с помощью тестера.
  5. После этого можно перейти к диагностике мелких деталей — температурного датчика. Для этого с помощью отвертки снимается и отсоединяется проводка. Каждый провод проверяется на работоспособность тестером.

Все неисправности холодильного оборудования делятся на две части:

  1. Не проводится охлаждение внутренней камеры при нормальном запуске двигателя. Чаще всего поломка заключается в основных составных частях оборудования.
  2. Агрегат не включается или включается на короткий срок, а потом — отключается. Здесь проблемы связаны с неисправностью электрической схемы бытового прибора.

В первом случае ремонтом должны заниматься только высококвалифицированные мастера, так как провести диагностику и ремонт можно только с помощью специального оборудования и многолетних навыков.

А вот если у агрегата вышел из строя электрический механизм, то решить проблему можно и своими силами — после проведения диагностики, выявления причин поломки и замены вышедшей из строя запчасти.

В заключение хочется отметить, что каждый агрегат, даже от производителя с мировым именем, может в какое время перестать работать. Чтобы отремонтировать холодильник, необходимо разобраться, в чем дело, приобрести нужную деталь и запастись свободным временем. Если особого опыта в ремонте бытового оборудования у вас нет, лучше обратиться к мастерам своего дела, которые решат все проблемы оперативно и качественно.

Монтаж винтовых свай своими руками: выполнение расчетов по установке, правила монтажа. Конструктивные особенности и достоинства винтовых свай.

Описание принципа работы и устройства насосной станции, характеристика основных видов поломок, ремонт своими руками. Замена вышедшей из строя мембраны. Руководство по монтажу и эксплуатации системы.

Керамическая кран-букса: что это, конструкция, ремонт своими руками

Ни один современный человек не представляет своего быта без холодильника: это устройство стало залогом безопасной и удобной жизни, полноценного и вкусного питания. Любая поломка этого бытового прибора становится настоящей катастрофой.

Причин возникновения неисправностей может быть множество, и одной из самых частых является поломка компрессора. Эта проблема является действительно критичной, так как при поломке компрессора холодильник попросту не запускается.

Одним из ключевых симптомов проблем с компрессором являются его попытки запуска мотора, который выключается спустя десять секунд работы. Причиной такой неполадки может стать нарушение целостности внутренней обмотки компрессора, а также западание клапанов.

Оптимальным способом решения проблемы является полная замена компрессора. Эта процедура может быть осуществлена только опытным профессионалом. В замену компрессора входит также заправка его фреоном в соответствии с прежним объемом.

Вне зависимости от специфики неполадок, мы осуществляем как ремонт деталей компрессора, так и полную его замену в случае неисправности всего компрессора.

Мы работаем быстро и качественно, в случае необходимости осуществляя и срочный ремонт техники. Наши опытные профессионалы берутся за работу любой сложности, одинаково легко справляясь как с типичными поломками, так и с нестандартными ситуациями.

Мы обладаем инструментами и навыками, недоступными при попытках осуществить самостоятельный ремонт компрессора холодильника.

Работа с нами финансово выгодна, так как мы осуществляем бесплатную диагностику, и лишь потом беремся за ремонт оборудования, устанавливая на него весьма демократичные расценки. Кроме того, у нас действует система скидок, неизменно радующая наших клиентов выгодными предложениями.

Мы используем оригинальные запчасти и предоставляем двухлетнюю гарантию на все виды работ. Более того, если ремонт по каким-либо причинам оказывается нецелесообразным (например, из-за возраста устройства или необходимых затрат на него в сравнении с приобретением новой техники), мастер предупредит вас об этом еще до начала ремонтных работ — таким образом, у вас всегда будет возможность принять оптимальное в каждой ситуации решение.

Видео по замене компрессора холодильника

Автор статьи: Антон Кислицын

Я Антон, имею большой стаж домашнего мастера и фрезеровщика. По специальности электрик. Являюсь профессионалом с многолетним стажем в области ремонта. Немного увлекаюсь сваркой. Данный блог был создан с целью структурирования информации по различным вопросам возникающим в процессе ремонта. Перед применением описанного, обязательно проконсультируйтесь с мастером. Сайт не несет ответственности за прямой или косвенный ущерб.

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 4.8 проголосовавших: 6

Изготовление самодельного насоса из компрессора

Библиографическое описание:

Кузьмин, А. Н. Изготовление самодельного насоса из компрессора / А. Н. Кузьмин, С. Н. Корнилова. — Текст : непосредственный // Юный ученый. — 2017. — № 1.1 (10.1). — С. 57-59. — URL: https://moluch.ru/young/archive/10/666/ (дата обращения: 16.03.2021).



Цель работы: изготовить самодельный насос из компрессора для накачивания шин в домашних условиях

В ходе работы необходимо выполнить следующие задачи:

1) изучить принцип работы холодильного компрессора и заводские образцы насоса;

2) собрать экспериментальный образец устройства;

3) провести практическое исследование самодельного насоса

Практическая значимость данной работы в том, что разработанный насос можно использовать в быту.

Новизна: Разработан эффективный и компактный насос для использования в технической работе.

Объект исследования:изготовление самодельного насоса для накачивания шин из компрессора холодильного устройства.

Актуальность работы заключается в том,что в наше время почти все население приобретают готовый товар, только единицы — самостоятельно изобретают приборы для использования в домашнем быту. Причиной этого может быть незнание и неумение изобретать из ненужного материала — нужную вещь.

Гипотеза: если самодельно изготовить насос, то можно не только сэкономить личное время, но денежные средства.

Мало кто задумывался, что из старого ненужного холодильника можно изготовить нужные вещи, которые можно использовать в быту. Из холодильного компрессора мы сконструировали самодельный насос. Так как в наше современное время у большинства людей имеется автомобиль, который требует постоянного ухода за ним. Каждый владелец своего транспортного средства тратит большое количество денег на ремонт, в том числе на услуги шиномонтажа. И поэтому для экономии денежных средств, мы сконструировали самодельный насос из компрессора холодильного устройства.

Данный насос используется в домашних условиях для накачивания надувных вещей: шины автомобилей, резиновых лодок, шариков, надувных матрасов и т. д.

Алгоритм сбора самодельного насоса

Рис.1. Холодильник полностью разбирается, снимается с него компрессор вместе со всеми проводами.

Рис. 2. Подключаем к клемме любой электрический провод

Рис. 3. В задней части компрессора вставляем шланг

Рис. 4. Первый эксперимент: с помощью самодельного насоса накачали воздушный шар

Рис. 5. Второй эксперимент: накачали колесо мотоцикла

Рис.6. Третий эксперимент: накачали колесо автомашины

Выводы по проделанной работе.Врезультате исследовательской работы мы: изучили принцип работы холодильного устройства и заводские типы насоса; сконструировали самодельный насос из старого холодильного устройства; проверили экспериментальным путем работу самодельного устройства; рекомендовали его использовать в домашних и технических условиях.

После проведенной исследовательской работы мы пришли к заключению, что насос из компрессора холодильника можно сделать своими руками, при этом можно сэкономить на семейном бюджете. При дальнейшей эксплуатации автомобильного транспорта, при наличии компактного и эффективного устройства, можно не тратить лишних денег на услуги шиномонтажа.

Литература:

  1. www.fbh.ru
  2. geofrost.ru/articles/95
  3. холодильный компрессор(ru.wikipedia.org.википедия)
  4. www.xiron.ru. Компрессоры холодильных установок.
  5. www.mogilev.by. Электрический насос.
  6. www.stroi- baza.ru

Основные термины (генерируются автоматически): самодельный насос, холодильное устройство, накачивание шин, принцип работы, услуга шиномонтажа, холодильный компрессор.

холодильное оборудование и расходные материалы

Масло, применяемое для смазки холодильных компрессоров, очень хорошо смешивается с обычными хладагентами.

Сильная близость свойств масла и хладагентов является причиной многочисленных и, как правило, малоизученных проблем, которые могут вызывать механические (разрушение клапанов, заклинивание компрессора…), электрические (перегорание двигателя) и термодинамические (недостаток холодопроизводительности, нежелательные срабатывания предохранительных систем…) неисправности и поломки.

Предметом настоящего раздела является получение ответов на многочисленные вопросы, встающие перед большинством ремонтников.

А) Почему масло увлекается хладагентом?

Все подвижные части поршневоrо компрессора (кривошипы, шатуны, цапфы, поршни…) требуют постоянной смазки, в противном случае они прижиrаются друr к друry, вызывая полное заклинивание.

В частности, в смазке нуждаются трущиеся между собой поршни и цилиндры (точнее, поршневые кольца и цилиндры). Напомним, что при скорости двиеателя 1450 об/мин поршни совершают более 24 возвратно-поступательных движений в секунду. При этом внутри цилиндров вместе с хладагентом обязательно должно находиться масло.
В процессе нормальной работы, даже если компрессор новый или имеет безупречное механическое состояние, это неизбежно приводит к тому, что каждый раз вместе со сжатыми газами из цилиндра уходит в виде масляноrо тумана, состоящеrо из мельчайших капелек, какое-то очень небольшое количество масла (см. рис. 37.1).

Дополнительно к этому в периоды, когда компрессор стоит, масло, находящееся в eгo картере, неизбежно поглощает какое-то количество хладагента в зависимости от температуры масла и процедуры остановки компрессора.


Когда компрессор вновь запускается, резкое падение давления в картере вызывает быстрое вскипание хладагента, растворённомго в масле и, следовательно, образование газомасляной эмульсии (т. н. эффект «вспенивания»).

Такая эмульсия всасывается поршнями и нагнетается в конденсатор. В результате в момент запуска из компрессора в контур уходит самое большое количество масла.

В) Какие проблемы возникают из за увлечения масла хладагентом?

Прежде всего, поскольку масло предназначено для смазки подвижных узлов компрессора, оно должно находиться не в контуре, а в картере.

Однако из за большой схожести свойств масла и хладагента невозможно воспрепятствовать тому, что какое-то количество масла регулярно проходит в нагнетающий патрубок компрессора.

Таким образом, с одной стороны необходимо по возможности максимально ограничить выброс масла из компрессора, а с другой стороны обеспечить, чтобы масло, которое ушло из компрессора, могло беспрепятственно возвратиться в картер для выполнения своих функций смазывающее о агента.

В самом деле, если количество вышедшеrо через нагнетающий патрубок масла будет превышать количество масла, вернувшегося через всасывающий патрубок (масло будет задерживаться в неудачно спроектированном контуре), то через какое-то время уровень масла в картере понизится до опасноrо предела, за которым нормальная смазка компрессора будет невозможной.

С другой стороны, если вместе с маслом в картер будет возвращаться аномально большое количество хладагента, его количество, растворенное в масле может стать очень большим. При запуске бурная дегазация масла, обусловленная резким падением давления в картере, приведет к образованию большоrо количества газомасляной эмульсии, что может вызвать срыв подпитки масляноrо насоса. Кроме тогo, образование большоrо количества эмульсии может привести к такому интенсивному выходу масла из компрессора, что к концу пускового режима картер окажется совершенно «пустым» и в течение более или менее продолжительноrо периода компрессор будет оставаться без нормальной смазки (характерное «вспенивание», которое сопровождает образование эмульсии, легко наблюдается в стекле указателя уровня масла). Поэтому настройка ТРВ на небольшой nepeгрев, уrрожая возможностью появления периодических гидроударов (самых легких), уrрожает также опасностью аномальных выбросов масла в контур.

Работа компрессора с повышенной частотой включений и выключении (либо в результате срабатывания предохранительных систем, либо по командам от системы регyлирования) также создает уrрозу опасного понижения уровня масла, поскольку при запусках оно выводится в контур наиболее интенсивно, а короткое время работы не дает ему возможности нормального возврата.

Заметим, что в этом случае положение не спасет даже предохранительный прессостат давления масла, который может быть установлен в компрессоре, поскольку он очень медленно реагирует на изменение давления, (собственное время eгo инерционности составляет около 2 минут), и повреждения, обусловленные плохой смазкой при каждом очередном запуске, могут накапливаться, приводя через более или менее длительный промежуток времени к непоправимым механическим разрушениям подвижных деталей компрессора.

Другая проблема возникает при неудачно спроектированной конструкции или прокладке трубопроводов, главным образом,всасывания. Действительно, вместо тогo, чтобы регyлярно возвращаться в картер компрессора, масло может накапливаться в застойных зонах или участках с отрицательным уклоном.
При опорожнении застойных зон масляная пробка может быть резко всосана компрессором, что приводит к сильному гидроудару, порождающему те же повреждения, что и обычный гидроудар.

Так, например, на рис. 37.2 вверху показано, что слишком большая длина L застойной зоны, в основном на всасывающей магистрали. приводит к тому, что в ней обязательно будет накапливаться значительное количество масла.
По мере накопления масла в застойной зоне eгo уровень в трубе повышается, приводя к уменьшению проходного сечения для газа и, следовательно, повышению потерь давления (Р1>Р2).

Давление Р2 будет падать до тех пор, пока разность давлений Р1 и Р2 не окажется достаточной для тогo, чтобы протолкнуть масляную пробку во всасывающую полость головки блока.

В этот момент в полость резко поступит большое количество масла. Такой прилив масла создает опасность возникновения сильногo гидроудара, последствия которого строго идентичны последствиям обычноrо гидроудара.

Очевидно, точно такие же проблемы могут возникнуть, если масло накапливается на участке трубопровода всасывания с отрицательным уклоном (см. рис. 37.2 внизу).

3аметим, однако, что опасность возникновения перечисленных проблем снижается, если всасывание производится через картер компрессора, а также если он оборудован эффективным устройством демпфирования гидроударов (отделителем жидкости).

Наконец, присутствие масла внутри трубопроводов создает на их внутренней поверхности тонкую изолирующую масляную пленку, что препятствует нормальному теплообмену между воздухом и хладагентом и снижает коэффициент теплоотдачи для конденсатора и испарителя.

Такое снижение интенсивности теплообмена особенно заметно в испарителе, где холодильное масло и хладагент легко разделяются из за низкой температуры.

Если в результате каких то проблем в холодильном контуре в негo попадает слишком многo масла, это может повлечь за собой снижение холодопроизводительности испарителя.
Причем потери холодопроизводительности могут быть столь значительными, что окажутся достаточными для тогo, чтобы появились признаки неисправности типа «слишком слабый испаритель» (в некоторых крайних случаях потери холодопроизводительности испарителя могут достигать 20%).

С) Влияние скорости газа в трубопроводах на процесс возврата масла

Вначале нужно напомнить, что в результате отличного перемешивания масла с хладагентом в жидком состоянии, циркуляция масла в конденсаторе и в жидкостной магистрали проходит без всяких проблем

Однако в магистралях всасывания и нагнетания хладагент находится в паровой (газовой) фазе, поэтому масло и хладагент склонны к разделению.

Следовательно, в этих магистралях могут возникнуть серьезные проблемы с перемещением масла, так как для eгo возврата в картер компрессора необходимо добиться свободноrо перемещения масла по холодильному контуру.

Проблема возврата масла имеет различную остроту в зависимости от расположения участков трубопроводов.

В горизонтальных участках (см. рис. 37.3) основная часть масла течет естественным образом в направлении наклона (если он существует). В отсутствие наклона, если скорость газа в трубопроводе низкая, масло стремиться под действием силы тяжести осесть на дно трубы и застаивается там.

Точно также, как скорость ветра порождает волны на поверхности моря, скорость хладагента над слоем масла порождает возникновение маленьких волн, которые перемещаются в направлении движения хладагента даже в отсутствие наклона, если скорость газа превышает 2,5 м /с

В вертикальных участках (см. рис. 37.4) проблема возврата масла немного осложняется действием силы тяжести, которая заставляет масляную пленку двиеаться вниз. Лоrично предположить, что на
вертикальных участках трубопроводов для преодоления силы тяжести и подъема масла в трубопроводе механическое воздействие газа на масло должно быть гораздо более значительным, чем на горизонтальных участках.

Действительно, эксперименты показывают, что масло легко поднимается в вертикальных трубопроводах, как всасывания, так и нагнетания, если скорость газа в них превышает примерно 5 м/с. С друrой стороны, если в какой то момент скорость газа в вертикальной трубке падает ниже 5 м/с, масло очень быстро остановится и начнет стекать вниз под действием силы тяжести.

ВНИМАНИЕ! Если диаметр вертикальной трубы больше 2 дюймов или если температура испарения
ниже 10° C, минимальная скорость газа, необходимая для подъема масла во всасывающих трубопроводах, расположенных вертикально, становится равной 8…9 м /с

3аметим также, что для всех горизонтальных трубопроводов рекомендуется минимальный наклон 12 мм/м в направлении движения потока.

Кроме тогo в общем случае считается, что скорость газа в трубопроводах не должна превышать 20 м/с с тем, чтобы сохранить в разумных пределах потери давления и уровень шума.


D) Влияние разности уровней на возврат масла

Первая проблема возникает, если конденсатор расположен над компрессором с разностью уровней более 3 метров.

При каждой остановке компрессора движение газа в маrистралях прекращается и масло, находящееся в вертикальном участке, под действием силы тяжести стекает вниз, создавая опасность ero накопления в нагнетающей полости головки блока.

Если высота компрессора над конденсатором превышает 3 метра (см. рис. 37.5), количество масла, которое может скопиться в этой полости, становится весьма значимым. Дополнительно к этому, из за тогo, что окружающая температура по сравнению с температурой нагнетания относительно невысока, при остановке компрессора может сконденсироваться более или менее значительное количество находящихся в магистрали нагнетания паров хладагента, и образовавшаяся жидкость также может стечь в полость нагнетания головки блока компрессора. Скопление там жидкоrо хладагента и масла создает опасность того, что при очередном запуске компрессора произойдет сильный гидроудар.

Точно такая же проблема возникает, если испаритель расположен ниже компрессора, поскольку при остановках последнеrо, масло, находящееся в восходящем трубопроводе, также стекает в нижнюю часть (см. рис. 37.6). Как и в случае нагнетающеrо трубопровода, количество накапливающеrося внизу масла становится значительным, если высота Н трубопровода превышает 3 метра.
Ситуация может еще более ухудшиться, если в застойную зону в нижней части восходящего трубопровода будет стекать масло, выходящее из испарителя, что в целом приведет к накоплению там значительного количества жидкости.

При запуске компрессора образовавшаяся в застойной зоне масляная пробка может попасть во всасывающую полость головки блока и спровоцировать возникновение сильного гидроудара.

Во избежание подобных гидроударов, являющихся причиной многочисленных поломок
клапанов, в тех случаях, когда разность уровней превышает 3 метра, необходимо в нижней части каждой восходящей трубы устанавливать маслоподъемную петлю, а горизонтальные участки прокладывать с наклоном в направлении движения потока.

На выходе из испарителя может возникнуть еще одна проблема, если жидкость, находящаяся в застойной зоне, представляет собой смесь масла с хладагентом (для получения такой смеси достаточно совсем немногo жидкоrо хладагента, вытекающеrо из испарителя в застойную зону при остановках компрессора). В момент запуска резкое падение давления во всасывающей магистрали вызывает очень бурное вскипание смеси в результате испарения хладагента, растворённого в масле.

При испарении хладагент поглощает тепло!

Необходимое тепло в значительной степени отбирается от трубопровода, что приводит к резкому падению eгo температуры. Иногда такое заметное охлаждение трубопровода может дойти до термобаллона ТРВ (см. рис. 37.6).

Тогда в момент запуска термобаллон может среагировать на резкое падение температуры и, следовательно, обусловить резкое закрытие ТРВ в особенно критический момент (в момент запуска давление конденсации понижено, также как и производительность ТРВ, и для тогo, чтобы как можно лучше запитать испаритель, необходимо, напротив. полное открытие ТРВ).

Таким образом, ТРВ аномально закрывается, пропуская ничтожно малое количество жидкости, и отключение компрессора предохранительным пресостатом НД обеспечено (неисправность легко обнаружить, дотронувшись до всасывающеrо трубопровода в месте установки термобаллона ТРВ).

Чтобы избежать таких проблем, настоятельно рекомендуется внизу любой восходящей магистрали всасывания, высота которой превышает 3 метра, устанавливать жидкостную ловушку (т. е. маслоподъемную петлю), и быть очень внимательным при прокладке трубопроводов, на которых будет установлен термобаллон, особенно тщательно соблюдая уклоны.

Мы уже увидели, что для обеспечения подъема масла по вертикальным участкам трубопроводов, скорость газа в них постоянно должна быть выше 5 м/с, какими бы ни были условия работы
Однако если разность уровней (высота Н на рис. 37.7) превышает примерно 7,5 м, проблема усложняется еще больше.

Начиная с этой высоты как на магистралях всасывания, так и на магистралях нагнетания, масляная пленка, поднимающаяся по стенкам трубопроводов, разрушается и отрывается от стенок, падая вниз под действием силы тяжести, даже если скорость газа выше 5 м/с.

Дополнительно к этому при нормальной работе каждый погонный метр трубопровода содержит какое-то количество масла.

Но чем больше растет разность уровней, тем больше повышается длина труб и тем больше возрастает содержание масла в этой трубе.


При большой разности уровней количество масла, стекающее вниз при каждой остановке компрессора, может оказаться настолько значительным, что полностью зальет маслоподъемную петлю, расположенную в нижней части восходящей трубы.

На восходящем трубопроводе нагнетания подобный наплыв масла при остановке компрессора создает опасность возврата масла в нагнетающую полость головки блока, если маслоподъемная петля окажется переполненной (см. схему на рис. 37.8).

Попадание масла в полость головки блока при очередном запуске компрессора может вызвать гидроудар, причем если существует опасность конденсации хладагента внутри трубопровода во время остановки компрессора, ситуация еще более ухудшается.

В восходящих трубопроводах всасывания, имеющих большую высоту, значительное количество масла, скапливающееся в маслоподъемной петле при остановке компрессора, во время очередноrо запуска может быть засосано в компрессор в виде масляной пробки и тоже привести к возникновению сильного гидроудара, смертельно опасноrо для клапанов (ситуация также может ухудшиться из за натекания в маслоподъемную петлю хладагента, выходящеrо из испарителя).

Во избежание перечисленных неприятностей, способных спровоцировать серьезные механические повреждения компрессора, в том случае, когда разность уровней очень большая, маслоподъемные петли необходимо устанавливать не более чем через каждые 7,5 метров восходящих трубопроводов как на всасывающей, так и на нагнетающей магистралях (см. рис. 37.9).

Такая конструкция позволяет маслу при работе установки подниматься от петли к петле и исключает
возможность возврата масла из верхней маслоподъемной петли в нижнюю.

Во время остановки в каждой маслоподъемной петле масло накапливается в разумных пределах, не переполняя ее.

3аметим, что разность уровней более 30 м совершенно не рекомендуется так как потери давления в трубопроводах такой высоты с 4-мя последовательно установленными маслоподъемными петлями становятся совершенно неприемлемыми (вообще-то соворя, всегда рекомендуется иметь как можно меньшую разность уровней).

Наконец, заметим, что установка маслоотделителя в нагнетающем трубопроводе компрессора (это техническое решение очень редко используется в воздушных кондиционерах) полностью не решает проблему возврата масла.

Действительно, даже тщательно подобранный и смонтированный маслоотделитель, несмотря ни на что будет пропускать от 1 до 2% масла, выходящеrо из нагнетающей полости компрессора.

Следовательно, все равно нужно обеспечить возврат этого масла в компрессор, и описанные выше требования к подбору и прокладке трубопроводов остаются в силе и для установок, оснащенных маслоотделителями.


Е ) Как изготовить маслоподъемную петлю?

Напомним, что маслоподъемная петля, обеспечивая улучшение процесса циркуляции масла в холодильном контуре, служит для удержания жидкости (масла или сконденсированноrо хладагента) в нижней части всех вертикальных трубопроводов, по которым хладагент циркулирует снизу вверх и длина которых превышает 3 метра.

Маслоподъемная петля не является емкостью для хранения жидкости и очень важно, что ее размеры должны быть как можно меньше с тем, чтобы уменьшить количество удерживаемой жидкости (место масла не в петле, а в картере компрессора) и избежать появления в контуре значительных масляных пробок, которые будут перемещаться по контуру (особенно во всасывающей магистрали компрессора).
Чтобы изrотовить маслоподъемную петлю, лучше всегo использовать покупной U-образный патрубок, если это возможно (радиус закругления очень небольшой), или два 90 градусных уrольника (но в любом случае сторона L должна быть как можно меньше, см. рис. 37.10).

Необходимо также всегда пунктуально соблюдать направление уклона (не менее 12 мм/м).

По мере накопления масла в маслоподъемной петле, eгo уровень
поднимается, снижая проходное сечение для газа, что вызывает
плавное повышение скорости газа.


Повышение скорости газа и eгo воздействие на поверхность масла способствуют разрушению этой поверхности (см. рис. 37.11) с образованием очень мелких капелек и увлечению масла в вертикальный трубопровод в виде масляноrо тумана и масляной пленки, которая продвиrается вперед по длине стенок трубопровода в результате механическоrо воздействия на нее проходящеrо газа (если eгo скорость не ниже 5м/с).


F) Проблема установок с переменной холодопроизводительностью

Эта проблема относится к установкам, в которых в процессе эксплуатации расход хладагента в контуре может меняться, например, когда имеется несколько параллельно работающих компрессоров, или когда может меняться число оборотов компрессора, или если регyлирование производительности осуществляется за счет исключения из работы отдельных цилиндров путем воздействия на всасывающие клапаны.
Действительно, если расход хладагента в контуре переменный и зависит от режима работы установки, скорость газа в трубопроводах также будет меняться. Для лучшего понимания рассмотрим в качестве примера установку, оборудованную двумя одинаковыми компрессорами, смонтированными в параллель, то есть установку с двумя ступенями мощности (100% или 50%).

Допустим, что диаметр восходящей магистрали этой установки с длиной 7 м был выбран из условия, чтобы при работе обоих компрессоров (при 100% расхода хладагента) скорость газового потока в магистрали была равна 6 м/с (см. рис. 37.12).

При полной мощности скорость газа выше 5 м/с и масло поднимается вполне нормально.


Однако, коrда один из двух компрессоров остановлен, расход хладагента вполовину уменьшается и падает примерно до 50% полного расхода. Поскольку диаметр трубы остался прежним, скорость газа в вертикальной трубе упадет примерно до 3 м/с, что не позволит маслу подниматься надлежащим образом.

Масло начнет накапливаться в маслоподъемной петле, закупоривая проходное сечение так, как если бы труба перекрывалась постепенно закрывающимся краном.

Разность давлений с одной и с другой стороны петли будет при этом обусловливать периодический подъем в трубе масляной пробки со всеми вытекающими из этоrо нежелательными последствиями, главным образом, если речь идет о всасывающей магистрали компрессора (опасность гидроудара, особенно на запуске).

Когда установка имеет несколько ступеней производительности, обусловливающих изменение расхода, диаметр трубопроводов, в которых хпадагент циркулирует снизу вверх, должен подбираться таким образом, чтобы обеспечь минимальную скорость газа не ниже 5 м/с при наименьшем расходе хладагента.

Однако в дальнейшем потребуется обеспечить более высокий расход, коrда установка начнет работать на 100% мощности. При этом нужно обеспечить следующие условия:

* Полные потери давления в трубопроводах (длина вертикальных участков + длина горизонтальных участков + местные сопротивления) не должны быть слишком высокими, то есть не выше перепада, эквивалентного температуре примерно 1 С, как для магистралей всасывания, так и нагнетания;
* Скорость газа никогда не должна превышать 20 м/с, так как это создает опасность возникновения в трубопроводах очень сильного шума.

Если диаметр трубопровода, выбранный исходя из условия обеспечения минимальной скорости газового потока не ниже 5 м/с при наименьшей мощности, становится слишком малым и приводит к значительным потерям давления при работе на полной мощности, возникает необходимость использования сдвоенных трубопроводов с тем, чтобы обеспечить бесперебойный подъем масла при любых условиях работы и при любом расходе хладагента.

При монтаже сдвоенных трубопроводов (см. рис. 37.13) диаметр малой трубы выбирается из условия обеспечения в ней скорости выше 5 м/с для минимальное о расхода хладагента.

Действительно, при пониженной мощности скорость газа в обеих трубах настолько мала, что масло не может подниматься и накапливается в маслоподъемной петле вплоть до полного перекрытия большой трубы.

С этого момента газ начинает проходить через малую трубу со скоростью, достаточной для нормального подъема масла. Обратная петля в верхней части трубопровода (поз.1 на рис. 37.13) предотвращает проход масла, поднявшегося по малой трубе, в большую трубу.

Когда мощность установки возрастет, повышение расхода хладагента протолкнет масло, собравшееся в ловушке, и газ вновь начнет циркулировать по обеим трубам.


Когда разность уровней большая, нужно устанавливать сдвоенные трубопроводы на каждом участке длиной не более 7,5 м, тщательно соблюдая изложенные выше требования и направления уклонов.

Тем не менее, несмотря на все, можно столкнуться с проблемой понижения уровня масла в картере компрессора установок с переменным расходом хладагента, даже если выбор диаметров и прокладка трубопроводов произведены по всем правилам.

Чтобы понять причину этоrо явления, рассмотрим в качестве примера 6 цилиндровый компрессор с тремя ступенями производительности (100%, 66% и 33%), обеспечиваемыми изменением числа действующих цилиндров, который расположен над испарителем.

Допустим, что при максимальной мощности (100%, задействовано 6 цилиндров) через нагнетающую магистраль компрессора вместе с хладагентом выходит 1,5 литра масла в час.


Поскольку конструкция установки и ее монтаж выполнены по всем правилам, вместе с хладагентом в компрессор возвращается такое же количество масла (то есть 1,5 л/час) и уровень масла по указателю уровня (см. рис. 37.14) находится в норме.

В какойто момент температура в охлаждаемом объеме падает и система реryлирования снижает производительность компрессора до 66% от номинала, исключая из работы 2 цилиндра (1 блок). Всасываемое компрессором количество хладаrента уменьшается и расход через компрессор падает до 66%

Но каждый килоrрамм приходящеrо в компрессор хладагента может содержать только cтpoгo определенное количество масла, которое не зависит от расхода, следовательно приход масла тоже упадет пропорционально падению расхода, то есть до 66% или примерно до 1 л/час (также, как и расход масла из компрессора).

Следовательно, через всасывающую магистраль в компрессор будет поступать с этого момента только 1 л/час масла, в то время как перед этим через магистраль нагнетания уходило 1,5л/час. Это значит, что количество масла, эквивалентное расходу 0,5 л/час, остается в контуре

Если компрессор расположен над испарителем, масло не может возвратиться в картер под действием силы тяжести. Следовательно, количество масла, эквивалентное расходу 0,5 л/час, остается в контуре, елавным образом, в испарителе, где падение температуры приводит к разделению масла и хладагента, и уровень масла в компрессоре падает (см. рис. 37.15).

Если система регyлирования переводит теперь компрессор на уровень 33% производительности, повторится точно такая же картина, поскольку расход хладагента станет еще меньше и будет уносить из компрессора еще меньше масла, однако и поступление масла во всасывающий патрубок тоже уменьшится.

В результате в контуре опять останется количество масла, эквивалентное eгo расходу 0,5 л/час, и уровень масла в картере вновь понизится (см. рис. 37.16).

Таким образом, если компрессор будет работать с мощностью 33% от наминала, количество масла, оставшееся в испарителе, окажется достаточным, чтобы уровень масла в картере заметно понизился. В этот момент, если задающий термостат отключит компрессор, ничто не позволит больше маслу, находящемуся в испарителе, возвратиться в картер.
При последующем запуске такая же картина будет повторяться всякий раз, когда компрессор будет переходить на режим пониженной производительности, а опасность понижения уровня масла будет еще более значительной вплоть до тогo, что обусловит либо серьезную механическую аварию из за плохой смазки, либо отключение компрессора датчиком давления масла (если он существует либо прохождение во всасывающую магистраль огромной масляной пробки (гyбительной для клапанов всасывания вследствие сильноrо гидроудара), если испаритель окажется слишком переполненным маслом.

Во избежание перечисленных явлений необходимо перед каждой остановкой компрессора по команде от регулятора каждый раз возвращать накопившееся в испарителе масло с тем, чтобы приеотовиться к последующему запуску.

Для этоrо остановки компрессора должны обязательно производиться с использованием метода
предварительного вакуумирования (см. раздел 29. Остановка холодильных компрессоров).

Замечание 1. В каждой маслоподъемной петле всегда остается более или менее значительное количество масла. Поэтому при первом запуске вновь собранной установки с большим числом ловушек считается допустимым понижение уровня масла в компрессоре.

Можно также перед запуском установки предварительно заполнить ловушки тем же маслом, что используется для смазки компрессоров.

Замечание 2. Постепенное исключение из обращения хлорфторуrлеродов CFC (RI2, R502…) и появление новых хладагентов серии фторуrлеводородов HFC (R134a, R404A…) с эфирными маслами вместо минеральных приводит к возникновению новых проблем в вопросах возврата масла (см. раздел 56. Проблемы, возникшие с появлением новых хладагентов).

Запчасти для холодильного компрессора

 

Выберите производителя:

 

Уважаемые покупатели!

Внимание! Цены на некоторые товары в нашем интернет-магазине могут незначительно отличаться от фактических, а также на отдельные позиции быть ориентировочными. Точную ЦЕНУ и НАЛИЧИЕ Вы всегда можете уточнить по телефону или отправить запрос через кнопку «БЫСТРЫЙ ЗАПРОС»!   

 

Нашли товар дешевле? Звоните! Дадим цену лучше!

 

 

Важно помнить:

      Используя для ремонта запчасти сомнительного качества, Вы можете заметно сократить срок службы Вашего компрессора!

     Приобретайте только качественные запчасти для поршневых компрессоров от проверенных поставщиков!


 

     Холодильное компрессорное оборудование уже более 100 лет служит на благо всего человечества. Будь то хранение ваших любимых продуктов в бытовом холодильнике или перевозка продукции на огромных кораблях-рефрижераторах, в обоих случаях главную работу выполняет компрессорное оборудование!

 

     Холодильные агрегаты, в особенности импортных производителей из Европы и США, таких, как Bitzer, Copeland, Frascold, Bock и многие другие, отличаются высочайшей надежностью и служат многие годы. Но столь высокие показатели работы будут радовать Вас только при условии соблюдения некоторых правил эксплуатации, а именно: проведение обязательной поточной диагностики, а так же своевременный ремонт и замена изношенных запчастей!

 

     Из всего вышесказанного можно сделать вывод, что бесперебойность и качество работы Вашего компрессорного оборудования целиком и полностью зависит от качества установленных на него запчастей и комплектующих.

 

     Всплывает вполне ожидаемый вопрос:

     — «Где купить качественные, но в то же время доступные запчасти для холодильного компрессора

 

     Чтобы найти ответ, давайте сначала разберемся, что нам предлагает рынок запчастей на сегодняшний день.

 

     Первым делом на ум приходит обычный рынок. Конечно, разнообразие будет велико как и риск наткнутся на некачественные запчасти для холодильных компрессоров местного (кустарного) производства!

 

     Мы настоятельно рекомендуем с осторожностью относиться к такому источнику запчастей для компрессоров, так как недобросовестно выполненная деталь, установленная на Ваш компрессор, может привести к более серьезным и дорогостоящим в устранении проблемам, вплоть до выхода из строя всего компрессора!

 

     В век высоких технологий и развития интернета, наилучшим вариантом будет обратиться в интернет-магазин, каким и является наш маркет «Compressor-shop».

     


Наша компания НЕ РАБОТАЕТ с непроверенными поставщиками и местным производством!


 

     Ввиду того, что на конечный чек не влияют такие затраты как: плата за аренду складских помещений рядом с магазином, аренда самого помещения магазина и многое другое, стоимость запчастей для компрессоров у нас будет значительно ниже!

 

     Основной профиль Compressor-Shop — это продажа импортных запчастей для холодильных компрессоров Bitzer, Copeland, Frascold, Dorin, BOCK и др.. Все запчасти поставляются заводами из Европы и США!

 

     Такие запчасти для холодильных компрессоров, как и оригинальные, отвечают самым высоким международным стандартам качества ISO и SDT. Но, в отличии от оригинальных, они значительно дешевле, ввиду отсутствия «налога за бренд». Таким образом, приобретение альтернативных комплектующих может в итоге принести экономию до 70%!

 

     На все запчасти для поршневых компрессоров, представленных в каталоге нашего магазина,

действует гарантия 12 месяцев!

 


ВНИМАНИЕ!!!

На запчасти предыдущей партии действуют СКИДКИ!

Звоните прямо СЕЙЧАС!

Количество деталей ограничено!


 

 Тел.:
+7 (905) 507-79-15
+7 (499) 64-12-500
 Skype: compressor-shop e-mail: [email protected]

(Для постоянных клиентов существует накопительная система СКИДОК!)

 

С уважением,

Администрация «Compressor-shop»

Тэги: запчасти поршневой компрессор, запчасти холодильные компрессоры.

Подключение компрессора к холодильнику

В холодильном оборудовании компрессор используется для сжатия и перекачки паров хладагента с целью их последующего преобразования в конденсат, который перемещается в испаритель и в процессе испарения поглощает тепло. Данный элемент оборудования, как и любой другой агрегат, подвержен поломке. Поэтому мы расскажем как подключить компрессор к холодильнику в домашних условиях. Рассмотрим случай с установкой мотора, извлеченного из другого оборудования.

Как проходит подключение компрессора?

Первым делом снимите мотор со старого холодильника. Для демонтажа устройства нужно открутить крепления, перерезать выходную и входную трубки, фреоновую – заглушить намертво.

Тестирование компрессора

Подключаем агрегат к источнику питания. Доказательством исправного состояния является характерный шум в виде шипения – это результат входа и выхода воздуха из разных трубок. При извлечении компрессора рекомендуется сохранить масло в полном объеме. Также придется перерезать кабель, ведущий от датчика температуры.

Поиск рабочей обмотки

Для этого понадобится мультиметр. Тестер, настроенный на килоомы или Омы, измеряет сопротивление между обмоткой конденсатора. В качестве рабочей обмотки используется участок с минимальным показателем сопротивления, именно он подсоединяется к источнику питания через реле. Обмотка с наибольшим сопротивлением является стартовой (пусковой).

Установка реле

Сразу отметим, что можно подключить компрессор холодильника напрямую без реле, но только в тестовом режиме. Почему так? Реле включает и выключает двигатель при определенных рабочих параметрах, это позволяет избежать перегрузок агрегата и продлить срок его службы.

Лучше использовать новое реле, чтобы не сомневаться в его надежности и функциональности. Производители советуют устанавливать «родные» устройства, предназначенные для конкретной марки бытовой техники.

Перед тем как подключить реле к компрессору холодильника, внимательно изучите схему из документов на аппарат или взятую из интернета. Присоединяйте прибор строго в соответствии с чертежом. Для соединения с нагнетательным прибором понадобятся шланги, которые можно приобрести в магазине автозапчастей. Кстати, реле покупается там же.

Монтаж ресивера

Далее устанавливается ресивер, купленный в магазине или изготовленный самостоятельно. Сделать устройство в домашних условиях не составит труда. Возьмите пластиковую бутылку и проделайте в крышке два отверстия для прокладывания входной и выходной трубки. После размещения трубки залейте небольшой объем эпоксидной смолы, для эффективного застывания переверните бутылку вверх дном. Это обеспечит прочное соединение трубки и крышки с пластиковой тарой.

Выявление пробоев

Следующий этап подготовки заключается в проверке изоляции между обмоткой и корпусом на пробои. Если пренебречь этим мероприятием, контакт с корпусом в рабочем режиме мотора может привести к поражению током, особенно если учесть возраст компрессора. Для оценки надежности необходимо прислонить левую клемму к выходу обмотки, а правой прикоснуться в каком-либо участке корпуса. Аналогичным образом проверяются остальные выходы. Отсутствие пробоев дает зеленый свет на установку компрессора.

Подключение компрессора

Мотор подключается к электрической сети посредством клеммников. Вначале создается контакт с общим типом провода, затем рабочим. На стартовый выход электроэнергия подается путем непродолжительных контактов оголенного провода. Процедуру нужно выполнять очень осторожно, чтобы быть пораженным током.

После включения в сеть из нагнетательного агрегата раздастся гул, а при контакте с пусковым выходом двигатель начнет дуть воздух. Приемлемое время работы – не более 15 минут. Корпус может нагреться до температуры 50 градусов, не допускайте его перегрева и контролируйте уровень масла.

Что делать с маслом?

Нет смысла оставлять отработанную жидкость, которой хватит всего на несколько циклов работы. Эффективность такого масла оставляет желать лучшего, поскольку в нем уже содержатся большие пропорции металлических частиц, снижающих степень защиты мотора от перегрева.

Единственный выход из ситуации – удалить старую жидкость и залить новое масло, купленное в автомагазине. Отверстие для заливки найти очень просто – на корпусе агрегата имеется большой болт, который откручивается гаечным ключом. Именно здесь происходит слив и пополнение новым маслом.

Техобслуживание компрессора

Для обеспечения бесперебойной и долговечной работы агрегата необходимо контролировать уровень масла, рабочее время подключение к электросети. Рекомендуем между общим и стартовым выходами присоединить конденсатор, который повысит КПД и продлит ресурс компрессора.

При возникновении дополнительных вопросов или перебоев в работе холодильника обращайтесь в компанию «ПластХладо».

Причины перегрева компрессоров в холодильных машинах

Одной из фундаментальных проблем работы холодильной техники является проблема перегрева компрессорной установки. Основными факторами повышенной рабочей температуры данного агрегата является внутреннее давление при рабочем цикле всасывания и нагнетания, низкая температура окружающей среды, использование систем автоматической защиты и теплообменников регенеративного типа.

Снижение рабочей температуры посредством реле давления

В результате уменьшения давления в испарителе холодильной машины существенно снижается эффективность работы агрегата в целом. Уменьшение давления всасывания в компрессоре приводит к увеличению удельного объема парообразного хладагента и снижению его массы. При этом, может происходить перегрев электромотора компрессорного агрегата из-за его недостаточного охлаждения.


Вы можете позвонить нам:

+38 (067) 422-93-39

Мы с радостью ответим на все Ваши вопросы, произведем расчет стоимости услуг и подготовим для Вас индивидуальное коммерческое предложение.


Основными рабочими органами холодильного компрессора является поршневая пара и система клапанов. Поршень, преимущественно, изготавливают из алюминия, а цилиндр из чугуна. Учитывая высокую разницу коэффициентов линейного расширения данных металлов при нагревании получаем уменьшение зазора между телом поршня и стенкой гильзы. В итоге, увеличивается вероятность появления царапин на зеркале гильзы с уменьшением ресурса компрессорного узла в целом.

Именно поэтому, во избежание превышения граничных параметров давления всасывания, используют реле низкого давления или иные защитные агрегаты.

В холодильных машинах применяют реле низкого и высокого давления, служащие для отключения компрессорной установки при определенных условиях. Реле низкого давления сочленено с всасывающей магистралью и настроено на его отключение в момент критического снижения давления. В промышленных агрегатах технического кондиционирования для пищевых предприятий реле низкого давления применяют в качестве защиты испарителя от обмерзания. В данном случае реле предупреждает обморожение испарителя, которое может привести к перегреву компрессорного узла, из-за его работы без теплоносителя. Возврат реле в начальное положение может осуществляться вручную или автоматически.

Реле пневматического давления в холодильных машинах соединяют с магистралью нагнетателя. Основное назначение – отключение компрессора в момент критически высокого давления. Включение реле в схему производится в месте магистрали, где вентиль нагнетателя не может повлиять на его функционирование.

Предупреждение перегрева электромотора компрессора зимой

Несущественные колебания терморежимов окружающей среды в холодильных установках удается компенсировать за счет применения терморегулируемых вентилей, которые работают в ограниченном диапазоне. За пределами данного диапазона температур холодильная установка работает с неизменным сопротивлением дроссельного органа. Для работы в обширном температурном диапазоне используют конденсаторы воздушного охлаждения.

Необходимо понимать, что падение температуры окружающей среды с 26 до 10 С приводит к существенному уменьшению давления конденсации – на 37%, до значения 0,58 кПа. Одновременно с данным процессом изменяется значение точки кипения с 0,27 до 0,18 кПа, которая напрямую связана с уменьшением эффективности работы дроссельного органа в результате падения давления на нем. В результате подобных условий снижается степень охлаждения испарителя и температура кипения.

Эффективность работы дроссельного органа, который включает терморегулируемые вентили и капиллярную трубку, напрямую зависит от разницы давления. Это связано с тем, что характеристики дроссельного органа подбираются под необходимую эффективность его эксплуатирования при нормальных рабочих перепадах давления. Работая зимой, когда температура окружающей среды существенно понижается, чрезмерное падение давления нагнетания снижает разницу давлений в дроссельном органе, что приводит к малому объему подаваемого хладагента в испаритель. В итоге, из-за недостаточности хладагента, система приобретает нежелательную разбалансировку.

Одной и проблем применения конденсаторов воздушного типа в холодильных установках являются повреждения компрессора в результате пониженного давления нагнетания, которое снижает давление всасывания. Это приводит к тому, что из-за уменьшения данных характеристик падает производительность компрессора, и как следствие – снижается поток перекачиваемого хладагента. В результате наблюдается резкое повышение температуры обмоток электродвигателя, что может привести к перегреву.

Необходимое давление в дроссельном узле для стабильной и эффективной работы холодильной машины определяется давлением нагнетания. Именно поэтому температура на испарителе должна поддерживаться на определенном уровне, что обеспечит надежную работу агрегата.

Особые затруднения возникают в зимой, когда температура конденсации находится на низком уровне. Это связано с очень низкой температурой окружающей среды и значением тепловой нагрузки.

Чтобы удерживать температуру конденсации на должном уровне необходимо изменять производительность конденсационного узла в зависимости от терморежима окружающей среды. Это позволит стабилизировать и удерживать значения в необходимом диапазоне.

Регулировка производительности конденсационного органа, чаще всего, производится путем изменения частоты вращения лопастей и настройкой циклического функционирования вентиляторов всей системы. Применение только одного вентилятора не используется, так как это приводит к существенным колебаниям температуры конденсации. Приемлемым методом регулирования является применение нескольких вентиляторов с последовательной циклической работой и возможностью изменения частоты вращения лопастей при помощи специального регулятора.

В моделях холодильных установок, которые эксплуатируются зимой целесообразно применять конденсаторы горизонтального типа. Они меньше подвержены влиянию ветра, которое приводит к самопроизвольному охлаждению. В противном случае, естественный обдув конденсатора ветром сводит на нет все преимущества цикличного регулирования работы вентиляторов и настройки и частоты вращения. Применение циклического регулирования работы и частоты вращения вентиляторов конденсатора в зимнее время – удобный способ автоматического обеспечения стабильной и безопасной работы компрессора в зависимости от температуры воздуха на входе конденсатора.

Одним из условий стабильной работы с высокой степенью отказоустойчивости компрессорного агрегата является температура конденсации не менее 32 С. Данный показатель достигается при температуре окружающей среды на уровне 16 С.

Выбор конденсатора холодильной машины производится исходя из соображений его способности справляться с тепловыми нагрузками при рациональной разнице температур конденсации и окружающей среды. Оптимальным значением для холодильных установок на промышленных предприятиях считается разница температур от 12 до 17 С.

Нередко воздушные конденсаторы поставляются с одним вентилятором, что предполагает возможность эксплуатации в широком температурном диапазоне окружающей среды. Для достижения наибольшего диапазона, разница температур при высоком давлении всасывания должна составлять от 17 до 22 С. В низкотемпературных моделях холодильников данное значение, нередко, не превышает 6 – 9 С.

На практике и теоретически доказано, что способность снижать скорость вращения вентиляторов до 25% от номинальной, обеспечивает возможность эксплуатации системы в холодное время года. При этом, минимальная температура окружающей среды поддерживается в автоматическом режиме и не превышает значения -30 С.

Настройка давления конденсации в зимнее время посредством вентиляторов целесообразна в машинах, которые оборудованы воздушными конденсаторами с четырьмя вентиляторами. Такие установки используются в промышленных холодильных машинах пищевой промышленности, что позволяет поддерживать необходимый уровень температуры, влажности и скорости циркуляции воздушных потоков. В подобных агрегатах разница температур, обычно, составляет от 14 до 16 С. При этом, температура окружающей среды на должна быть ниже -20…-25 С.

Модели конденсаторов с двумя вентиляторами способны обеспечивать надежную работу при разнице температур от 14 до 17 С и минимальной температурой окружающей среды, равной 0 С.

Обеспечить надежное функционирование компрессора в установках, работающих с разницей температур от 6 до 9 С, при помощи регулирования давления конденсации циклической работой вентиляторов, возможно только при условии температуры окружающей среды выше 0С.

В итоге получаем следующую зависимость – температура обслуживаемого холодильной машиной помещения напрямую зависит от температуры окружающей среды. Регулированием частоты вращения вентиляционной системы конденсатора достигается возможность использования минимального количества вентиляторов, а также безопасность и стабильность работы компрессорной установки холодильной машины.

Защита от перегрева компрессора со встроенным электромотором

Многие автономные автоматизированные холодильные установки могут постоянно эксплуатироваться без контроля диспетчера и постоянного присутствия обслуживающего персонала. В подобных случаях очень важно обеспечить безопасность компрессоров от внезапного перегрева, что требует применения в системе разнообразных устройств, которые автоматически отключат компрессор при проявлении опасных параметров работы. Комплекс данных устройств называют системой автоматической защиты.

В среднеразмерных и крупногабаритных компрессорах используется система автоматической защиты со световой индикацией неисправностей. Это позволяет безошибочно определить отклонение от нормы, а также причину остановки компрессора. В подобных агрегатах алгоритм индикации позволяет определять причину остановки компрессора после длительного простоя, который сопровождается возвратом контролируемой величины в исходное состояние. Условием работы индикатора является разовое включение защиты. В зависимости от типа системы различают автоматическую защиту одноразового и многоразового действия.

Система защиты одноразового действия обеспечивает немедленную остановку компрессорного агрегата до тщательного изучения неполадок. При этом, невозможен повторный запуск системы в автоматическом режиме без обслуживания. Подобные схемы получили обширное распространение в автономных системах охлаждения корабельных кондиционеров и холодильных машин, а также в промышленных холодильных машинах стационарной установки.

Преимущественно, систему защиты одноразового действия применяют в случаях, при которых остановка компрессора не приводит к непоправимым нарушениям технологических процессов. К примеру, подобный агрегат недопустимо применять на холодильных установках, обслуживающих помещения со скоропортящимися продуктами питания. В подобных случаях целесообразно применять системы защиты с автоматическим запуском при восстановлении рабочих параметров. Такие системы оптимальны в случаях, где строго недопустима даже кратковременная остановка работы холодильной установки.

На практике также широко используют разновидность защиты компрессора, которая получила название «блокировка». Её основной отличительной чертой является изменение устройства, который выступает в качестве датчика превышения граничных параметров. Например, на схему управления компрессионным агрегатом действует элемент работы вентилятора или насоса, а не защитное реле. На корабельных системах автономного кондиционирования компрессор и электрообогреватель воздуха соединены с вентилятором. При блокировке работа всей системы обогрева и охлаждения воздуха не возможна, если не включается вентилятор, по любым причинам.

Основными критериями выбора системы защиты электромотора являются характеристики материалов изоляции и нагрузок на холодильную установку, а также режим ее эксплуатации. Защита встроенного двигателя компрессора осложняется многими факторами:

  • В процессе торможения очень быстро происходит перегрев обмоток электромотора. При рабочей температуре около 20С, нагрев обмотки до температуры 200С, в данном случае составит не более нескольких секунд. Кроме того, после перегрева в режиме торможения, охлаждение обмоток происходит намного дольше. Падение температуры от 200 до 120С, в электромоторах мощностью около 8 кВт, займет не менее 20 минут.
  • Температура обмоток не всегда повышается в результате увеличения температуры кипения, которая приводит к повышению нагрузки и силы тока. Однако, снижение температуры кипения может привезти к уменьшению силы тока и повышению температуры обмоток. В результате – нет пропорциональной зависимости, которая позволит выбрать единственно верную схему защиты электромотора.
  • Изменение эффективности охлаждения не сильно влияет на силу тока, однако, приводит к изменению температуры обмоток. Известно, что выбор системы защиты производится из соображений, что к перегреву мотора приводит превышение силы тока и температуры. Это значит, что в систему должны входить устройства, которые будут контролировать оба параметра.

Защита от перегрева во встроенных электромоторах предназначена для предупреждения чрезмерного повышения температуры в процессе перегрузок, заклинивания вращающихся деталей, а также при работе и запусках на двух фазах. Немаловажным параметром любой автоматической защиты от перегрева является ее быстродействие, что очень важно при коротких замыканиях.

Одним из наиболее удачных решений считается электронная система защиты, которая выполнена из нескольких последовательно соединенных термисторов с размещением непосредственно в обмотках двигателя. Это позволяет мгновенно и максимально точно регистрировать момент превышения температуры, выше установленного уровня. В системе применяется электронный модуль, который используется для измерения сопротивления и отключения контрольного реле в зависимости от сопротивления термисторной цепи.

Защита от повышения температуры нагнетания способна уберечь компрессор от перегрева, который работает с повышенным давлением или в условиях неисправных клапанов. К этому виду защиты также предъявляется требование быстродействия, которое должно оперативно отключить агрегат до момента перегрева компрессора. В данном случае датчик размещается на магистрали нагнетателя, а температура включения защиты производится на отметке 140С. Датчик магистрали нагнетателя последовательно соединен с термисторной цепью электромотора, а при достижении определенного сопротивления электронный модель отключает компрессор. В полугерметичных компрессорах с устройством разгрузки во время запуска, датчик системы защиты размещается в одном цилиндре с клапаном разгрузки. 

Продолжительное превышение силы тока, более чем на 20% от номинального, неизбежно приводит к перегреву обмоток с разрушением изоляции, вплоть до выхода электромотора из строя. Чтобы защитить агрегат от подобного воздействия используют реле тока, время срабатывания которого зависит от соотношения номинального значения силы тока к реальному. Обычно, реле подбирают таким образом, чтобы обеспечить отключение агрегата при перегрузке на 35% в течение 30 минут. Если перегрузка в четверо превышает установленную – отключение должно происходить в течении 5-40 сек.

В маломощных холодильных установках допустимо применение автоматических реле, которые после возврата характеристик тока к исходным значениям, вновь запускают агрегат без вмешательства обслуживающего персонала. Если мощность электромотора в установке превышает 1 кВт, обычно, применяют реле с кнопкой ручного запуска после перегрузки.

Независимо от типа и наличия внутренней защиты электромотора требуется установить защиту цепи в виде быстродействующих плавких предохранителей. Данные элементы представляют собой одноразовое защитное устройство, которое монтируется в электрическую цепь схемы. Основное назначение изделия – защита схемы от перегрузок при коротком замыкании обмоток электромотора, пробоя в изоляции и т.п.

Применение регенеративных теплообменников в холодильных установках

Регенеративные теплообменники применяют в холодильных агрегатах для повышения температуры хладагента со стороны всасывающей магистрали компрессора. Это позволяет избежать обмерзания трубопровода, а также образования конденсата с дальнейшим испарением жидкости в потоке пара. Данный теплообменник позволяет дополнительно предупредить переохлаждение жидкого хладагента, что защищает жидкостную линию от образования дроссельного пара.

При применении регенеративного теплообменника наблюдается некоторая зависимость относительно холодопроизводительности агрегата. Тепло, передаваемое жидким хладагентом и поглощаемое паром, до определенного момента заменяет то тепло, которое могло бы быть получено от окружающей среды через неизолированную всасывающую магистраль. Именно поэтому холодильные установки с открытой магистралью всасывания обладают большей производительностью.

Естественная передача тепла от жидкости к пару в теплообменниках регенеративного типа не способствует существенному увеличению эффективности и холодопроизводительности машины. При этом, снижается энтальпия жидкого хладагента с пропорциональным повышением энтальпии пара. Известно, чем выше температура пара, тем выше его удельный объем, что приводит к существенному снижению производительности. В результате имеем: снижение энтальпии и увеличение удельного объема пара хладагента обладают противонаправленным действием. Т.е. эти два фактора, в большей степени, действуют друг против друга, а существенное повышение производительности не наблюдается. В тоже время, неизолированная жидкостная линия при понижении температуры хладагента повышает производительность на несоизмеримо малую величину. Однако, изоляция всасывающего трубопровода приводит к потере полезных свойств регенеративного теплообменника, а также может привести к критическому повышению температуры пара с боку всасывания компрессора. Данная закономерность особенно четко проявляется в случаях, когда компрессор установлен в одном помещении с регенеративным теплообменником.

Увеличение температуры всасывания паров также приводит к перегреву смазочных материалов и деталей компрессора, что существенно снижает ресурс агрегата в целом и трущихся деталей. В данном случае можно наблюдать малый перегрев изоляции обмоток встроенного электромотора, что также сказывается на его долговечности.

На основании вышеперечисленных умозаключений можно сделать вывод: регенеративный теплообменник целесообразно использовать в холодильных машинах только в паре с отделителем жидкости. Данная схема позволит агрегату стабильно работать, а также обеспечит надежный запуск компрессора холодильной установки.

Что происходит, когда в холодильнике гаснет компрессор? | Руководства по дому

Даниэль Смит Обновлено 30 января 2021 г.

Компрессор холодильника является сердцем его системы охлаждения, но что именно происходит, когда компрессор в холодильнике выключается? Возможно, более важным является вопрос о том, как предотвратить это как можно дольше. Компрессор является наиболее важной частью трехкомпонентной системы, включая змеевики конденсатора и вентиляторы, и все они работают вместе для охлаждения замкнутого изолированного пространства.Когда один элемент этой системы выходит из строя или работает с меньшей эффективностью, компрессор усерднее работает, чтобы компенсировать это, что быстрее изнашивает его.

Совет

Если компрессор в вашем холодильнике изнашивается, он, вероятно, будет работать чаще, или вы заметите такие проблемы, как порча продуктов.

Что делает компрессор?

Strike Check объясняет, что хороший холодильник может иметь срок службы 17 лет и более, но отсутствие технического обслуживания может резко сократить это время.Кроме того, определение вышедших из строя компонентов, помимо компрессора, может помочь снизить затраты на ремонт.

Real Simple утверждает, что компрессор фактически представляет собой своего рода насос, который сужает пар хладагента (фреон), циркулирующий через систему змеевика конденсатора, повышая его давление и толкая его в змеевики снаружи холодильника. Вентиляторы втягивают воздух по краям холодильника и обдувают его змеевики, и когда горячий газ в змеевиках достигает более прохладной температуры воздуха на кухне, он охлаждается и становится жидкостью.Тепло передается от газа воздуху и уносится за холодильник. Вот почему пространство за холодильником и под ним обычно очень теплое.

На этом этапе жидкий хладагент под высоким давлением, теперь имеющий более низкую температуру, течет в змеевики внутри холодильника и морозильника, где другой набор вентиляторов обеспечивает циркуляцию воздуха внутри змеевиков. Жидкость поглощает тепло из воздуха в холодильнике, превращаясь в газ и унося тепло изнутри. Горячий газ возвращается в компрессор, и процесс начинается снова, за счет того, что компрессор периодически включается и выключается в соответствии с термостатом холодильника.

Мой компрессор выходит из строя?

При работе компрессор издает характерный гудящий шум, и вы можете слышать щелчок при его включении или выключении. Прослушивание паттерна этих двух звуков многое расскажет о работе вашего компрессора. Если вы слышите, как компрессор щелкает несколько раз за короткое время, он быстро включается и выключается, и это означает, что он перегревается, а температура внутри холодильника слишком высокая. Постоянное гудение компрессора, громче, дребезжания или скрежета — это признак того, что он может быть механически заблокирован и нуждается в замене.

Компрессор автоматически выключится, когда агрегат станет достаточно прохладным, и будет работать дольше в более теплые летние месяцы. Если вы видите внезапный скачок в счетах за электроэнергию, это может быть признаком того, что ваш холодильник изо всех сил пытается поддерживать температуру. «Чем дольше компрессор должен работать для поддержания низких температур, тем он ближе к отказу», — объясняет Эй Джей Мэдисон.

Порча продуктов и налипание льда являются признаками проблемы. Накопление инея указывает на то, что в системе слишком много или недостаточно охлаждающей жидкости (фреона), что может быть вызвано утечкой в ​​системе или неправильной подзарядкой, если ваш холодильник недавно проходил техническое обслуживание.

Продление срока службы холодильника

Служба ремонта и установки бытовой техники Сан-Диего отмечает, что регулярное обслуживание поможет продлить срок службы холодильника и снизить расходы на электроэнергию. Держите змеевики на задней и нижней части холодильника в чистоте, используя сжатый воздух и некоррозионную чистящую жидкость. Проверьте резиновую прокладку на дверях и замените ее, если она потрескалась или деформировалась. Уберите лишние предметы из холодильника и морозильника, чтобы увеличить поток воздуха и снизить нагрузку на систему охлаждения.Убедитесь, что за холодильником и вокруг него есть место для нормального воздушного потока, чтобы обеспечить лучшее охлаждение, и постарайтесь, чтобы вентиляторы были чистыми и работали свободно.

Компрессор, как правило, является самым дорогим компонентом вашего холодильника, и если ремонт обходится более чем вдвое дешевле нового холодильника, часто рекомендуется приобретать более новую, более энергоэффективную модель. Перед принятием решения дважды проверьте гарантию на свой холодильник, так как и продавец, и производитель иногда покрывают разный срок службы холодильника.

Различные типы компрессоров, используемых в холодильной системе

В парокомпрессионном холодильном цикле компрессоры играют жизненно важную роль в повышении давления испаренного хладагента от низкого давления и температуры до высокого давления и температуры при подготовке к прохождению через конденсатор. Хотя все компрессоры выполняют одну и ту же основную функцию в промышленной холодильной системе, на самом деле существует множество типов компрессоров с различными методами создания давления.В следующих разделах мы рассмотрим различные типы компрессоров, а также их основные преимущества и недостатки.

Центробежный

Центробежные компрессоры, также известные как турбо или радиальные компрессоры, повышают давление хладагента, проталкивая хладагент через вращающееся рабочее колесо. Рабочее колесо вращает хладагент с возрастающей скоростью, генерируя кинетическую энергию. Затем генерируемая кинетическая энергия используется для повышения давления хладагента, пропуская его через диффузор, который снижает скорость радиального движения пара.Этот процесс замедления радиального движения хладагента преобразует кинетическую энергию в потенциальную энергию в виде давления.

Центробежные компрессоры имеют самую большую производительность и хорошо подходят для сжатия больших объемов хладагента. Кроме того, центробежные компрессоры могут иметь одноступенчатую, двухступенчатую или многоступенчатую конфигурацию для дальнейшего сжатия хладагента до более высокого давления и температуры в зависимости от требований применения.

Роторно-лопастные

Роторно-лопастные компрессоры

используют вращающийся приводной вал, расположенный эксцентрически внутри цилиндрического корпуса, который содержит фиксированные входные и выходные патрубки.К приводному валу прикреплены регулируемые лопатки. При вращении приводного вала лопатки скользят внутрь и наружу, чтобы поддерживать контакт с внутренними стенками корпуса компрессора, в результате чего образуются камеры разных размеров. Затем воздух поступает в самую большую из этих камер через входной порт и сжимается, поскольку приводной вал продолжает вращаться, а размер камеры уменьшается. Когда камера достигает своего наименьшего объема, сжатый воздух выходит из корпуса компрессора через выпускное отверстие.

Пластинчато-роторные компрессоры имеют компактные размеры и эффективную работу, что делает их предпочтительным выбором для применений с небольшой производительностью, таких как бытовые холодильники или бытовые кондиционеры. Однако роторные компрессоры также часто используются в пищевой промышленности и производстве напитков для обработки продуктов.

Винтовые компрессоры

Винтовые компрессоры содержат два сетчатых ротора с охватываемой и внутренней резьбой, которые вращаются вместе в противоположных направлениях. Хладагент поступает в компрессор через всасывающий патрубок и застревает между двумя вращающимися роторами.По мере прохождения воздуха через роторы объем пространства между роторами уменьшается, сжимая хладагент.

Винтовые компрессоры не имеют клапанов и не используют механическую силу, что позволяет компрессорам работать на высокой скорости с большим расходом и малой площадью основания, а также снижает вибрацию.

Rotary-Scroll

Ротационные спиральные компрессоры содержат две взаимосвязанные спирали или спирали, при этом одна спираль фиксируется, а вторая вращается внутри нее.По мере вращения спирали образуются паровые карманы. Карманы всасывают хладагент и перемещают пар к центру спирали. По мере приближения пара к центру карманы непрерывно уменьшаются в размерах, сжимая охлаждение.

Ротационные спиральные компрессоры имеют небольшую мощность — менее 20 тонн; однако они очень эффективны из-за отсутствия поршней, что позволяет им достигать 100% объемного КПД. Кроме того, спиральные компрессоры имеют низкий уровень шума и требуют технического обслуживания из-за меньшего количества движущихся частей.

Поршневые

Поршневые компрессоры имеют конструкцию, аналогичную двигателю внутреннего сгорания, и могут содержать от двух до шести поршней, размещенных в отдельных цилиндрах. Каждый из этих поршней приводится в движение центральным коленчатым валом. Когда поршни движутся вниз, хладагент всасывается в цилиндр через впускной клапан. Когда поршень движется обратно вверх, впускной клапан закрывается, и объем пространства в цилиндре уменьшается, сжимая хладагент. Когда хладагент достаточно сжат, достигается сила, необходимая для открытия выпускного клапана, и хладагент вытесняется, позволяя циклу повторяться.

Поршневые компрессоры обладают высокой масштабируемостью, что позволяет проектировать их как на небольшую, так и на высокую производительность в сотни тонн. Основными недостатками поршневых компрессоров является то, что они очень громкие, имеют большое количество вибрации и неэффективны.

О Process Solutions

Компания Process Solutions, расположенная недалеко от Сиэтла, штат Вашингтон, имеет более чем 30-летний опыт создания высококачественных систем управления. Имея в штате более 100 инженеров и техников и производя более 3000 промышленных панелей управления в год, Process Solutions является крупнейшим интегратором систем управления на Северо-Западе.В дополнение к индивидуальным панелям управления двигателями услуги систем управления Process Solutions включают программирование ПЛК и HMI, интеграцию роботизированных систем, управление энергопотреблением и промышленные системы управления охлаждением, интеграцию SCADA и программное обеспечение для мониторинга машин DAQuery.

Холодильный компрессор — обзор

Соединения корпуса

Входные и выходные патрубки корпуса обычно имеют фланцевое соединение. В целом при эксплуатации процесса все соединения корпуса должны быть фланцевыми или механически обработанными и шпильками.На машинах со стальным корпусом это обычно не проблема. На небольших холодильных компрессорах, которые строго стандартизированы, изготовлены из чугуна и изначально спроектированы не для технологических процессов, соединения обычно имеют фланцевые впускные и выпускные патрубки. Однако большинство вспомогательных соединений на этих машинах будут резьбовыми. Желательно использовать стандартные фланцы на всех соединениях корпуса. Однако в редких случаях из-за недостатка места может потребоваться нестандартное фланцевое расположение.Очень важно, чтобы поставщик компрессора предоставил все ответные фланцы и соответствующее оборудование.

Силы и моменты, которые компрессор может воспринимать без нарушения центровки машины, должны быть указаны поставщиком. При таком определении учитываются многие факторы, и, как можно догадаться, пределы в большинстве случаев определяются произвольно. Со всеми многочисленными конфигурациями, которые может принимать компрессор, единый набор правил не может соответствовать всем. Несмотря на это, за основу взят NEMA SM-23 [5] для паровых турбин с механическим приводом.API 617 принял критерии сопел NEMA для центробежных компрессоров. Это работает с более крупными многоступенчатыми компрессорами в стальном корпусе, но не подходит для консольных компрессоров. Более того, пользователю или проектировщикам трубопроводов требуется большее число, чтобы упростить конструкцию трубопроводов, а изготовителю — меньшее число, чтобы обеспечить хорошее выравнивание и меньше жалоб клиентов. С точки зрения пользователя, где долговременная надежность является обязательной, голос должен отдаваться производителю. Опыт показывает, что чем меньше нагрузка на патрубки трубопровода, тем легче поддерживать соосность муфты.Это кажется разумным, поскольку большинство компрессоров оснащены пластинами, называемыми качающимися ножками, для обеспечения гибкости при тепловом росте. Ножки будут прогибаться от нагрузок на трубы, а также от температуры. Нагрузки на трубопроводы имеют тенденцию не совпадать с валом так же хорошо, как градиенты температуры. Даже при использовании направляющих и ключей, как это принято на больших машинах, они могут заедать, несмотря на то, что они достаточно прочные, чтобы выдерживать нагрузку.

Не будьте последовательным убийцей компрессора: узнайте причины, чтобы предотвратить повторные отказы

Обычно компрессоры умирают из-за изменений в системе кондиционирования или охлаждения, которые влияют на производительность компрессора.Например, закупорка жидкости — частая причина отказа компрессора, но компрессор не вызывает этого явления. Перегорание двигателя, еще одна причина преждевременной смерти компрессора, также часто бывает вызвано внешними факторами. Поэтому, когда техник заменяет компрессор в полевых условиях, он должен определить основную причину отказа компрессора, иначе компрессор, заменяющий сервис, также будет обречен на смерть.

Настоятельно рекомендуется проводить периодическое профилактическое обслуживание (PM) любой системы кондиционирования или охлаждения.Все больше и больше владельцев зданий, владельцев магазинов и руководителей предприятий готовы платить за PM. Тем не менее, компоненты системы со временем выходят из строя, что приводит к отказу компрессора.

Отказ мотора испарителя, возврат хладагента
Например, если двигатель вентилятора испарителя выходит из строя, вызывая частичную или полную потерю теплопередачи, жидкий хладагент может вернуться в компрессор, вызывая собственную цепочку опасных событий. Жидкий хладагент со временем имеет тенденцию к повреждению изоляции двигателя компрессора, что приводит к выходу двигателя из строя.Жидкий хладагент также имеет тенденцию выталкивать компрессорное масло из компрессора в систему, что приводит к нарушению смазки. Фактически, простое присутствие высоких концентраций жидкого хладагента в масле снижает смазывающую способность. При таких оборотах, которые работают компрессоры, заклинивание компрессора — лишь вопрос времени. Жидкий хладагент, в худшем случае, вызывает разрушение шатунов и коленчатого вала на части.

Вскрытие на месте не всегда возможно
Когда неисправный компрессор «вскрывается», всегда есть доказательства причины отказа, такие как упомянутые выше; но, поскольку технический специалист должен заменить вышедший из строя компрессор до получения отчета о вскрытии или осмотре, он должен попытаться определить причину отказа до установки сервисной замены.Например, на полугерметичном поршневом компрессоре осмотр тарелки клапана или клеммной коробки может подтвердить, является ли проблема механической или электрической.

Очевидно, что проще, быстрее и дешевле заменить тарелку клапана в полевых условиях, чем заменить весь компрессор. В любом случае важно проинформировать владельца здания или менеджера предприятия о причинах отказа компрессора. Эта информация поможет им понять, почему технический специалист должен устанавливать дополнительные компоненты системы.

После удаления компрессора из системы требуется замена осушителей на жидкостной линии, а в случае серьезных отказов в систему устанавливается всасывающий фильтр. Накопитель на всасывании обеспечивает дополнительную защиту от затопления в случае небольшой нагрузки на испаритель.

Дело сгоревшего мотора
Предполагая, что полугерметичный поршневой компрессор вышел из строя по внешним причинам, технический специалист может кое-что сделать перед установкой заменяющего компрессора.Во-первых, давайте рассмотрим перегорания двигателя.

К сожалению, перегорание двигателя приведет к загрязнению всей системы и потребует длительной процедуры очистки. Через оптовиков продаются различные средства для очистки загрязненных систем. Должны быть установлены фильтры-осушители жидкостной линии и линии всасывания, чтобы удалить любую кислоту или влагу, которые могут остаться в системе после ее откачивания и опускания до 500 микрон. Эти рекомендации применимы независимо от того, вышел ли компрессор из строя из-за перегорания двигателя или закупорки жидкости.

TXV не требуют сезонных корректировок при условии, что давление в системе и температура жидкости остаются в пределах исходной конструкции. В случае превышения проектных границ клапанов может потребоваться регулировка TXV, что потребует повторной регулировки, чтобы снова установить желаемый перегрев. Также настоятельно рекомендуется использовать электронные TXV. Хотя перегрев испарителя обычно составляет от 6F до 8F в холодильных системах и от 10F до 12F в системах кондиционирования воздуха, перегрев, измеренный на компрессоре, должен быть не ниже 20F, что позволяет работать с частичной нагрузкой.При замене / модернизации компрессора установите новые контакторы.

После того, как компрессор для сервисной замены установлен и подготовлен к запуску, необходимо провести стандартный процесс ввода в эксплуатацию, чтобы убедиться, что все работает правильно, и записать его для использования в будущем.

Независимо от того, модифицируете ли вы поршневой, винтовой или спиральный компрессор, процесс по сути остается одинаковым. Очень важно понять, почему исходный компрессор вышел из строя, прежде чем модернизировать компрессор для замены.Только тогда вы можете быть уверены, что не убьете еще один компрессор.

Дэвид Сильвес, вице-президент по продажам и маркетингу компании BITZER, США, Inc.

Фотографии предоставлены BITZER, США, Inc. bitzerus.com

Модернизация компрессора

Иногда неисправный компрессор больше не доступен, или технический специалист решает перейти на другую модель, марку или тип компрессора. Это называется модернизацией и может включать в себя следующие возможности:

  • Марка X — Марка Y (того же типа компрессора)
  • Большой поршневой (ые) поршень (ы) винтового компрессора
  • Прокрутите до возвратно-поступательного движения
  • Возвратно к свитку.

В некоторых случаях система с R22 переводится в систему с R407C или даже с R-134a. Несмотря на то, что определить соответствие требованиям BTU в приложении для модернизации дооснащения несложно, есть и другие соображения. Например, при переходе с R-22 и компрессора на основе минерального масла или масла AB на R-407C или R-134a в новом компрессоре потребуется масло POE.

Технический специалист также должен будет подтвердить, является ли геометрия заменяемого компрессора «эквивалентной», чтобы гарантировать, что модернизированный компрессор впишется в систему.При переоборудовании необходимо учитывать изменения монтажного основания и схемы трубопроводов.

Еще одно соображение — это контроллер, который управляет разгрузкой компрессора. Разгрузка поршневого компрессора отличается от разгрузки винтового компрессора, хотя они служат той же цели. Замена контроллера при переоборудовании — обычное дело.

Процесс модернизации компонентов системы не изменился. Что касается винтовых компрессоров, настоятельно рекомендуется, чтобы технический специалист произвел полную замену масла через несколько дней работы, чтобы гарантировать идеальное качество масла.

В сегодняшней экономике у владельцев зданий и менеджеров может не быть бюджета, позволяющего модернизировать всю систему. В таких ситуациях многие выбирают новые компрессоры, которые намного эффективнее, чем те, что используются в их системах 10-15-летней давности.

Во многих случаях для тех, кто модернизирует свои системы кондиционирования и охлаждения, предоставляются скидки.

Приведенные здесь советы по модернизации полезны практически для любого применения по модернизации.- DS

Принципы охлаждения и принцип работы холодильной системы

КОМПРЕССОРЫ

Современные парокомпрессионные системы для комфортного охлаждения и промышленного охлаждения используют один из нескольких типов компрессоров: поршневой, ротационный, винтовой (винтовой), центробежный и спиральный.

В некоторых системах компрессор приводится в действие внешним двигателем (называемым системой с открытым приводом или открытым приводом). Компрессорные системы с открытым приводом легче обслуживать, но использование уплотнения на приводном конце коленчатого вала компрессора может быть источником утечек.В открытых системах привода обычно используются клиновые ремни или гибкие муфты для передачи мощности от двигателя к компрессору.

Вторая основная категория — это герметичная система, в которой двигатель размещается внутри корпуса с компрессором. В герметичных системах двигатель охлаждается парами хладагента, а не внешним воздухом, картер служит впускным коллектором, и впускные клапаны не нужно напрямую подключать к линии всасывания. В герметичных системах меньше проблем с утечками, чем в открытых, поскольку в них нет уплотнения картера.Однако герметичные компрессоры труднее обслуживать, хотя некоторые компоненты, которые могут выйти из строя, обычно размещаются вне корпуса. Эти компоненты соединены с компрессором и двигателем с помощью герметичных устройств. Двигатели в герметичных системах не должны излучать электрическую дугу (поэтому они не могут использовать щетки), поскольку они могут загрязнить хладагент и вызвать перегорание двигателя.

Герметичные системы подразделяются на 1) полностью герметичные или 2) исправные герметичные (полугерметичные). Многие герметичные компрессоры имеют сварной корпус, который не подлежит обслуживанию.В случае выхода из строя мотора или компрессора необходимо заменить весь агрегат.

Полугерметичные системы обычно используются в больших поршневых, центробежных, винтовых и спиральных компрессорах. Корпус в полугерметичной системе скреплен болтами и прокладкой и может быть разобран для основных операций по обслуживанию.

КОМПРЕССОР ОХЛАЖДЕНИЯ

Компрессоры выделяют значительное количество тепла в процессе сжатия пара хладагента. Большая часть движется с паром под высоким давлением к конденсатору, но головка компрессора также должна избавляться от нежелательного тепла, чтобы оставаться в пределах безопасных рабочих температур.Обычно это достигается либо с помощью плавников, либо с помощью каналов для воды.

В герметичных и полугерметичных системах линия всасывания подает поток холодного хладагента к головкам цилиндров. Таким образом, температура и давление всасываемого газа имеют решающее значение для поддержания надлежащей температуры корпуса компрессора. Температура всасываемого газа, поступающего в компрессор, не должна превышать 65 град. F (18 ° C) для низкотемпературной установки или 90 ° C. F (32 ° C) в высокотемпературной системе. Более горячий газ менее плотен и будет поглощать меньше тепла в компрессоре, поскольку разница температур между двигателем компрессора и всасываемым газом меньше.Устройство отключения по низкому давлению должно защищать двигатель от недостаточного давления в линии всасывания.

Компрессоры с открытым приводом с воздушным охлаждением можно охлаждать, помещая их непосредственно в патрубок вентилятора конденсатора. Альтернативой является использование вентилятора для охлаждения компрессора. В компрессорах с водяным охлаждением могут использоваться головки с рубашкой, позволяющие воде циркулировать через головку.

ЦЕНТРОБЕЖНЫЙ КОМПРЕССОР

В центробежных компрессорах

используются рабочие колеса, которые быстро вращаются и выбрасывают хладагент от центрального впускного отверстия, используя силу, называемую центробежной силой.Центробежная сила использует принцип, который, например, позволяет вам раскачивать заднюю часть над головой, не проливая на нее воду. Поскольку каждое рабочее колесо добавляет относительно небольшое давление, несколько рабочих колес часто собираются вместе, чтобы создать необходимое давление на стороне высокого давления (давление нагнетания).

Центробежные компрессоры используются в больших системах, часто в полугерметичных или открытых конфигурациях. Компрессор может работать в системе с положительным давлением всасывания или в вакууме, в зависимости от используемого хладагента и желаемой рабочей температуры испарителя.Большие центробежные системы могут поставляться уже заправленными хладагентом и маслом.

Центробежный компрессор не имеет шатунов, поршней и клапанов; поэтому подшипники вала — единственные места, подверженные износу. Давление на выходе компрессора зависит от плотности газа, диаметра и конструкции рабочего колеса, а также скорости вращения рабочего колеса. Рабочие колеса центробежного компрессора вращаются очень быстро:

Низкая скорость 3600 об / мин

Средняя скорость 9000 об / мин

Высокая скорость выше 9000 об / мин

Питание осуществляется от электродвигателя или паровой турбины.Пар входит в центр рабочего колеса вокруг вала и направляется через лопасти рабочего колеса. Поскольку рабочее колесо ускоряет газ, кинетическая энергия рабочего колеса преобразуется в кинетическую энергию быстро движущегося газа. Когда газ входит в улитку, он сжимается, и кинетическая энергия преобразуется в потенциальную энергию сжатого газа. Скорость газа, покидающего крыльчатку, чрезвычайно высока.

Впускные лопатки, которые регулируют количество подачи и направление пара хладагента из испарителя, могут регулировать производительность.В больших компрессорах с более чем тремя ступенями впускные лопатки могут отсутствовать.

Обратный поток хладагента в центробежные компрессоры опасен из-за высокой скорости вращения крыльчаток. Во избежание обратного затопления заправка хладагента не должна быть чрезмерной, а перегрев должен быть адекватным. Многие центробежные компрессоры, особенно те, которые работают в вакууме, имеют встроенное устройство продувки, позволяющее удалять нежелательный воздух из системы. Блок продувки представляет собой блок конденсации с компрессором и конденсатором, который забирает пар из самой высокой точки конденсатора и компрессора системы и конденсирует его.Поскольку только хладагент будет конденсироваться под давлением, создаваемым устройством продувки, воздух и другие неконденсирующиеся вещества, которые собираются сверху, можно удалить вручную или автоматически через клапан в атмосферу. Очищенный жидкий хладагент через поплавковый клапан в конденсаторе продувочного агрегата возвращается в основную систему. Если фильтр-осушитель установлен в центробежной системе, его можно разместить в байпасе вокруг поплавкового клапана. Размещение фильтра-осушителя на главном выходе ухудшит работу компрессора.Несмотря на то, что байпас забирает только часть потока жидкости, в конечном итоге он удаляет достаточно влаги из хладагента для регулирования кислотности системы.

КОМПОНЕНТЫ ХОЛОДИЛЬНОЙ СИСТЕМЫ

Рисунок 6-1: Двухступенчатый центробежный компрессор. 1-Вторая ступень регулируемая входная направляющая лопатка. 2-Крыльчатка первой ступени. 3-я крыльчатка второй ступени. 4-двигатель с водяным охлаждением. 5-Основание, масляный бак и узел насоса смазочного масла. 6-Направляющие лопатки первой ступени и регулировка производительности.7-Лабиринтное уплотнение. 8-перекрестное соединение. Привод с 9 направляющими лопатками. Корпус с 10 спиралями. 11-Подшипник скольжения со смазкой под давлением. Обратите внимание, что выпускное отверстие не показано.

Рисунок 6-2: Герметичный центробежный охладитель жидкости, одноступенчатый компрессор. Использование ГХФУ-22 от 300 до 600 условных тонн; с использованием HFC-134a, от 200 до 530 номинальных тонн. В системе может использоваться R-22 или R-134a, что позволяет при необходимости преобразовывать R-22 в R-134a. Устройство имеет микропроцессор для управления системой. Вид в разрезе, показывающий цикл охлаждения.

ВИНТОВЫЕ КОМПРЕССОРЫ

Винтовые компрессоры обычно и эффективно используются в системах с холодопроизводительностью более 20 тонн. В этих компрессорах используется пара винтовых винтов или роторов, которые вместе вращаются внутри камеры и вытесняют хладагент из всасываемой нижней стороны камеры к концу верхней стороны

.

Рисунок 6-3: Поперечное сечение винтового компрессора.Ротор A-Male. B-Женский ротор. C-цилиндр. Испаренный хладагент входит с одного конца и выходит с другого конца.

Когда газ продвигается вперед, он сжимается в сужающиеся зазоры между лопастями винта, создавая сжимающее действие. Никаких клапанов не требуется, кроме обслуживания на впускном и выпускном отверстиях. Поскольку роторы вращаются непрерывно, вибрация меньше, чем у поршневых компрессоров с камерой охлаждения и кондиционирования воздуха. Винтовые (винтовые) компрессоры изготавливаются в открытом приводе или в герметичном исполнении.

Роторы называются «охватываемыми» для ведущего ротора и «охватывающими» для ведомого ротора. Мужской ротор с большим количеством лопастей вращается быстрее, чем женский ротор. Регулирование производительности осуществляется с помощью золотникового клапана, который открывается в камере компрессора и позволяет пару выходить без сжатия. Некоторые агрегаты могут эффективно работать только при 10% номинальной производительности.

Рисунок 6-4: Основные операции винтового компрессора. Вращающийся ротор сжимает пар.Заполняются межлопастные пространства A-компрессора. B-Начало сжатия. C-Полное сжатие захваченного пара. D-Начало сброса сжатого пара. E-Сжатый пар полностью отводится из межлопастных пространств.

РЕЦЕПТУРНЫЕ КОМПРЕССОРЫ

Поршневой компрессор использует поршень, скользящий внутри цилиндра для сжатия паров хладагента. На Рис. 4-29 показан принцип работы поршневого компрессора. На рисунке 4-29A поршень переместился вниз в цилиндре A.Он переместил пары хладагента из линии всасывания через впускной клапан. Оттуда пар хладагента переместился в пространство цилиндра. На рисунке 4-29B поршень переместился вверх. Он сжал испарившийся хладагент в гораздо меньшее пространство (зазор). Сжатый пар выталкивается через выпускной клапан в конденсатор.

Рисунок 6-5: Основная конструкция поршневого компрессора.

В верхней части хода поршень должен приближаться к головке блока цилиндров.Чем меньше зазор, тем большее давление будет создавать ход поршня. Этот зазор может составлять от 0,010 до 0,020 дюйма (от 0,254 до 0,508 мм).

В малых системах может использоваться двухпоршневой компрессор, в то время как в больших промышленных системах используются многоцилиндровые многопоршневые компрессоры. Картер компрессора должен быть спроектирован так, чтобы отводить тепло сжатия. Картеры компрессоров обычно изготавливаются из чугуна и имеют ребра для отвода тепла в воздух или, в некоторых случаях, водяные рубашки для отвода тепла сжатия в воду.В полугерметичных и герметичных компрессорах охлаждение обеспечивается хладагентом из линии всасывания. Поршни в больших поршневых компрессорах имеют отдельные масляные и компрессионные кольца. Масляные кольца, расположенные ниже на поршне, используются для уменьшения количества масла, поступающего в цилиндр из картера. В небольших системах маслосъемные кольца можно не устанавливать, а вместо них использовать масляные канавки для регулирования потока масла. Компрессионные кольца используются для плотного прилегания к стенкам цилиндра, гарантируя, что каждый ход перекачивает как можно больше хладагента.

КАРТЕР И ШАТУНЫ

Рисунок 6-6: Небольшой двухцилиндровый поршневой компрессор с внешним приводом в разрезе. Корпус отлит из легкого сплава. Чугунные гильзы цилиндров постоянно залиты в корпус картера.

В поршневых компрессорах вал картера преобразует вращательное движение двигателя в возвратно-поступательное движение поршней. Коленчатый вал вращается внутри коренного подшипника, который должен прочно поддерживать коленчатый вал и выдерживать концевые нагрузки, прикладываемые к валу двигателем и шатунами.Точная величина осевого люфта должна быть указана в документации производителя.

Для соединения шатуна с коленчатым валом можно использовать несколько типов рычагов:

  1. Обычный шатун, наиболее распространенный рычаг в коммерческих системах, зажимается до конца.
  2. эксцентриковый коленчатый вал имеет центральную круглую бобышку на коленчатом валу для создания движения вверх и вниз. Эта система устраняет необходимость в крышках или болтах на шатуне. Вместо этого цельный конец штока устанавливается на коленчатый вал перед окончательной сборкой.
  3. Скотч-вилка не имеет шатуна. Вместо этого в нижней части поршня имеется канавка, которая принимает ход коленчатого вала. Канавка позволяет коленчатому валу перемещаться в боковом направлении и перемещать поршень только вверх и вниз. И скотч, и эксцентрик используются в основном в бытовых и автомобильных системах.

УПЛОТНЕНИЕ КАРТЕРА

В системах с открытым приводом уплотнение между коленчатым валом и картером является частым источником проблем.Уплотнение подвергается значительным колебаниям давления и должно работать, должно работать и уплотнять независимо от того, вращается ли коленчатый вал или неподвижен. Зазор между вращающейся и неподвижной поверхностями должен быть точным (до 0,000001 дюйма или 0,0000254 мм), и смазка заполняет этот крошечный зазор. Уплотнение обычно изготавливается из закаленной стали, бронзы, керамики или углерода. Отсутствие сальника коленчатого вала — главное преимущество герметичной конструкции.

Роторное уплотнение — это простое обычное уплотнение, которое вращается на валу во время работы.Пружина в сочетании с внутренним давлением прижимает поверхность уплотнения к неподвижной поверхности уплотнения.

Основным источником проблем с уплотнениями картера является утечка из-за несоосности. При выравнивании вала двигателя относительно вала компрессора необходимо соблюдать осторожность, чтобы уплотнение не подвергалось нагрузкам во время работы. Точные допуски, указанные при изготовлении компрессора, должны соблюдаться как в горизонтальном, так и в угловом направлениях. В большинстве случаев уплотнение смазывается масляным насосом компрессора.Убедитесь, что компрессор включается время от времени во время длительных простоев, чтобы уплотнение оставалось смазанным. Небольшая утечка после запуска, во время которой сухое уплотнение смазывается маслом, может быть нормальным явлением.

Протекающее уплотнение можно обнаружить с помощью детектора утечки хладагента. Чтобы проверить негерметичное уплотнение:

  1. Откачайте систему в сторону высокого давления (ресивер или конденсатор).
  2. Снимите муфту на конце вала компрессора.
  3. Снимите крышку уплотнения и все кольца, удерживающие вращающееся уплотнение на месте.
  4. Очистите поверхности колец очень мягкой тканью.
  5. Осмотрите уплотнительные поверхности и замените все уплотнение, если видны царапины, царапины или канавки.
  6. Соберите систему.
  7. Проверьте центровку валов компрессора и двигателя в горизонтальном и угловом направлениях, она должна находиться в пределах допусков, указанных производителем, или лучше.
  8. Выпустите воздух из компрессора и откройте необходимые клапаны, чтобы вернуть систему в рабочее состояние.
  9. Перед запуском производства проверьте, нет ли повторяющейся утечки через уплотнение.

ГОЛОВКИ РЕЦИРКУЛЯЦИОННЫХ КОМПРЕССОРОВ И ПЛИТЫ КЛАПАНОВ

Головки цилиндров компрессора обычно изготавливаются из чугуна и предназначены для удержания прокладок на месте для обеспечения надежного уплотнения между пластиной клапана, блоком цилиндров и головкой. Головки цилиндров должны иметь проходы для впуска всасываемого газа в цилиндр. Головка обычно крепится к блоку винтами с головкой под ключ.

Впускные клапаны предназначены для впуска хладагента во время такта впуска и закрытия во время такта сжатия.Выпускные клапаны закрыты во время такта впуска и открываются в конце такта сжатия. Пластина клапана представляет собой узел, плотно удерживающий оба клапана на месте.

Клапаны

обычно изготавливаются из пружинной стали и предназначены для герметичного уплотнения до тех пор, пока их не откроет насосное действие поршня. Сопрягаемые поверхности клапанов должны быть идеально ровными, а дефекты размером всего 0,001 дюйма (0,0254 мм) могут вызвать недопустимые утечки. В процессе эксплуатации клапан должен открываться примерно на 0,010 дюйма (0,254 мм). Большие отверстия вызовут шум клапана, а отверстия меньшего размера будут препятствовать попаданию и выходу достаточного количества хладагента из цилиндра.

Рабочая температура сильно влияет на срок службы клапанов. Впускные клапаны работают в относительно прохладной среде и имеют постоянную смазку из паров масла. Нагнетательные клапаны — это самый горячий компонент холодильной системы, работающий до 50 градусов. F до 100 град. F горячее, чем нагнетательная линия, поэтому они чаще являются источником проблем, чем впускные клапаны. Нагнетательные клапаны необходимо устанавливать с особой осторожностью. На них обычно скапливаются тяжелые молекулы масла, вызывая накопление углерода и нарушая работу клапана.Нагнетательные клапаны и масло будут повреждены температурой выше 325 град. F до 350 град. F (от 163 до 177 ° C). Как правило, температура нагнетательного трубопровода должна поддерживаться на уровне 225 град. F до 250 град. F. (от 107 до 121 ° C).

Рисунок 6-7: Узел тарелки клапана поршневого компрессора.

Нагнетательные клапаны могут иметь разгрузочные пружины, позволяющие им открываться слишком широко, если пробка жидкого хладагента или масла попадает в поршень компрессора из линии всасывания или картера компрессора.

Рисунок 6-8: Промышленный герметичный поршневой компрессор. Он имеет четыре ряда по два цилиндра в каждом (по четыре шатуна на каждой кривошипно-шатунной передаче) и крепится болтами для облегчения обслуживания.

РОТАЦИОННЫЙ КОМПРЕССОР

В ротационных компрессорах

используется одна или несколько лопастей для создания сжимающего действия внутри цилиндра. В отличие от поршневого компрессора, поршень не используется. Есть два основных типа роторных компрессоров:

  1. Вращающиеся лопасти (лопасти).
  2. Отвал стационарный (разделительный блок).

В обоих типах лезвие должно иметь возможность проскальзывать в своем корпусе, чтобы приспособиться к движению ротора, который вращается вне центра цилиндра. Впускные (всасывающие) порты намного больше, чем напорные. Нет необходимости во впускных (всасывающих) или выпускных клапанах; однако желательны обратные клапаны на линии всасывания, чтобы предотвратить попадание масла и паров высокого давления в испаритель, когда компрессор не работает.

ВРАЩАЮЩАЯСЯ ЛЕЗВИЯ (ЛОПАТОЧНЫЙ) КОМПРЕССОР

В конструкции с вращающейся лопастью ротор (вал) вращается внутри цилиндра, но центральные оси цилиндра и вала не идентичны. Вращающийся ротор (вал) имеет несколько прецизионных канавок, в которые вставляются скользящие лопатки. При вращении вала эти лопатки прижимаются к цилиндру под действием центробежной силы. Когда газ поступает в компрессор по линии всасывания, лопатки сметают его. Поскольку ротор не отцентрован в цилиндре, пространство, содержащее газ, уменьшается, поскольку лопасти нагнетают газ вокруг цилиндра.Результат — сжатие газа. Когда газ достигает минимального объема и максимального сжатия, он вытесняется из выпускного отверстия. Объем зазора этой системы очень мал, а эффективность сжатия очень высока.

Ротационные пластинчатые компрессоры обычно используются для первой ступени каскадной системы. Пластинчато-роторные компрессоры могут иметь от двух до восьми лопастей; в больших системах больше лезвий. Край лезвия там, где он соприкасается со стенкой цилиндра, должен быть тщательно отшлифован и гладкий, иначе возникнет утечка, что приведет к чрезмерному износу.Лезвие также должно точно входить в паз ротора.

Рисунок 6-9: Роторно-лопастной компрессор. Черные стрелки указывают направление вращения ротора. Красные стрелки указывают поток паров хладагента.

СТАЦИОНАРНЫЙ ЛОПАТНЫЙ (РАЗДЕЛИТЕЛЬНЫЙ БЛОК) РОТАЦИОННЫЙ КОМПРЕССОР

В системе со стационарными лопастями скользящая лопасть в корпусе цилиндра отделяет пар низкого давления от пара высокого давления. Эксцентриковый вал вращает рабочее колесо в цилиндре.Эта крыльчатка постоянно трется о внешнюю стенку цилиндра. При вращении крыльчатки лопасть улавливает некоторое количество пара. Пар сжимается в все меньшее и меньшее пространство. Повышается давление и температура. Наконец, пар проходит через выпускное отверстие.

Рисунок 6-10: Роторный компрессор. Неподвижная лопасть или разделительный блок контактирует с крыльчаткой.

Рисунок 6-11: Герметичный одинарный роторный компрессор с неподвижными лопастями.

СПИРАЛЬНЫЙ КОМПРЕССОР

В спиральном компрессоре сжатие выполняется двумя спиральными элементами, вращающейся спиралью и фиксированной спиралью. Один свиток «фиксированный свиток» остается неподвижным. Другая прокрутка, «вращающаяся по орбите», вращается по смещенной круговой траектории вокруг центра фиксированной прокрутки. Это движение создает компрессионные карманы между двумя элементами прокрутки. Всасываемый газ низкого давления задерживается в каждом периферийном кармане по мере его образования; продолжающееся движение вращающейся спирали закрывает карман, объем которого уменьшается по мере того, как карман перемещается к центру прокрутки.Максимальное сжатие достигается, когда выемка достигает центра, где находится выпускное отверстие, и выпускается газ. Во время этого процесса сжатия одновременно формируется несколько карманов.

Рисунок 6-12: Сжатие спирали вызвано взаимодействием вращающейся спирали, сопряженной с неподвижной спиралью. 1-Газ втягивается во внешнее отверстие, когда одна из спиралей движется по орбите. 2-По мере продолжения орбитального движения открытый проход закрывается, и газ направляется к центру спирали.3 — Объем кармана постепенно уменьшается. Это создает все более высокое давление газа. 4-Давление нагнетания достигается в центре кармана. Газ выходит из порта стационарного спирального элемента. 5-В реальной эксплуатации шесть газовых каналов все время находятся на различных стадиях сжатия. Это создает почти непрерывное всасывание и нагнетание.

Рисунок 6-13: Поперечное сечение поршневого компрессора с наклонной шайбой. При вращении приводного вала и наклонной шайбы двусторонний поршень перемещается в цилиндре вперед и назад.

Процесс всасывания из внешней части спирали и выпуск из внутренней части непрерывны. Этот непрерывный процесс обеспечивает очень плавную работу компрессора.

Компрессия — это непрерывный процесс без обычных всасывающих и нагнетательных клапанов. Чтобы компрессор не работал в обратном направлении после отключения питания, обратный клапан расположен непосредственно над нагнетательным патрубком с неподвижной спиралью.

A: Схема спирального компрессора в разрезе.

B: Базовое представление сжатия спирального компрессора. Орбитальная спираль вращается вокруг неподвижной спирали, создавая плавное, постоянное сжатие внутрь к выпускному отверстию в центре.

МАСЛЯНЫЕ СИСТЕМЫ ДЛЯ КОМПРЕССОРОВ

В поршневых компрессорах

обычно используются два типа смазочных систем:

  1. Система разбрызгивания использует коленчатый вал для разбрызгивания масла; масло попадает в коренной подшипник по каналам подшипника.Подшипник может быть шумным, потому что эта система создает небольшую масляную подушку.
  2. В системе давления масла используется масляный насос, приводимый в действие шестернями в картере; масло поступает в каналы в шатунах, коренных подшипниках и поршневых пальцах. Система масляного насоса лучше обеспечивает смазку и бесшумную работу. Насос должен иметь предохранительный клапан для предотвращения возникновения опасного давления в контуре смазки компрессора. Защитный выключатель обычно используется для контроля давления масла и отключения компрессора, если давление масла падает ниже безопасного уровня.

Ротационные компрессоры

Требуется масляная пленка на цилиндре, лопастях и роликах. Некоторые машины продвигают масло за счет скольжения; другие используют масляный насос.

Центробежные компрессоры

Работает на высокой скорости и может иметь сложные системы контроля масла, включая насос, маслоотделитель, резервуары для смазки подшипников во время разливки, масляный фильтр, предохранительный клапан и маслоохладитель.

Винтовые компрессоры

Требуется масло для охлаждения, уплотнения и бесшумности роторов; они обычно имеют систему принудительной смазки.Насос прямого вытеснения может работать независимо от компрессора, обеспечивая полную смазку при запуске компрессора. Масло отделяется и подается в масляный поддон (резервуар). Охлаждается и доставляется к подшипникам и портам для впрыска в камеру сжатия. Масляный поддон (резервуар) имеет нагреватель для предотвращения разбавления масла хладагентом во время выключения.

Спиральные компрессоры

Требуется охлаждение масла и уплотнение между вращающейся и неподвижной спиралью.Масло подается в спирали центробежным действием через отверстие в валу двигателя и вращающуюся спираль.

В промышленных холодильных установках обычно используются три устройства для контроля масла в системе: маслоотделитель, регулятор уровня масла и масляный резервуар. Другие элементы, такие как масляные фильтры, соленоидные и запорные клапаны, могут потребоваться для завершения системы. Необходимо проводить регулярную проверку масла в системе, чтобы выявить опасную кислотность в масле холодильного компрессора.

Содействие возврату нефти

Масло в системах с прямым расширением или в системах с сухим испарителем должно возвращаться в компрессор потоком хладагента.Скорость в трубках испарителя должна быть достаточной для возврата масла.

Требуется скорость около 700 футов (214 м) в минуту по горизонтальным линиям и около 1500 футов (457 м) в минуту по вертикальным линиям.

Несколько дополнительных мер помогут обеспечить надлежащий возврат масла в компрессор. Наклоните трубопроводы охлаждения к компрессору. Обеспечьте адекватную скорость хладагента во всасывающем трубопроводе, сделав его подходящим по размеру, а не завышенным. Масло с высокой вязкостью (измеренное в условиях испарителя) более устойчиво к возврату потоком хладагента.Масло, которое легко растворяет хладагент, остается более текучим, чем масло без хладагента. Количество хладагента, растворенного в масле, зависит от давления и температуры в различных частях испарителя, а также от природы двух жидкостей.

Возврат масла затруднен в низкотемпературных испарителях, потому что масло становится более вязким при понижении температуры и давления хладагента. Высокая степень сжатия также снижает возврат масла, поскольку всасываемый газ менее плотный.Таким образом, адекватная скорость всасывающего трубопровода особенно важна для низкотемпературных испарителей.

Масло не будет возвращаться в компрессор в затопленном испарителе, поэтому требуется возвратный маслопровод. В некоторых системах к испарителю подключена специальная камера, позволяющая кипятить хладагент из масла перед возвратом масла в компрессор.

ВЫПУСКНАЯ ЛИНИЯ

Напорный трубопровод на стороне высокого давления системы, соединяет компрессор с конденсатором.Линия обычно представляет собой медные трубки, соединенные пайкой. Выделение может содержать; Гаситель вибрации, глушитель, маслоотделитель, клапаны регулирования давления, а также перепускные или сервисные клапаны.

Амортизатор

Как всасывающий, так и нагнетательный трубопроводы передают вибрацию от компрессора к другим компонентам системы охлаждения. Эта вибрация может вызвать нежелательный шум и повреждение трубок хладагента, что приведет к утечкам хладагента.

В небольшой системе с мягкими медными трубками малого диаметра гаситель вибрации может состоять из мотка трубок.Гибкий металлический шланг с внутренним диаметром, по крайней мере, таким же большим, как и подсоединенная трубка, предпочтительнее для более крупных систем. Эта секция трубок может быть оканчивалась гнездом с наружным диаметром, резьбовыми концами с наружной резьбой или фланцами. Хладагент, движущийся с высокой скоростью по извилистому внутреннему диаметру поглотителя, может вызывать свистящий звук. Гасители вибрации не предназначены для сжатия или растяжения, поэтому их следует ориентировать параллельно коленчатому валу компрессора, а не под прямым углом к ​​нему.

Глушитель

Глушитель используется для уменьшения передачи пульсаций и шума нагнетания поршневого компрессора в систему трубопроводов и конденсатор.Глушитель представляет собой цилиндр с перегородками внутри. В целом глушители, создающие большой перепад давления, более эффективны, чем глушители с меньшим ограничением. Как объем, так и плотность потока газа через глушитель влияют на характеристики глушителя.

Маслоотделитель

Маслоотделитель — это контейнер с рядом перегородок и сеток, размещенных в линии нагнетания. Выходящий пар с масляным туманом, поступающий в маслоотделитель, вынужден поворачиваться и сталкиваться с перегородками и экранами, позволяя каплям масла объединяться в большие капли, которые стекают в поддон внизу.Отстойник позволяет осадку и загрязнителям оседать и может иметь магнит, притягивающий частицы железа. Когда в поддоне накопится достаточно масла, он поднимает поплавок и стекает обратно в картер компрессора, движимый давлением масла в маслоотделителе.

Маслоотделители чаще всего используются в больших и низкотемпературных системах. Они обязательны в аммиачных системах.

КОНДЕНСАТОР

Конденсатор — это компонент со стороны высокого давления холодильного контура, который позволяет горячему газу хладагента под высоким давлением отводить скрытую теплоту конденсации в окружающую среду.Эта потеря тепла вызывает конденсацию газа в жидкость под высоким давлением, которая может быть подана по трубопроводу к измерительному устройству. Тепло, отводимое конденсатором, поступает в систему через испаритель и компрессор. Из-за неэффективности и других источников тепла конденсатор в открытой системе должен утилизировать примерно в 1,25 раза больше тепла, чем в испарителе. Конденсаторы в герметичных системах также должны отводить тепло от обмоток двигателя.

В зависимости от функции и способов отвода тепла используется много различных типов конденсаторов.Две основные категории «с водяным охлаждением» и «с воздушным охлаждением» подразделяются на среду, используемую для отвода тепла. Основная цель конструкции конденсатора — отвести максимум тепла при минимальных затратах и ​​занимаемой площади.

Вода и воздух обычно являются обильными и экономичными конденсирующими средами. Вода может быстро и эффективно отводить большое количество тепла, что позволяет сделать конденсатор относительно небольшим и делает конденсатор с водяным охлаждением более экономичным, когда он доступен. Однако воды может быть мало или она химически непригодна для охлаждения конденсатора.Кроме того, конденсаторы с водяным охлаждением подвержены образованию накипи, загрязнения, замерзания и коррозии.

Конденсаторы с воздушным охлаждением должны быть больше, чем агрегаты с водяным охлаждением, но не должны иметь проблем с замерзанием или водой. Воздушное охлаждение используется, когда вода недоступна, дорога или химически непригодна.

Ребра, проволока или пластины могут быть прикреплены к трубке конденсатора для увеличения площади поверхности и способности отводить тепло конденсации. Вентиляторы или насосы обычно используются для увеличения потока конденсирующейся среды.Такие усовершенствования увеличивают переохлаждение хладагента, увеличивают скорость теплопередачи и уменьшают овальный размер конденсатора.

КОНДЕНСАТОР ВОЗДУШНОГО ОХЛАЖДЕНИЯ

Реле конденсаторов с воздушным охлаждением на вентиляторах для перемещения воздуха по трубкам и ребрам для отвода тепла от хладагента. Кожухи используются для повышения эффективности вентилятора за счет направления всего воздушного потока через трубы конденсатора. Для увеличения площади поверхности конденсатора можно использовать ребра различного типа.Правильная теплопередача в конденсаторах с воздушным охлаждением может быть достигнута только при чистой поверхности конденсатора.

Конденсатор с воздушным охлаждением должен быть спроектирован для работы в самых жарких условиях окружающей среды, когда теплопередача будет самой медленной, а охлаждающая нагрузка, вероятно, будет максимальной.

Наружный конденсатор с воздушным охлаждением, работающий в холодную погоду, представляет собой особую проблему при проектировании системы. Необходимы особые меры предосторожности для защиты наружного конденсатора с воздушным охлаждением от низких температур окружающей среды.Основная проблема заключается в том, что хладагент не будет протекать через дозирующее устройство, если напор не будет достаточным, а низкие температуры окружающей среды уменьшат напор.

Для работы конденсатора с воздушным охлаждением при низких температурах окружающей среды системе может потребоваться любое из следующих устройств или их комбинация:

  1. Всепогодный кожух конденсатора
  2. Способ предотвращения короткого цикла компрессора
  3. Способ регулирования напора в зимний период и при отрицательных температурах окружающей среды
  4. Способ предотвращения разбавления компрессорного масла жидким хладагентом

Заявление об ограничении ответственности — В то время как Berg Chilling Systems Inc.(«Берг») прилагает разумные усилия для предоставления точной информации, мы не делаем никаких заявлений и не даем никаких гарантий относительно точности любого содержания в ней. Мы не несем ответственности за какие-либо типографские ошибки, ошибки или упущения в содержании или другие ошибки. Мы оставляем за собой право изменять содержание этой документации без предварительного уведомления.

, Олдрих Бочек (1939-2003)
Эксперт по управлению температурным режимом
Berg Chilling Systems Inc.

Как работает компрессор кондиционера

В поршневом компрессоре для сжатия хладагента используются поршни, цилиндры и клапаны.Поршень движется вперед и назад в цилиндре. Возвратно-поступательное движение означает только вперед и назад. Поршневые компрессоры различаются по размеру и мощности в зависимости от требований системы.

Компрессор является точкой разделения между сторонами высокого и низкого давления системы и включает в себя такие компоненты, как всасывающий и нагнетательный клапаны. Испаритель находится на стороне низкого давления, а компрессор и конденсатор — на стороне высокого давления. Всасывающий клапан соединяет компрессор со стороной низкого давления системы через линию всасывания, по которой хладагент поступает в компрессор.Выпускной клапан соединяет компрессор со стороной высокого давления системы через нагнетательную линию, по которой после сжатия хладагент переносится. Всасывающий и нагнетательный клапаны открываются и закрываются в зависимости от их разницы давлений и позволяют парам хладагента входить и выходить из камеры сжатия в нужный момент.

Процесс поршневого компрессора

Начнем с описания процесса компрессора, когда поршень находится в самом верхнем возможном положении внутри цилиндра.Положение известно как верхняя мертвая точка. В верхней мертвой точке всасывающий и нагнетательный клапаны находятся в закрытом положении, а хладагент в камере сжатия равен давлению на выходе.

Повторное расширение: Двигатель компрессора начнет вращаться, и поршень начнет опускаться в цилиндре. Поршень, опускаясь вниз, увеличивает количество пространства или объема, в котором находится хладагент. Кроме того, давление начинает снижаться, потому что количество хладагента, которое уже было в нем, теперь находится в большем пространстве.Это вызывает расширение хладагента. Расширение хладагента — вот почему эта часть процесса называется повторным расширением.

Всасывание: Давление хладагента продолжает падать, пока не достигнет точки чуть ниже давления всасывания системы. Давление всасывания — это сторона низкого давления системы. При этом давлении давление всасывания теперь будет больше, чем в камере сжатия, и всасывающий клапан откроется. По мере того, как поршень продолжает двигаться вниз, всасываемый газ втягивается в камеру сжатия.Всасывание будет продолжаться до тех пор, пока поршень не перестанет двигаться вниз. Когда поршень достигает своей самой нижней точки в цилиндре, нижней мертвой точки, часть цикла всасывания заканчивается.

Компрессия: По мере того, как компрессор продолжает работать, поршень начинает двигаться вверх в цилиндре. Это движение поршня вверх закрывает всасывающий клапан, задерживая хладагент в цилиндре. Поршень продолжает двигаться вверх, уменьшая объем цилиндра и увеличивая давление хладагента.Сжатие будет продолжаться до тех пор, пока давление в цилиндре не станет немного выше давления хладагента в нагнетательной линии.

Нагнетание: Когда давление в цилиндре превышает давление нагнетания, нагнетательный клапан открывается, позволяя выталкивать хладагент под высоким давлением из цилиндра в нагнетательную линию по мере того, как поршень продолжает двигаться вверх. Нагнетание будет продолжаться до тех пор, пока поршень не достигнет верхней мертвой точки, где хладагент нагнетания закроет выпускной клапан, когда поршень снова начнет двигаться вниз.

Цикл повторяется, пока система находится под напряжением.

какое решение лучше?

С ростом потребности в холодильном оборудовании , компрессоры разрабатываются в большом количестве и с применением более совершенных технологий. Однако основы все еще в силе. При наличии множества типов холодильных компрессоров выбор одного из них для вашего приложения может быть непростым делом. Некоторые факторы, которые следует учитывать при выборе лучшего агрегата, — это капитальные затраты, операционная эффективность, удобство обслуживания в полевых условиях, наличие запасных частей и техническое обслуживание.Ниже мы сравним винтовые компрессоры и центробежные компрессоры . В каждом из них используется свой метод создания давления хладагента, но есть и другие отличия. Выбор идеального типа компрессора зависит от таких факторов, как стоимость топлива, рыночная стоимость энергии, характеристики чиллера и расположение завода. Если вам нужна помощь в принятии этого решения, не стесняйтесь обращаться к команде ARANER за советом экспертов.

Центробежные компрессоры

Центробежные компрессоры полагаются на кинетическую энергию , развиваемую вращающейся крыльчаткой, для увеличения давления парообразного хладагента .Они принадлежат к большему зонту технологий — динамических компрессоров -. Во время работы хладагент поступает в рабочее колесо через впускное отверстие перед тем, как попасть в рабочие колеса. Во время вращения крыльчатки они оказывают центробежную силу на хладагент , тем самым создавая в нем давление. Поскольку сила, создаваемая крыльчаткой, относительно мала, в некоторых случаях центробежные чиллеры поставляются с несколькими крыльчатками, включенными последовательно.

Винтовые компрессоры

Винтовые компрессоры — это машин прямого вытеснения .Их работа основана на зацеплении вращающихся роторов и сжатии хладагента по их длине. Существует две возможные конфигурации этого типа компрессора: одновинтовой компрессор и двухвинтовой компрессор . Вы можете найти эти компрессоры как с водяным охлаждением, так и с воздушным охлаждением.

Рис. 1. Винтовой компрессор, используемый для промышленного охлаждения

Сравнение двух типов холодильных компрессоров

ARANER предлагает современные центробежные и винтовые компрессоры для систем охлаждения воздуха на входе турбины TIAC для технологических предприятий, централизованного холодоснабжения и т. Д.Наши конструкции соответствуют международным стандартам для гарантированной оптимальной производительности. Кроме того, по запросу компания может предложить индивидуальные решения. Когда дело доходит до , выбирая между центробежным компрессором или винтовым компрессором , следует учитывать следующие факторы.

  1. Скорость

Центробежный холодильный компрессор типа обычно работает на высоких скоростях. Некоторые устройства могут иметь скорость вращения до 60 000 оборотов в минуту! Вот почему вы найдете многие из них на нефтеперерабатывающих заводах и производственных предприятиях, где необходимы непрерывная работа и высокие потоки газа. Винтовые компрессоры не менее важны в производственной среде , но они могут работать не так быстро.

  1. Подъем давления

В центробежном компрессоре крутизна напора зависит от конструкции рабочего колеса, то есть крутизны кривой в прямой зависимости от степени наклона лопаток от истинного радиального положения. Тогда может быть достаточно сказать, что для любого конкретного компрессора подъем давления достаточно постоянный . В этом отличие от винтовых компрессоров, которые очень привлекательны в приложениях, где условия окружающей среды или условия эксплуатации часто меняются.

  1. КПД

При полной нагрузке и в расчетных условиях эффективность винтовых и центробежных чиллеров примерно одинакова. Основные отличия наступают при работе вне проектных условий . Как объясняется в пункте 2, подъем давления, винтовые компрессоры могут адаптироваться к колебаниям давления конденсации и испарения , используя это преимущество. Например, винтовые компрессоры могут снизить давление конденсации при понижении температуры окружающей среды.В случае центробежных компрессоров это колебание более сложное.

  1. Шум

Винтовые компрессоры могут быть довольно громкими, особенно сухого подтипа, во время их работы, проблема, которая может даже повлиять на область применения. Исследователи определили источники этого шума как системную вибрацию, поток жидкости и механические. Хотя любые отклонения в рабочем колесе могут вызвать значительный шум, центробежные компрессоры обычно менее шумны, чем винтовые компрессоры.Как бы то ни было, эту разницу в уровне шума всегда можно преодолеть с помощью технологий шумоподавления.

  1. Стоимость жизненного цикла

Стоимость жизненного цикла машины включает затраты на техническое обслуживание, электроэнергию и установку. Для винтового компрессора затраты на обслуживание низкие. Машина также может прослужить много лет. Считается, что большинство винтовых компрессоров служат более тридцати лет, но при первоклассном техническом обслуживании этот срок может быть значительно дольше.Из-за более высоких частот вращения центробежный компрессор требует особого внимания , особенно к подшипникам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *