Какие бывают электрические соединения: Какие бывают соединения электрической цепи состоящая из нескольких сопротивлений?

Содержание

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Виды соединений электропроводки: рассмотрим подробно

Параллельное соединение

Параллельным соединением сопро­тивлений называется соединение (рис. 1-8), при кото­ром к двум точкам электрической цепи присоединено несколько со­противлений, образующих развет­вление, состоящее из параллель­ных ветвей. Таким образом, при параллельном соединении один за­жим каждого сопротивления при­соединен к одному узлу, а другой зажим каждого сопротивления к другому узлу.

Так как напряжение на каждом из сопротивлений равно напряжению между узлами, то напряжения на сопротивлениях ветвей одинаковы, т. е.

U = Ul = U2 = U3,

или, выражая напряжения через произведение соответст­вующих токов и сопротивлений, можно написать:

I1r1 = I2r2 = I3r3,

откуда

I1 : I2 = r2 : r1 и i2 :i3 = r3 : r2

т. е. токи в ветвях распределяются об­ратно пропорционально сопротивле­ниям ветвей.

Согласно первому правилу Кирхгофа

I = I1 + I2 + I3

или, выражая токи через отношения напряжения к соответ­ствующим сопротивлениям, получим:

U:r = U1 : r1 + U2 : r2 + U3 : r3 откуда после сокращения

1 : r = (1 : r1) + (1 : r2) + (1 : r3)

или

g = g1 + g2 + g3

Сопротивление г принято называть общим или экви­валентным сопротивлением цепи, a g — общей или эквивалентной проводимо­стью цепи.

Из формулы следует, что при параллельном соединении сопротивлений эквивалентная проводимость цепи равна сумме проводимостей отдельных вет­вей.

Формула дает возможность определить эквива­лентное сопротивление разветвленной цепи. Например, при трех ветвях, приведя к общему знаменателю правую часть уравнения, получим:

1 : r = (r1r2 + r1r3 + r2r3) : r1r2r3

откуда эквивалентное сопротивление цепи

r = r1r2r3 : (r1r2 + r1r3 + r2r3)

Если сопротивления ветвей равны, то

r = r31 : 3r21 = r1 : 3

Если разветвление имеет п параллельных ветвей с оди­наковыми сопротивлениями n1, то эквивалентное сопротив­ление разветвления

r = r1 : n

Эквивалентное сопротивление разветвления, состоящего из двyx параллельных ветвей согласно уравнению, определяется по формуле

r = (r1r2) : (r1 + r2)

Большинство приемников энергии, в том числе лампы накапливания, нагревательные приборы, двигатели, пред­назначены для работы при неизменном номинальном на­пряжении. Поэтому они в большинстве случаев соединяются параллельно, так как при этом способе соединения все они находятся под одним и тем же номинальным напряжением и режим работы каждого из них практически не зависит от режима работы остальных.

Пример 1-10. Определить сопротивление лампы накаливания мощ­ностью Рл = 100 вт и напряжением = 220 в. Определить сопротив­ление двадцати параллельно включенных таких ламп.

Так как мощность Р = UI = U

2/r, то сопротивление лампы нака­ливания

rл = U2 : Pл = 2202 : 100 = 484 ом

Общее сопротивление двадцати параллельно соединенных ламп

r = rл : 20 = 484 : 20 = 24,2 ом

1. Что такое электрическое соединение

Официальное определение электрического соединения находим во 2-м разделе Госстандарта РФ 52002 2003 под номером 104, в котором этим понятием определяют соединение участков электрической цепи, с помощью которого образуется электрическая цепь. Однако чтобы вникнуть в логику этого определения, потребуется дальнейшее изучение акта для выяснения, а что же такое «участок электрической цепи», сама «электрическая цепь» и для чего, собственно, предназначена. В других же источниках определение электрического соединения проводников повторяет (хотя и другими словами) приведенное выше.

Оставив в стороне теорию, рассмотрим, что представляет собой электрическое соединение (ЭС) и каково его предназначение.

Заметим, что ЭС можно рассматривать с самых разных точек зрения, которые соответствуют его официальному определению. При этом в любом случае оно выполняет свою заранее заданную функцию — пропускает электрический ток. т. е. предназначено для передачи электроэнергии.

  • ЭС может быть довольно сложным, состоящим из множества составляющих его структур (элементов, узлов, систем и т. д.). К примеру, ЭС вашего домашнего телевизора с источником питания, которым является электростанция — весьма сложная структура. И состоит она из множества проводников, линий электропередач (и иных электрических соединителей), подстанций, трансформаторов, электрических счетчиков, домашней электросети и, наконец, шнура телевизора. Можно сказать, что ЭС домашнего телевизора с электростанцией в свою очередь требует соединения множества иных электрических цепей.
  • ЭС присутствует также в любом электрическом приборе, устройстве и т.д. между их отдельными элементами и узлами. Т. е., по сути, мы имеем в каждом из них целый ряд соединений электрических элементов, без которых их работа попросту невозможна.
  • Но наиболее наглядным для каждого из нас является ЭС бытовых приборов с источниками питания, которыми мы у себя в квартире или доме считаем электрические розетки. И обеспечивается это ЭС с помощью т. н. электрических соединителей или разъемов, состоящих из известных всем вилок и розеток. Более точное и наукоемкое их определение желающие могут найти в ГОСТе IEC 60050-151-2014, вступившем в действие в 2015 году.

Что нужно для работы электротехнического устройства?

На представленной схеме хорошо просматривается возможность протекания тока различными путями. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной. Для приемника задается его сопротивление R.

Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, то есть фаза — это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке. Зато в последовательную цепь можно включить много лампочек, каждая из которых рассчитана на гораздо меньшее напряжение в сети.


Индуктивность является также и коэффициентом пропорциональности, измеряемом в Генри.

С их помощью можно установить взаимосвязь между теми значениями, которые имеют токи, напряжения, ЭДП по всей электрической цепи или на отдельных её участках.

Во всех её элементах течёт один и тот же ток. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, то есть будет иметь место шестипроводная линия, что неэкономично.

В ней, размещённые элементы изображаются с помощью условных обозначений. Чаще всего используют принципиальную схему электрической цепи.

Номинальные значения тока напряжения и мощности соответствуют выгодным условиям работы устройства с точки зрения экономичности, надежности, долговечности и т. При этом соединении напряжение на каждом участке равно напряжению U, которое приложено к узловым точкам цепи.
Монтажные схемы и маркировка электрических цепей

Основные параметры последовательного и параллельного подключений

Типы подключений следует различать из-за особенностейосновных параметров электрической цепи при таких подключениях.

При параллельном подключении, напряжение на элементах цепи всегда будет постоянным, а сила тока суммируется из токов на каждом элементе. Есть еще такой параметр, как сопротивление. Мы не рекомендуем заучивать наизусть все формулы, а руководствоваться законом Ома, предположив, что один из параметров будет постоянным. Но для ускорения решения задач заучить выкладку может быть полезно. Собственно, там отношение единицы к сопротивлению цепи, равно сумме отношений 1 к каждому из сопротивлений.

При последовательном подключении, напряжение на каждом элементе будет суммироваться, а сила тока будет постоянной. Сопротивление мы также можем узнать из закона Ома. Или же запомнить, что сопротивление равно сумме сопротивлений элементов цепи.

Особенности параметров при последовательном и параллельном подключениях можно легко запомнить, если представить, что соединительные провода – это трубы, а электрический ток вода. Сравнить с водой тут можно именно силу тока. Почему же силу тока? Потому что ток характеризуется количеством заряженных частиц (читай, как наличие воды в трубе).

Представим, что в случае последовательного подключения мы соединяем две трубы одинакового сечения (представим именно одинаковое сечение, т.к. дальше уже начинают влиять такие параметры, как сопротивление) и в каждой трубе есть вода при её наличии в водопроводе. Если же мы соединим две трубы параллельно, то поток распределится равномерно (а на деле в соответствии с геометрическими параметрами труб) между двумя трубами, т.е сила тока будет суммироваться из всех участков.

Почему всё происходит именно так и почему при параллельном подключении ток распределяется именно по двум проводникам и суммируется? Это сложный фундаментальный вопрос, обсуждение которого займет ни одну статью. На данный момент предлагаю считать, что это просто свойство, которое нужно знать. Как и то, что лёд ощущается холодным, а огонь горячим.

При смешанномподключении мы предварительно должны разбить цепь на простые для пониманияучастки, а затем проанализировать, как они в итоге будут соединены.Соответственно, на выходе мы получим простой вариант несложного подключения,которое однозначно будет или последовательное, или параллельное.

Зная все эти параметры, мы легко можем проанализировать любую электрическую цепь и собрать новую с нужными параметрами.

Подключение в распределительной коробке

Узловые точки удобно создавать с применением специализированных изделий. Типовые коробки создают из непроводящего, устойчивого к процессам коррозии пластика. В современных моделях предусмотрены входные отверстия с заглушками, фиксаторы для кабельной продукции. Крышка закрепляется герметично, обеспечивая дополнительную защиту от неблагоприятных внешних воздействий.

При большом количестве проводов случайные ошибки исключают с применением разноцветных оболочек

Способы соединения электрической цепи

Разобравшись с терминологией и графическим обозначением элементов, можно перейти к непосредственному рассмотрению способов соединения, представленных в следующей таблице:

Общее описание пути тока

Такие объекты, как ЦРП, находятся уже в непосредственной близости от городов, сел и т. д. Здесь происходит не только распределение, но и понижение напряжения до 220 или же 110 кВ. После этого электроэнергия передается на подстанции, расположенные уже в черте города.

При прохождении таких небольших подстанций напряжение понижается еще раз, но уже до 6-10 кВ. После этого осуществляется передача и распределение электроэнергии по трансформаторным пунктам, расположенным по разным участкам города. Здесь также стоит отметить, что передача энергии в черте города к ТП осуществляется уже не при помощи ЛЭП, а при помощи проложенных подземных кабелей. Это гораздо целесообразнее, чем применение ЛЭП. Трансформаторный пункт – это последний объект, на котором происходит распределение и передача электроэнергии, а также ее понижение в последний раз. На таких участках напряжение снижается до уже привычных 0,4 кВ, то есть 380 В. Далее оно передается в частные, многоэтажные дома, гаражные кооперативы и т. д.

Если кратко рассмотреть путь передачи, то он примерно следующий: источник энергии (электростанция на 10 кВ) – трансформатор повышающего типа до 110-1150 кВ – ЛЭП – подстанция с трансформатором понижающего типа – трансформаторный пункт с понижением напряжения до 10-0,4 кВ – потребители (частный сектор, жилые дома и т. д.).

Посчитать сопротивления элементов при последовательном и параллельном соединении

Алгоритм расчета реальных цепей прост. Приведем некоторые тезисы касательно рассматриваемой тематики:

  1. При последовательном включении суммируются сопротивления, при параллельном — проводимости:
    1. Для резисторов закон переписывается в неизменной форме. При параллельном соединении итоговое сопротивление равняется произведению исходных, деленному на общую сумму. При последовательном – номиналы суммируются.
    2. Индуктивность выступает реактивным сопротивлением (j*ω*L), ведет себя, как обычный резистор. В плане написания формулы ничем не отличается. Нюанс, для всякого чисто мнимого импеданса, что нужно умножить результат на оператор j, круговую частоту ω (2*Пи*f). При последовательном соединении катушек индуктивности номиналы суммируются, при параллельном – складываются обратные величины.
    3. Мнимое сопротивление емкости записывается в виде: -j/ω*С. Легко заметить: складывая величины последовательного соединения, получим формулу, в точности как для резисторов и индуктивностей было при параллельном. Для конденсаторов все наоборот. При параллельном включении номиналы складываются, при последовательном – суммируются обратные величины.

Тезисы легко распространяются на произвольные случаи. Падение напряжения на двух открытых кремниевых диодах равно сумме. На практике составляет 1 вольт, точное значение зависит от типа полупроводникового элемента, характеристик. Аналогичным образом рассматривают источники питания: при последовательном включении номиналы складываются. Параллельное часто встречается на подстанциях, где трансформаторы ставят рядком. Напряжение будет одно (контролируются аппаратурой), делятся между ветвями. Коэффициент трансформации строго равен, блокируя возникновение негативных эффектов.

У некоторых вызывает затруднение случай: две батарейки разного номинала включены параллельно. Случай описывается вторым законом Кирхгофа, никакой сложности представить физику не может. При неравенстве номиналов двух источников берется среднее арифметическое, если пренебречь внутренним сопротивлением обоих. В противном случае решаются уравнения Кирхгофа для всех контуров. Неизвестными будут токи (всего три), общее количество которых равно числу уравнений. Для полного понимания привели рисунок.

Пример решения уравнений Кирхгофа

Посмотрим изображение: по условию задачи, источник Е1 сильнее, нежели Е2. Направление токов в контуре берем из здравых соображений. Но если бы проставили неправильно, после решения задачи один получился бы с отрицательным знаком. Следовало тогда изменить направление. Очевидно, во внешней цепи ток течет, как показано на рисунке. Составляем уравнения Кирхгофа для трех контуров, вот что следует:

  1. Работа первого (сильного) источника тратится на создание тока во внешней цепи, преодоление слабости соседа (ток I2).
  2. Второй источник не совершает полезной работы в нагрузке, борется с первым. Иначе не скажешь.

Включение батареек разного номинала параллельно является безусловно вредным. Что наблюдается на подстанции при использовании трансформаторов с разным передаточным коэффициентом. Уравнительные токи не выполняют никакой полезной работы. Включенные параллельно разные батарейки начнут эффективно функционировать, когда сильная просядет до уровня слабой.

Подробности Категория: Статьи Создано: 06.09.2017 19:48

Как подключить в кукольном домике несколько светильников

Когда вы задумываетесь о том как сделать освещение в кукольном домике или румбоксе, где не один, а несколько светильников, то встает вопрос о том, как их подключить, объединить в сеть. Существует два типа подключения: последовательное и параллельное, о которых мы слышали со школьной скамьи. Их и рассмотрим в этой статье.

Я постараюсь описать всё простым доступным языком, чтобы всё было понятно даже самым-самым гуманитариям, не знакомым с электрическими премудростями.

Примечание: в этой статье рассмотрим только цепь с лампочками накаливания. Освещение диодами более сложное и будет рассмотрено в другой статье.

Для понимания каждая схема будет сопровождена рисунком и рядом с чертежом электрической монтажной схемой.
Сначала рассмотрим условные обозначения на электрических схемах.

Название элементаСимвол на схемеИзображение
батарейка/ элемент питания
выключатель
провод
пересечение проводов (без соединения)
соединение проводов (пайкой, скруткой)
лампа накаливания
неисправная лампа
неработающая лампа
горящая лампа

Как уже было сказано, существуют два основных типа подключения: последовательное и параллельное. Есть ещё третье, смешанное: последовательно-параллельное, объединяющее то и другое. Начнем с последовательного, как более простого.

Последовательное подключение

Выглядит оно вот так.

Лампочки располагаются одна за другой, как в хороводе держась за руки. По этому принципу были сделаны старые советские гирлянды.

Достоинства – простота соединения.
Недостатки – если перегорела хоть одна лампочка, то не будет работать вся цепь.

Надо будет перебирать, проверять каждую лампочку, чтобы найти неисправную. Это может быть утомительным при большом количестве лампочек. Так же лампочки должны быть одного типа: напряжение, мощность.

При этом типе подключения напряжения лампочек складываются. Напряжение обозначается буквой U, измеряется в вольтах V. Напряжение источника питания должно быть равно сумме напряжений всех лампочек в цепи.

Пример №1: вы хотите подключить в последовательную цепь 3 лампочки напряжением 1,5V. Напряжение источника питания, необходимое для работы такой цепи 1,5+1,5+1,5=4,5V.

У обычных пальчиковых батареек напряжение 1,5V. Чтобы из них получить напряжение 4,5V их тоже нужно соединить в последовательную цепь, их напряжения сложатся.
Подробнее о том, как выбрать источник питания написано в этой статье

Пример №2: вы хотите подключить к источнику питания 12V лампочки по 6V. 6+6=12v. Можно подключить 2 таких лампочки.

Пример №3: вы хотите соединить в цепь 2 лампочки по 3V. 3+3=6V. Необходим источник питания на 6 V.

Подведем итог: последовательное подключение просто в изготовлении, нужны лампочки одного типа. Недостатки: при выходе из строя одной лампочки не горят все. Включить и выключить цепь можно только целиком.

Исходя из этого, для освещения кукольного домика целесообразно соединять последовательно не более 2-3 лампочек. Например, в бра. Чтобы соединить большее количество лампочек, необходимо использовать другой тип подключения – параллельное.

Читайте так же статьи по теме:

  • Обзор миниатюрных ламп накаливания
  • Диоды или лампы накаливания

Параллельное подключение лампочек

Вот так выглядит параллельное подключение лампочек.

В этом типе подключения у всех лампочек и источника питания одинаковые напряжения. То есть при источнике питания 12v каждая из лампочек должна иметь тоже напряжение 12V. А количество лампочек может быть различным. А если у вас, допустим, есть лампочки 6V, то и источник питания нужно брать 6V.

При выходе из строя одной лампочки другие продолжают гореть.

Лампочки можно включать независимо друг от друга. Для этого к каждой нужно поставить свой выключатель.

По этому принципу подключены электроприборы в наших городских квартирах. У всех приборов одно напряжение 220V, включать и выключать их можно независимо друг от друга, мощность электроприборов может быть разной.

Вывод: при множестве светильников в кукольном домике оптимально параллельное подключение, хотя оно чуть сложнее, чем последовательное.

Рассмотрим ещё один вид подключения, соединяющий в себе последовательное и параллельное.

Комбинированное подключение

Пример комбинированного подключения.

Три последовательные цепи, соединенные параллельно

А вот другой вариант:

Три параллельные цепи, соединенные последовательно.

Участки такой цепи, соединенные последовательно, ведут себя как последовательное соединение. А параллельные участки – как параллельное соединение.

Пример

При такой схеме перегорание одной лампочки выведет из строя весь участок, соединенный последовательно, а две другие последовательные цеписохранят работоспособность.

Соответственно, и включать-выключать участки можно независимо друг от друга. Для этого каждой последовательной цепи нужно поставить свой выключатель.

Но нельзя включить одну-единственную лампочку.

При параллельно-последовательном подключении при выходе из строя одной лампочки цепь будет вести себя так:

А при нарушении на последовательном участке вот так:

Пример:

Есть 6 лампочек по 3V, соединенные в 3 последовательные цепи по 2 лампочки. Цепи в свою очередь соединены параллельно. Разбиваем на 3 последовательных участка и просчитываем этот участок.

На последовательном участке напряжения лампочек складываются, 3v+3V=6V. У каждой последовательной цепи напряжение 6V. Поскольку цепи соединены параллельно, то их напряжение не складывается, а значит нам нужен источник питания на 6V.

Пример

У нас 6 лампочек по 6V. Лампочки соединены по 3 штуки в параллельную цепь, а цепи в свою очередь – последовательно. Разбиваем систему на три параллельных цепи.

В одной параллельной цепи напряжение у каждой лампочки 6V, поскольку напряжение не складывается, то и у всей цепи напряжение 6V. А сами цепи соединены уже последовательно и их напряжения уже складываются. Получается 6V+6V=12V. Значит, нужен источник питания 12V.

Пример

Для кукольных домиков можно использовать такое смешанное подключение.

Допустим, в каждой комнате по одному светильнику, все светильники подключены параллельно. Но в самих светильниках разное количество лампочек: в двух – по одной лампочке, есть двухрожковое бра из двух лампочек и трехрожковая люстра. В люстре и бра лампочки соединены последовательно.

У каждого светильника свой выключатель. Источник питания 12V напряжения. Одиночные лампочки, соединенные параллельно, должны иметь напряжение 12V. А у тех, что соединены последовательно напряжение складывается на участке цепи
. Соответственно, для участка бра из двух лампочек 12V (общее напряжение)делим на 2 (количество лампочек), получим 6V (напряжение одной лампочки).
Для участка люстры 12V_3=4V (напряжение одной лампочки люстры).
Больше трех лампочек в одном светильнике соединять последовательно не стоит.

Теперь вы изучили все хитрости подключения лампочек накаливания разными способами. И, думаю, что не составит труда сделать освещение в кукольном домике со многими лампочками, любой сложности. Если же что-то для вас ещё представляет сложности, прочитайте статью о простейшем способе сделать свет в кукольном домике, самые базовые принципы. Удачи!

Всем доброго времени суток. В прошлой статье я рассмотрел , применительно к электрическим цепям, содержащие источники энергии. Но в основе анализа и проектирования электронных схем вместе с законом Ома лежат также законы баланса , называемым первым законом Кирхгофа, и баланса напряжения на участках цепи, называемым вторым законом Кирхгофа, которые рассмотрим в данной статье. Но для начала выясним, как соединяются между собой приёмники энергии и какие при этом взаимоотношения между токами, напряжениями и .

Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии

Пример последовательного подключения приемников энергии.

В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления

Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.

Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями

где R – эквивалентное последовательное сопротивление.

В чем измеряется

Единицей напряжения называют вольт (В). Один Вольт выражается в разности потенциалов двух точек электрического поля, силы которого совершают работу в 1 Дж для перемещения заряда в 1 Кл из первой точки во вторую. Измеряют напряжение специальным прибором — вольтметром.

Таким образом, значение 220 В подразумевает, что электрическое поле данной сети способно совершить работу (потратить энергию) в 220 Дж для «протаскивания» зарядов через цепь и нагрузку.

Применение последовательного соединения

Основным назначением последовательного соединения приемников энергии является обеспечение требуемого напряжения меньше, чем напряжение источника энергии. Одними из таких применений является делитель напряжения и потенциометр


Делитель напряжения (слева) и потенциометр (справа).

В качестве делителей напряжения используют последовательно соединённые резисторы, в данном случае R1 и R2, которые делят напряжение источника энергии на две части U1 и U2. Напряжения U1 и U2 можно использовать для работы разных приемников энергии.

Довольно часто используют регулируемый делитель напряжения, в качестве которого применяют переменный резистор R. Суммарное сопротивление, которого делится на две части с помощью подвижного контакта, и таким образом можно плавно изменять напряжение U2 на приемнике энергии.

Ещё одним способом соединения приемников электрической энергии является параллельное соединение, которое характеризуется тем, что к одним и тем же узлам электрической цепи присоединены несколько преемников энергии. Пример такого соединения показан на рисунке ниже


Пример параллельного соединения приемников энергии.

Электрическая цепь на рисунке состоит из трёх параллельных ветвей с сопротивлениями нагрузки R1, R2 и R3. Цепь подключена к источнику энергии с напряжением U, через цепь протекает электрический ток с силой I. Таким образом, через каждую ветвь протекает ток равный отношению напряжения к сопротивлению каждой ветви

Так как все ветви цепи находятся под одним напряжением U, то токи приемников энергии обратно пропорциональны сопротивлениям этих приемников, а следовательно параллельно соединённые приемники энергии можно заметь одним приемником энергии с соответствующим эквивалентным сопротивлением, согласно следующих выражений

Таким образом, при параллельном соединении эквивалентное сопротивление всегда меньше самого малого из параллельно включенных сопротивлений.

Технические нюансы разных видов соединения проводов

Многие важные решения зависят от реальных условий монтажа и последующей эксплуатации. Вместо дешевого проводника из алюминия профильные специалисты предпочитают медь. Некоторое увеличение стоимости компенсируется меньшим удельным сопротивлением, стойкостью к изгибам, долговечностью. Класс защитных оболочек выбирают с учетом огнестойкости строительных конструкций.

Для удобного и надежного соединения многожильных проводников пользуются наконечниками. Некоторые изделия такого типа устанавливают с применением специального прессующего инструмента.

Варианты подключения электропроводки

Теперь давайте разберемся, какая должна быть электропроводка и как соединять провода. Для расключения однофазной сети необходимо применять трехжильный провод.

При этом следует применять нормы из п.1.1.29 ПУЭ для облегчения прокладки и снижения вероятности перепутывания проводов.

Цветовое обозначение проводов

Трехжильный провод следует применять со следующими проводами:

  • Фазный провод – цветовое обозначение для однофазной сети не нормируется. Для трехфазной сети желтый, зеленый, красный – соответственно фазы А,В и С.

Обратите внимание! Для трехфазной цепи нормы ПУЭ нормируют не только цветовую гамму обозначения каждой фазы, но и их расположение в распределительных щитках разных конструкций.

  • Нулевой провод – для любых сетей должен применяться проводник голубого цвета. При обозначении шин или клеммников применяется символ «N».
  • Заземляющий провод – в любых сетях должен применяться провод с       продольными желто-зелеными полосами. При обозначении шин и клеммников применяется знак заземления.

Подключение в распределительном щитке

Теперь давайте рассмотрим виды соединения электропроводки в разных участках нашей электрической сети.

Начнем с распределительного щитка:

  • Сначала разберемся с фазным проводом. Он должен подключаться через защитное устройство. Это могут быть предохранители, пробки, но чаще всего используются автоматические выключатели. Питающий провод к автоматическим выключателям обычно подводится сверху, вы же подключаетесь снизу.
  • Нулевой провод ,согласно норм ПУЭ, не должен иметь коммутационных устройств. Поэтому обычно для него организуют отдельный клеммник в боковой части щитка. К нему мы подключаем голубую жилу нашего провода.
  • Это же правило относится и к заземляющему проводу. Только для него следует создать отдельный клеммник. К нему мы и подключаем наш желто-зеленый провод.

Подключение УЗО для всех групп потребителей

Отдельно остановимся на подключении УЗО. Для этого нам необходимо использовать не только фазный, но и нулевой провод. И схема во многом зависит от места установки УЗО.

Если вы устанавливаете УЗО на все группы вашей электрической сети:

  • В этом случае фазный и нулевой провод с счетчика подключается к вводам УЗО. Тут важно не перепутать и нулевой провод подключить к клемме, обозначенной «N». Иначе УЗО не будет работать.
  • Фазный провод на выходе УЗО подключаем ко всем автоматам, питающим отдельные группы.
  • Нулевой провод на выходе УЗО подключаем к шине или клеммнику, от которого подключаются нулевые провода всех групп.

Если вы устанавливаете УЗО на отдельную группу:

  • В этом случае фазный провод на ввод УЗО берется от автоматического выключателя группы.
  • Нулевой провод на ввод УЗО берется с нулевой шины вашего распределительного щитка.
  • С выводов УЗО нулевой и фазный провод идут непосредственно к потребителям.

Подключение в распределительной коробке

Соединение электропроводки на колодки при соблюдении указанных выше норм также не позволит вам запутаться. Отличается здесь только подключение светильников и розеток, но они незначительны.

При подключении розеток нам достаточно при помощи клемм сделать ответвление фазного, нулевого и заземляющего провода:

  • Для этого приходящий провод разрезается и каждая жила подключается к отдельному клеммнику. Для подключения одной розетки необходимо три клеммы, двух розеток — четыре, трех — пять и так далее.
  • Теперь подключаем к одной клемме фазный провод приходящего провода. Ко второй клемме подключается провод группы, идущий к другим присоединениям. К третьей клемме крепим фазный провод, идущий к нашей розетке.
  • Идентично выполняем операции с нулевым и заземляющим проводом.

Подключение светильника

Подключение светильников несколько усложняется ввиду наличия включателя.

  • Если вы вызвались подключать светильники своими руками, то на первом этапе делаем те же операции, что и при подключении розеток. То есть, разделываем кабель и каждую жилу       подключаем к разным клеммникам. Так же можно сразу подключить провод, идущий к другим электроприемникам данной группы.
  • Согласно норм ПУЭ, выключатель сети освещения должен отключать фазный провод. Поэтому от клеммника фазных проводов делаем подключение к выключателю.
  • Если у вас однокнопочный выключатель, то на выходе с выключателя будет один провод. Если двух и более кнопочный, то два или более, соответственно. Мы рассмотрим однокнопочный выключатель для упрощения предоставления информации. Для двух, трех и более кнопочных выключателей схема подключения идентична.
  • Провод, подключенный к выводу выключателя, отправляется обратно в распределительную коробку. Здесь мы устанавливаем еще один фазный клеммник,       к которому и подключается наш провод.
  • Теперь берется трехжильный провод, который подключен непосредственно к светильнику. Фазная жила этого провода подключается к фазному клеммнику провода, пришедшего от выключателя. Нулевая жила подключается к клеммнику нулевых жил, а заземляющая — к клеммнику заземляющих жил. Все, подключение нашего светильника выполнено. Если же посмотреть соответствующие видео, то данный процесс станет для вас еще более понятным.

Составные части электрических цепей

Как известно, для того, чтобы электрический ток в проводниках существовал длительное время необходимо, во-первых, существование разности потенциалов или напряжения, а во-вторых, восполнение необходимого количества разноимённых зарядов для возникновения этой разности потенциалов. Данным условиям соответствует некоторая совокупность элементов называемая электрической цепью.

Таким образом, электрической цепью называется совокупность устройств и объектов, которые образуют путь для электрического тока и электромагнитные процессы, в которых могут быть описаны с помощью понятий ЭДС, напряжения и электрического тока. Кроме того, для протекания электрического тока необходима замкнутая электрическая цепь. В общем случае электрическая цепь состоит из источника электрической энергии, приемника электрической энергии, соединительных проводов, а также вспомогательных элементов, выполняющих разнообразные функции.

Источником электрической энергии является устройство, которое выполняет преобразование неэлектрической энергии в электрическую. Например, аккумуляторы осуществляют преобразование энергии химических реакций в электрическую энергию, а генераторы – преобразование механической энергии. Таким образом, как известно из предыдущей статьи источники энергии называют также источниками ЭДС.

Приёмником электрической энергии, также называемые нагрузками является устройство, в котором выполняется действие противоположное источнику энергии, то есть электрическая энергия преобразуется в неэлектрическую. Например, в лампочке электрическая энергия преобразуется в световую и тепловую энергию, а в электродвигателе – в механическую энергию.

К вспомогательным устройствам относятся различные коммутирующие, распределительные и измерительные приборы и объекты.

Электрические цепи изображают на чертежах в виде принципиальных электрических схем, где каждому элементу электрической цепи соответствует свой графический элемент. Принципиальные схемы показывают назначение каждого элемента цепи, а также его взаимодействие с остальными элементами, однако при расчётах они не очень удобны. Поэтому при расчётах пользуются так называемыми схемами замещения, которые также как и принципиальные схемы изображаются с помощью графических элементов, однако элементы схем замещения выбираются так, чтобы с необходимым приближением описать работу электрической цепи. Пример изображения принципиальных электрических схем и схем замещения показано ниже


Принципиальная схема (слева) и схема её замещения (справа).

Схемы замещения состоят из следующих элементов: контур, ветвь и узел. Ветвь – это один элемент либо последовательное соединение нескольких элементов. Узел – место соединения трёх и более ветвей. Контур – замкнутый путь, проходящий по ветвям так, чтобы ни один узел и ни одна ветвь не встречались больше одного раза.

Таким образом, зная параметры всех элементов схемы замещения, возможно при помощи законов электротехники определить электрическое состояние всей электрической цепи, то есть рассчитать режим её работы.

2.2. Виды соединения проводников

На практике соединение проводников может выполняться одним из четырех видов:

2.2.1. Последовательное

Последовательное электрическое соединение проводников применяется в случае необходимости обеспечения одинаковой силы тока на всех участках цепи. В качестве примера можно привести старую гирлянду на елку. Она же демонстрирует и недостаток такого соединения — при перегорании одной лампочки (нарушение цепи) гаснут и все остальные.

2.2.2. Параллельное

Электрические соединения проводников параллельные являются самыми распространенными, т к. при этом ко всем элементам цепи подводится электроток одинакового напряжения. А вот сила тока отличается. Но в случае неисправности какого-либо одного элемента цепи, это не повлияет на работу остальных. Примером может служить подключение всех электроприборов в квартире или доме. Так, отключение верхнего света в комнате не влияет на работу телевизора и т. д.

2.2.3. Смешанное

Смешанное соединение электрической цепи означает наличие в ней, как последовательного, так параллельного соединений проводников.

2.2.4. Мостовая схема

Принцип мостовой схемы соединения проводников лежит в основе моста английского физика Ч. Уинстона, позволяющего измерять сопротивление проводников.

 

Смешанное соединение проводников в электрической цепи

На практике сборку электроцепей, как правило, проводят таким метод, который предусматривает смешанное соединение проводников. Это комбинированное решение, которое сочетает оба способа. Обычно для монтажа основной сети используют параллель, а отдельные потребители при необходимости объединяют в последовательную сеть.

При расчете и сборке смешанных соединений сопротивлений обязательно должны учитываться особенности, преимущества и недостатки обоих методов подключения. В ходе проектирования, схему целесообразно разбить на отдельные части и выполнить расчет в по физическим законам, которые справедливы для последовательного и параллельного соединения. После этого, составные части объединяют в единую схему.

Первый закон Кирхгофа

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа


Изображение первого закона Кирхгофа.

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Как соединить вольтметр и амперметр в цепь

К числу основных электротехнических параметров относятся сила тока и вольтаж. Для контроля этих величин используют приборы – амперметры и вольтметры. Требования по подключению этих приборов в цепь определяются, исходя из законов, которые действуют для последовательного и параллельного соединения.

Для измерения величины тока производится включение амперметра в цепь строго последовательно с рабочей нагрузкой. Важно, чтобы сопротивление самого прибора было минимальным, чтобы не допустить его влияние на работу электрооборудования. Если амперметр подключить параллельно, это приведет к выходу амперметра из строя.

Для измерения напряжения вольтметр в цепь подключается строго параллельно источнику или приемнику тока. Сам измерительный прибор должен иметь довольно высокое собственное сопротивление. Это требуется, чтобы при измерении можно было пренебречь величиной тока, который отбирается через вольтметр.

Закон Ома для полной цепи

В предыдущей статье я рассказал о законе Ома, который устанавливает зависимость между напряжением и током, протекающим через участок цепи. Однако при попытке его применить ко всей цепи, содержащей кроме сопротивления ещё и источник напряжения, приводит к неверным результатам, так как реальный источник напряжения, как мы знаем, имеет некоторое внутреннее сопротивление.


Закон Ома для полной цепи.

Поэтому полное сопротивление цепи является суммой внутреннего сопротивления источника энергии RВН (обычно небольшого) и внешнего сопротивления нагрузки RН (практически всегда значительно большего, чем RВН), поэтому для полной цепи закон Ома будет иметь следующий вид

Проанализировав данное выражение можно прийти к следующим практически выводам:

  1. При подключении к источнику питания нагрузки, напряжение источника питания меньше его ЭДС, так как на внутреннем сопротивлении RВН источника питания происходит падение некоторого напряжения UВНСледовательно, при отключенной нагрузке напряжение источника питания будет равно ЭДС. Данное приложение используется для измерения ЭДС источников питания.
  2. Напряжение источника питания при подключении различных нагрузок изменяется, причем, чем меньше величина сопротивления нагрузки, тем меньше величина напряжения источника питания, так как разная величина сопротивления нагрузки вызывает разный ток в цепи, а следовательно изменяется падение напряжение на внутреннем сопротивлении источника
  3. В некоторых случаях возникает необходимость в измерении внутреннего сопротивления источника энергии. Это возможно сделать с помощью следующей схемы


Схема для измерения источника энергии.
В начале проводят замер ЭДС источника питания Е, путём размыкая ключа S1, затем замыкая ключ S1 замеряют протекающий по цепи ток I и напряжение источника питания под нагрузкой UH. Таким образом, вычисляют падение напряжения на внутреннем сопротивлении источника питания UВН. Тогда, величина внутреннего сопротивления RВН будет вычислена, как отношение внутреннего падения напряжения к протекающему в цепи току

Например, при разомкнутом ключе S1 напряжение на выходе источника питания составило U = E = 1,5 В. При замыкании ключа S1 ток составил I = 0,18 А, а напряжение составило UH = 1,42 В. Тогда внутренне сопротивление RВН источника питания составит

Некоторые факты

  1. Каждый электропроводный материал имеет некоторое сопротивление, являющееся сопротивляемостью материала электрическому току.
  2. Сопротивление измеряется в Омах. Символ единицы измерения Ом – Ω.
  3. Разные материалы имеют разные значения сопротивления.
    • Например, сопротивление меди 0.0000017 Ом/см 3
    • Сопротивление керамики около 10 14 Ом/см 3
  4. Чем больше значение сопротивления, тем выше сопротивляемость электрическому току. Медь, которая часто используется в электрических проводах, имеет очень малое сопротивление. С другой стороны, сопротивление керамики очень велико, что делает ее прекрасным изолятором.
  5. Работа всей цепи зависит от того, какой тип соединения вы выберете для подключения резисторов в этой цепи.
  6. U=IR. Это закон Ома, установленный Георгом Омом в начале 1800х. Если вам даны любые две из этих переменных, вы легко найдете третью.
    • U=IR: Напряжение (U) есть результат умножения силы тока (I) * на сопротивление (R).
    • I=U/R: Сила тока есть частное от напряжение (U) ÷ сопротивление (R).
    • R=U/I: Сопротивление есть частное от напряжение (U) ÷ сила тока (I).
  • Запомните: при параллельном соединении существует несколько путей прохождения тока по цепи, поэтому в такой цепи общее сопротивление будет меньше сопротивления каждого отдельного резистора. При последовательном соединении ток проходит через каждый резистор в цепи, поэтому сопротивление каждого отдельного резистора добавляется к общему сопротивлению.
  • Общее сопротивление в параллельной цепи всегда меньше сопротивления одного резистора с самым низким сопротивлением в этой цепи. Общее сопротивление в последовательной цепи всегда больше сопротивления одного резистора с самым высоким сопротивлением в этой цепи.

§ 11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)

Последовательное, параллельное и смешанное соединения резисторов.

Значительное число приемников, включенных в электрическую цепь (электрические лампы, электронагревательные приборы и др.), можно рассматривать как некоторые элементы, имеющие определенное сопротивление.

Это обстоятельство дает нам возможность при составлении и изучении электрических схем заменять конкретные приемники резисторами с определенными сопротивлениями. Различают следующие способы соединения резисторов (приемников электрической энергии): последовательное, параллельное и смешанное.

Последовательное соединение резисторов.

Рис. 25. Схемы последовательного соединения приемников

При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит один и тот же ток I.

Заменяя лампы резисторами с сопротивлениями R1, R2 и R3, получим схему, показанную на рис. 25. Если принять, что в источнике Ro = 0, то для трех последовательно соединенных резисторов согласно второму закону Кирхгофа можно написать:

E = IR1 + IR2 + IR3 = I(R1 + R2 + R3) = IRэк (19)

где Rэк = R1 + R2 + R3.

Следовательно, эквивалентное сопротивление последовательной цепи равно сумме сопротивлений всех последовательно соединенных резисторов. Так как напряжения на отдельных участках цепи согласно закону Ома: U1=IR1; U2 = IR2, U3 = IRз и в данном случае E = U, то для рассматриваемой цепи:

U = U1 + U2 +U3 (20)

Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.
Из указанных формул следует также, что напряжения распределяются между последовательно соединенными резисторами пропорционально их сопротивлениям:

U1 : U2 : U3 = R1 : R2 : R3 (21)

т. е. чем больше сопротивление какого-либо приемника в последовательной цепи, тем больше приложенное к нему напряжение.

В случае если последовательно соединяются несколько, например п, резисторов с одинаковым сопротивлением R1, эквивалентное сопротивление цепи Rэк будет в п раз больше сопротивления R1, т. е. Rэк = nR1. Напряжение U1 на каждом резисторе в этом случае в п раз меньше общего напряжения U:

U1 = U/n. (22)

При последовательном соединении приемников изменение сопротивления одного из них тотчас же влечет за собой изменение напряжения на других связанных с ним приемниках. При выключении или обрыве электрической цепи в одном из приемников и в остальных приемниках прекращается ток.

Поэтому последовательное соединение приемников применяют редко — только в том случае, когда напряжение источника электрической энергии больше номинального напряжения, на которое рассчитан потребитель. Например, напряжение в электрической сети, от которой питаются вагоны метрополитена, составляет 825 В, номинальное же напряжение электрических ламп, применяемых в этих вагонах, 55 В. Поэтому в вагонах метрополитена электрические лампы включают последовательно по 15 ламп в каждой цепи.

Параллельное соединение резисторов.


При параллельном соединении нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 26, а).

Рис. 26. Схемы параллельного соединения приемников

Заменяя лампы резисторами с сопротивлениями R1, R2, R3, получим схему, показанную на рис. 26, б.
При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

I1=U/R1; I2=U/R2; I3=U/R3.

Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I1+I2+I3, или:

I = U / R1 + U / R2 + U / R3 = U (1/R1 + 1/R2 + 1/R3) = U / Rэк (23)

Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой:

1/Rэк = 1/R1 + 1/R2 + 1/R3 (24)

Вводя в формулу (24) вместо значений 1/Rэк, 1/R1, 1/R2 и 1/R3 соответствующие проводимости Gэк, G1, G2 и G3, получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов:

Gэк = G1+ G2 +G3 (25)

Таким образом, при увеличении числа параллельно включаемых резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.

Из приведенных формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическим сопротивлениям или прямо пропорционально их проводимостям. Например, при трех ветвях:

I1 : I2 : I3 = 1/R1 : 1/R2 : 1/R3 = G1 + G2 + G3 (26)

В этом отношении имеет место полная аналогия между распределением токов по отдельным ветвям и распределением потоков воды по трубам.

Приведенные формулы дают возможность определить эквивалентное сопротивление цепи для различных конкретных случаев. Например, при двух параллельно включенных резисторах результирующее сопротивление цепи:

Rэк=R1R2/(R1+R2)

при трех параллельно включенных резисторах:

Rэк=R1R2R3/(R1R2+R2R3+R1R3)

При параллельном соединении нескольких, например n, резисторов с одинаковым сопротивлением R1 результирующее сопротивление цепи Rэк будет в n раз меньше сопротивления R1, т.е.:

Rэк = R1 / n (27)

Проходящий по каждой ветви ток I1, в этом случае будет в п раз меньше общего тока:

I1 = I / n (28)

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.

Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.

На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Смешанное соединение резисторов.

Смешанным соединением называется такое соединение, при котором часть резисторов включается последовательно, а часть — параллельно.

Например, в схеме рис. 27, а имеются два последовательно включенных резистора сопротивлениями R1 и R2, параллельно им включен резистор сопротивлением Rз, а резистор сопротивлением R4 включен последовательно с группой резисторов сопротивлениями R1, R2 и R3.

Рис. 27. Схемы смешанного соединения приемников

Эквивалентное сопротивление цепи при смешанном соединении обычно определяют методом преобразования, при котором сложную цепь последовательными этапами преобразовывают в простейшую.

Например, для схемы рис. 27, а вначале определяют эквивалентное сопротивление R12 последовательно включенных резисторов с сопротивлениями R1 и R2: R12 = R1 + R2. При этом схема рис. 27, а заменяется эквивалентной схемой рис. 27, б. Затем определяют эквивалентное сопротивление R123 параллельно включенных сопротивлений и R3 по формуле:

R123=R12R3/(R12+R3)=(R1+R2)R3/(R1+R2+R3).

При этом схема рис. 27, б заменяется эквивалентной схемой рис. 27, в. После этого находят эквивалентное сопротивление всей цепи суммированием сопротивления R123 и последовательно включенного с ним сопротивления R4:

Rэк = R123 + R4 = (R1 + R2) R3 / (R1 + R2 + R3) + R4

Последовательное, параллельное и смешанное соединения широко применяют для изменения сопротивления пусковых реостатов при пуске э. п. с. постоянного тока.

Электрическая цепь и ее элементы

Электрическая цепь это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Элементами электрической цепи являются: источник тока, нагрузка и проводники. Простейшая электрическая цепь показана на рисунке 1.

Рисунок 1. Простейшая электрическая цепь.

В состав электрической цепи могут входить и другие элементы, таки как устройства коммутации, устройства защиты.

Как известно, для возникновения тока необходимо соединить две точки, одна из которых имеет избыток электронов в сравнении с другой. Другими словами необходимо создать разность потенциалов между этими двумя точками. Как раз для создания разности потенциалов в цепи применяется источник тока. Источником тока в электрической цепи могут быть такие устройства, как генераторы, батареи, химические элементы и т.д.

Нагрузкой в электрической цепи считается любой потребитель электрической энергии. Нагрузка оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника тока к нагрузке течет по проводникам. В качестве проводников стараются использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Важно, что для протекания тока в цепи, цепь должна быть замкнута!

Типы электрических цепей

В электротехники по типу соединения элементов электрической цепи существуют следующие электрические цепи:

  • последовательная электрическая цепь;
  • параллельная электрическая цепь;
  • последовательно-параллельная электрическая цепь.

Последовательная электрическая цепь.

В последовательной электрической цепи (рисунок 2.) все элементы цепи последовательно друг с другом, то есть конец первого с началом второго, конец второго с началом первого и т.д.

Рисунок 2. Последовательная электрическая цепь.

При таком соединении элементов цепи ток имеет только один путь протекания от источника тока к нагрузке.При этом общий ток цепи Iобщ будет равен току через каждый элемент цепи:

Iобщ=I1=I2=I3

Падение напряжения вдоль всей цепи, то есть на участке А-Б (Uа-б), будет равно приложенному к этому участку напряжению E и равно сумме падений напряжений на всех участках цепи (резисторах):

E=Uа-б=U1+U2+U3

Параллельная электрическая цепь.

В параллельной электрической цепи (рисунок 3.) все элементы соединены таким образом, что их начало соединены в одну общую точку, а концы в другую.

Рисунок 3. Параллельная электрическая цепь.

В этом случае у тока имеется несколько путей протекания от источника к нагрузкам, а общий ток цепи Iобщ будет равен сумме токов параллельных ветвей:

Iобщ=I1+I2+I3

Падение напряжения на всех резисторах будет равно приложенному напряжению к участку с параллельным соединением резисторов:

E=U1=U2=U3

Последовательно-параллельная электрическая цепь.

Последовательно-параллельная электрическая цепь является комбинацией последовательной и параллельной цепи, то есть ее элементы включаются и последовательно и параллельно (рисунок 4).

Рисунок 4. Последовательно-параллельная электрическая цепь.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электрические цепи постоянного тока

Электрическим током называют упорядоченное движение электрических зарядов. Направлением электрического тока условились считать направление движения положительных зарядов.

Можно указать на ряд факторов, способных вызывать упорядоченное движение зарядов. Так, под действием электрических (кулоновских) сил положительные заряды движутся в направлении силовых линий поля, отрицательные заряды — в противоположном направлении. Движение зарядов может происходить и под действием неэлектрических сил (например, магнитных), а также при диффузии или в химических реакциях.
Постоянный ток используется в процессе электролиза (гальванопластика — получение легко отделяющихся точных металлических копий, гальваностегия — нанесение металлических покрытий из одних металлов на изделия из других металлов), на городском транспорте (электропоезда, трамваи, троллейбусы), в осветительных приборах, в устройствах автоматики, электроники и вычислительной техники.
Если ток постоянный, то отсутствует явление самоиндукции и напряжение на катушке индуктивности равно нулю,
, так как i = const
Если рассматривать конденсатор как идеальную емкость, то в цепи постоянного тока эта ветвь равносильна разомкнутой.

Постоянный ток через емкость не проходит.

Таким образом, в цепи постоянного тока остаются только источники ЭДС или тока — активные элементы и приемники резисторы — пассивные элементы.
Простыми цепями постоянного тока называются цепи с одним источником при последовательном, параллельном и смешанном соединении приемников.

Последовательное соединение приемников




При параллельном соединении приемников напряжение на всех приемниках одинаково.
По закону Ома токи в каждой ветви:


По первому закону Кирхгофа общий ток




Смешанное соединение — комбинация первых двух соединений, где параллельное соединение может быть преобразовано к последовательному.


Сложной электрической цепью называется цепь, содержащая несколько источников и которую нельзя свернуть до простой цепи последовательного или параллельного соединения.
Расчет таких цепей ведется по уравнениям Кирхгофа.
Для их составления необходимо задать условные направления токов в ветвях (номер введем в соответствии с порядковым номером сопротивлений).
По первому закону Кирхгофа составляются уравнения для каждого из независимых узлов (для данной схемы таких узлов 3).



Выбираются направления обхода в каждом из независимых контуров и составляются уравнения по второму закону Кирхгофа — сумма падений напряжений на пассивных элементах замкнутого контура электрической цепи равна алгебраической сумме источников ЭДС в данном контуре:

Для нахождения решения необходимо любым математическим способом решить полученные шесть уравнений, что весьма сложно. Чтобы сократить число уравнений, используют метод контурных токов.
Для вывода уравнений по методу контурных токов в общем виде исключим из последних трех уравнений токи ветвей смежных контуров , заменив их выражениями, полученными из первых трех уравнений:

Введем обозначения контурных токов:
— ток первого контура;
— ток второго контура;
— ток третьего контура.
Для конкретизации и сокращения записи введем обозначения для контурных ЭДС, равных сумме ЭДС источников рассматриваемого контура:

и соответственно суммы сопротивлений в каждом контуре через контурные сопротивления:

а сопротивления смежных ветвей как:

При принятых обозначениях система расчетных уравнений запишется в общем виде как:



Мы видим, что при расчетах цепей с помощью правил Кирхгофа не обязательно знать разности потенциалов на определенных участках.

определение, элементы, схемы. Топология и методы расчета

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь.  Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

 

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

 

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

 

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

 

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

принцип работы, типы, защита контактов

Электрические контакты — это соприкасающиеся поверхности материалов, обладающие электропроводностью и соединяющие между собой несколько токоведущих элементов в электрической цепи. Это может быть также приспособление, которое обеспечивает соединение и переход электрического тока из одной контактирующей детали в другую.

 Разновидности контактов

Известны 3 разновидности контактов: неразъемный контакт (соединение двух шин болтом), скользящий (с помощью реостата) и коммутирующий. 

По форме контакты бывают

  • точеные, они, в основном, используются для малых токов, при этих контактах происходит небольшое нажатие, а для того, чтобы уменьшить сопротивление контактов, применяются не окисляющиеся драгоценные металлы;
  • линейные, с большой степенью нажатия и контактированием по линии, для производства этих контактов используется медь;
  • поверхностные, применяются с большой степенью нажатия для контактирования при больших токах между двух поверхностей.

Электрические контакты также бывают подвижные и неподвижные.

  • Подвижные контакты в процессе работы замыкаются, соединяясь между собой, либо размыкаются, разъединяясь с помощью механического или электромеханического привода, при этом устройства между собой остаются надежно скреплены.

В процессе работы неподвижных контактов, токоведущие надежно и плотно соединенные между собой элементы не перемещаются друг относительно друга.

Чтобы создать замкнутую электрическую цепь, нужно произвести несколько контактов.

Одним из примеров подвижного контакта является устройство рычажного контакта, рассчитанное на средние и большие токи, в котором в качестве материала применяется медь. 

  • Шарнирный контакт, где неподвижный элемент и подвижный элемент соединяются между собой с помощью силы, воздействующей на рычаг, может служить еще одним примером подвижного контакта.
  • Скользящие контакты — это еще одна разновидность подвижных контактов, у которых, как и в щеточноколлекторном устройстве электрических машин постоянного тока, один элемент перемещается относительно других.

Также к подвижным контактам можно отнести герметизированные магнитоуправляемые контакты или герконы, простейший пример которых представляет собой запаянную стеклянную колбу миниатюрного размера, с двумя плоскими впаянными контактными пружинами, состоящими из мягкой магнитной стали.

Если эти герметизированные магнитоуправляемые контакты (герконы) поместить в созданное обмоткой или постоянным магнитом магнитное поле, то их пружины будут намагничиваться и затем притягиваться друг к другу.

В это время происходит замыкание контактов и, как следствие, может замкнуться электрическая цепь. Контакты из-за силы упругости пружин разомкнутся только после полного исчезновения магнитного поля. Поверхности пружин на контактах покрываются тонким слоем драгоценного металла, имеющего малое удельное электрическое сопротивление (платина, золото, серебро).

С помощью герконов можно производить коммутации в электрических цепях при малых значениях тока от 0,5 до 1А. Колбу геркона вакуумируют или заполняют инертным газом.

Элементы геркона имеют малую массу и высокое быстродействие контактов от 0,5 до 1,0 мс.

Износоустойчивость — это самое важное из свойство герконов. У некоторых видов герконов количество переключений может достичь до двух тысяч в секунду, а срабатываний до сотен миллионов.

Герсиконы — это герметические магнитоуправляемые силовые контакты, являющиеся разновидностью герконов, которые позволяют произвести коммутации в электрических цепях при значениях тока 60А, 100А или 180А и при напряжении 220 440В.

Интересное видео о физике электрических контактов смотрите ниже:

Электрическое сопротивление контактов

Работу контактов определяет переходное электрическое сопротивление, которое зависит от площади контактирования. Чтобы уменьшить переходное сопротивление контактов, необходимо увеличить силу прижатия контактов.

В зависимости от силы переходного сопротивления, ток в цепи, вызывает нагрев контактов, который, в свою очередь, способствует увеличению переходного сопротивления и приводит к еще большему нагреву.

Таким образом достигается допустимый максимум рабочей температуры, находящийся в пределах от 100 до 120°С. По мере увеличения значения номинального тока коммутирующего аппарата, контактное переходное сопротивление должно уменьшаться с помощью повышения контактного нажатия, при этом обязательно необходимо увеличить поверхность охлаждения.

Состав материала из которого изготавливают токоведущие элементы контактов содержит материалы с минимальным удельным электрическим сопротивлением — серебро, медь или металлокерамические композиции.

Искрение на контактах и электрическая дуга

При значительных напряжениях и токах во время размыкания электрической цепи, между расходящимися контактами, образуется электрический разряд. В это же время, в площадке контактирования, при расхождении контактов происходит резкий рост переходного сопротивления и разогрев контактов до их расплавления и образования контактного перешейка из расплавленного металла.

В результате высокой температуры, контакты могут разогреваться и рваться, при этом металл контактов испаряется, а между контактами образуется ионизирующий проводящий воздушный промежуток, в котором под воздействием высокого напряжения, возникает электрическая дуга, которая снижает быстродействие коммутационного аппарата и способствует дальнейшему разрушению контактов.

Чтобы прекратить появление дуги, нужно увеличить сопротивление в цепи с помощью увеличения расстояния между контактами, или применить специальные меры для ее погашения.

Разрывная или коммутируемая мощность контактов — это произведение предельных значений тока и напряжения в цепи, при которых на минимальном расстоянии, между контактами электрическая дуга не образуется.

Электрическая дуга гаснет, когда в цепях переменного тока мгновенное значение тока достигнет нуля и может вновь появиться, если напряжение на контактах будет расти быстрее, чем произойдет восстановление электрической прочности промежутка между контактами.

В любом случае, в цепи переменного тока дуга неустойчива, а разрывная мощность контактов выше в несколько раз, чем в цепи постоянного тока.

В маломощных электрических аппаратах электрическая дуга на контактах появляется редко, но очень часто происходит опасное для чувствительных аппаратов искрение или пробой изоляционного промежутка. Пробой образуется в слаботочных цепях во время быстрого размыкания контактов и может привести к ложным отключениям и значительно сокращает срок службы контактов. С целью уменьшения искрения, применяются устройства искрогашения. 

Ещё одно интересное видео об электрических контактах:

 Устройства искро- и дугогашения


Самый эффективный способ для гашения электрической дуги — это ее охлаждение с помощью соприкосновения с изоляционными стенками специальных камер, которые отбирают теплоту дуги или за счет ее перемещения в воздухе. 

В современных аппаратах широкое распространение получили дугогасительные камеры с узкой щелью и магнитным дутьем.

Дугу можно рассматривать как проводник с током; если его поместить в магнитное поле, то возникнет сила, которая вызовет перемещение дуги. При своем движении дуга обдувается воздухом; попадая в узкую щель между двумя изоляционными пластинами, она деформируется и вследствие повышения давления в щели камеры гаснет (рис. 2.4).

Щелевая камера образована двумя стенками 1, выполненными из изоляционного материала. Зазор между стенками очень мал. Катушка 4, включенная последовательно с главными контактами 5, возбуждает магнитный поток Ф, который направляется ферромагнитными наконечниками 2 в пространство между контактами. В результате взаимодействия дуги и магнитного поля появляется сила F, вытесняющая дугу к пластинам 7.

Эта конструкция дугогасительной камеры применяется и на переменном токе, так как с изменением направления тока изменяется направление потока Ф, а направление силы F остается неизменным.

Для уменьшения искрения на маломощных контактах постоянного тока применяют включение диода параллельно нагрузочному устройству (рис. 2.5). При этом цепь после коммутации (после отключения источника) замыкается через диод, таким образом уменьшается энергия искрообразовния.

Основные сведения о соединителе

— learn.sparkfun.com

Добавлено в избранное Любимый 49

Введение

Разъемы

используются для соединения частей цепей вместе. Обычно разъем используется там, где в будущем может потребоваться отключение подсекций: входы питания, периферийные соединения или платы, которые, возможно, потребуется заменить.

описано в этом учебном пособии

В этом уроке мы рассмотрим:

  • Базовая терминология разъемов
  • Разделить соединители на отдельные категории
  • Расскажите о различиях между разъемами в этих категориях.
  • Показать, как определить поляризованные разъемы
  • Обсудите, какие разъемы лучше всего подходят для определенных приложений

Рекомендуемая литература

Вы можете найти эти концепции полезными перед тем, как приступить к этому руководству:

Что такое схема?

Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.

Полярность

Введение в полярность электронных компонентов.Узнайте, что такое полярность, в каких частях она есть и как ее идентифицировать.

Терминология разъема

Прежде чем мы начнем обсуждать некоторые часто используемые соединители, давайте исследуем терминологию, используемую для описания соединителей.

Пол

Gender — Пол разъема указывает на то, вставлен он или вставлен, и обычно мужской или женский, соответственно (дети, попросите своих родителей более подробное объяснение).К сожалению, бывают случаи, когда разъем может называться «штыревой», хотя может показаться, что он женский; в разделе примеров мы укажем на некоторые из них, обсуждая отдельные типы компонентов и объясняя, почему это так.

Разъемы JST типа «папа» (слева) и «мама» 2,0 мм PH. В этом случае пол определяется индивидуальным дирижером.

Полярность

Полярность — Большинство разъемов можно подключать только с одной ориентацией.Эта особенность называется полярностью, и разъемы, которые имеют некоторые средства предотвращения неправильного подключения, называются поляризованными или иногда с ключом .

Поляризованная розетка для Северной Америки. Благодаря двум разным ширинам ножек вилки вилка будет входить в розетку только в одном направлении.

Контакты

Контакт — Контакты являются деловой частью разъема. Это металлические части, которые соприкасаются друг с другом, образуя электрическое соединение.Здесь также возникают проблемы: контакты могут загрязняться или окисляться, или упругость, необходимая для удержания контактов вместе, со временем может исчезнуть.

Контакты на этом разъеме хорошо видны.

Шаг

Шаг — Многие разъемы состоят из множества контактов, расположенных в повторяющемся порядке. Шаг соединителя — это расстояние от центра одного контакта до центра следующего. Это важно, потому что существует множество семейств контактов, которые выглядят очень похожими, но могут отличаться по шагу, что затрудняет понимание того, что вы покупаете правильный ответный разъем.

Шаг контактов на разъемах на стандартной Arduino составляет 0,1 дюйма.

Циклы стыковки

Циклы стыковки — Соединители имеют ограниченный срок службы, и их подключение и отключение — вот что их изнашивает. Таблицы данных обычно представляют эту информацию в виде циклов спаривания , и она широко варьируется от одной технологии к другой. USB-разъем может иметь срок службы в тысячи или десятки тысяч циклов, в то время как межплатный разъем, предназначенный для использования внутри бытовой электроники, может быть ограничен десятками циклов.Важно выбрать разъем с подходящим сроком службы для данного приложения.

Крепление

Mount — Это может сбивать с толку. Термин «крепление» может относиться к нескольким вещам: способу монтажа разъема при использовании (монтаж на панели, свободно висящий, монтаж на плате), под каким углом разъема относительно его крепления (прямой или прямоугольный) или механическое крепление (язычок для пайки, поверхностный монтаж, сквозное отверстие). Мы обсудим это подробнее в разделе примеров для каждого отдельного разъема.

Сравнение трех различных методов монтажа одного цилиндрического разъема: (слева направо) монтаж на плате, монтаж на линейный кабель и монтаж на панель.

Устройство для снятия напряжения

Устройство разгрузки от натяжения — Когда разъем устанавливается на плату или кабель, электрические соединения становятся несколько хрупкими. Обычно обеспечивается какое-то снятие напряжения для передачи любых сил, действующих на этот разъем, на более механически прочный объект, чем хрупкие электрические соединения.Опять же, позже будет несколько хороших примеров.

Этот разъем для наушников 1/8 «поставляется с» чехлом «для снятия натяжения, надетым на кабель, чтобы предотвратить передачу сил, воздействующих на кабель, непосредственно на электрические соединения.

USB-коннекторы

USB-разъемы бывают двух типов: хост и периферийные устройства. В стандарте USB есть разница между ними, и разъемы на кабелях и устройствах отражают это.Однако у всех USB-разъемов есть общие черты:

  • Поляризация — USB-разъем может быть вставлен только в одном направлении. Можно принудительно вставить разъем неправильно, но приведет к повреждению устройства .
  • Четыре контакта — Все разъемы USB имеют не менее четырех контактов (хотя у некоторых их может быть пять, а у разъемов USB 3.0+ и того больше). Они предназначены для питания, заземления и двух линий передачи данных (D + и D-).Разъемы USB предназначены для передачи 5 В, до 500 мА.
  • Экранирование — USB-разъемы экранированы, поэтому предусмотрена металлическая оболочка, которая не является частью электрической цепи. Это важно, чтобы сигнал оставался неизменным в средах с большим количеством электрических «шумов».
  • Надежное подключение к источнику питания — Важно, чтобы выводы питания подключались до линий передачи данных, чтобы избежать попыток подачи питания на устройство по линиям данных. Все USB-разъемы разработаны с учетом этого.
  • Литой фиксатор натяжения — Все USB-кабели имеют пластиковую накладку на разъеме, чтобы предотвратить натяжение кабеля, которое может потенциально повредить электрические соединения.
Удлинительный USB-кабель, на котором отмечены некоторые общие характеристики USB-разъемов.

Разъемы USB-A

USB-A, розетка — это стандартный тип разъема «хоста». Это можно найти на компьютерах, концентраторах или любом другом устройстве, к которому должны быть подключены периферийные устройства.Также можно найти удлинительные кабели с гнездом A и штекером A на другом конце.

Женский порт USB-A на боковой стороне ноутбука. Синий разъем совместим с USB 3.0.

USB-A папа — это стандартный тип разъема для периферийных устройств. Большинство USB-кабелей имеют один конец, оканчивающийся штекерным разъемом USB-A, а многие устройства (например, клавиатуры и мыши) будут иметь встроенный кабель, оканчивающийся штекерным разъемом USB-A.Также можно найти штекерные разъемы USB-A, которые можно установить на плату, для таких устройств, как карты памяти USB.

Два типа разъемов Male USB-A , на кабеле SparkFun Cerberus и на плате разработки AVR Stick.

Разъемы USB-B

USB-B, розетка — это стандарт для периферийных устройств. Он громоздкий, но прочный, поэтому в приложениях, где размер не является проблемой, он является предпочтительным средством обеспечения съемного разъема для подключения USB.Обычно это разъем для монтажа на плату в сквозное отверстие для максимальной надежности, но есть и варианты для монтажа на панели.

Платы Arduino , в том числе этот Uno, уже давно используют гнездовой разъем USB-B из-за его низкой стоимости и долговечности.

USB-B, вилка почти всегда находится на конце кабеля. Кабели USB-B распространены повсеместно и недороги, что также способствует популярности соединения USB-B.

Штекер USB-B на конце кабеля SparkFun Cerberus.

Разъемы USB-Mini

Соединение USB-Mini было первой стандартной попыткой уменьшить размер USB-разъема для небольших устройств. Гнездо USB-Mini обычно встречается на небольших периферийных устройствах (MP3-плееры, старые мобильные телефоны, небольшие внешние жесткие диски) и обычно представляет собой разъем для поверхностного монтажа, надежность которого зависит от размера. USB-Mini постепенно заменяется разъемом USB-Micro.

Гнездовой разъем USB-Mini на Protosnap Pro Mini.

USB-Mini male — еще один разъем, предназначенный только для кабеля. Как и USB-B, он чрезвычайно распространен, а кабели можно дешево найти практически везде.

Штекерный разъем USB-Mini на конце кабеля SparkFun Cerberus.

Разъемы USB-Micro

USB-Micro — довольно недавнее дополнение к семейству разъемов USB. Как и в случае с USB-Mini, основной проблемой является уменьшение размера, но USB-Micro добавляет пятый контакт для низкоскоростной передачи сигналов, что позволяет использовать его в приложениях USB-OTG (On-the-go), где устройство может захотеть работать как хост или как периферийное устройство в зависимости от обстоятельств.

USB-Micro female используется во многих новых периферийных устройствах, таких как цифровые фотоаппараты и MP3-плееры. Принятие USB-micro в качестве стандартного порта зарядки для всех новых сотовых телефонов и планшетных компьютеров означает, что зарядные устройства и кабели для передачи данных становятся все более распространенными, и USB-Micro, вероятно, вытеснит USB-Mini в ближайшие годы в качестве компактного устройства. USB-разъем на выбор.

USB-Micro гнездовой разъем на USB-плате LilyPad Arduino.

USB-Micro папа также может использоваться только для кабеля.Как правило, существует два типа кабелей с вилками USB-Micro: один для подключения устройства с портом USB-Micro в качестве периферийного устройства к хост-устройству USB, а другой для адаптации гнездового порта USB-Micro к гнезду USB-A. , для использования в устройствах с поддержкой USB-OTG.

Штекерный разъем USB-Micro на кабеле SparkFun Cerberus. Пигтейл адаптера для использования устройств с поддержкой USB-OTG, имеющих только порт USB-Micro, со стандартными периферийными устройствами USB. Обратите внимание, что не все устройства, поддерживающие USB-OTG, будут работать с этим пигтейлом.

Кабель USB 3.0 micro-B

Кабели USB 3.0 micro-B похожи на разъемы USB 2.0 micro-B, но имеют дополнительные контакты для двух дифференциальных пар и заземления.

Кабель USB 3.0 типа A — Micro-B

Кабель USB 3.1 C

USB C содержит 24 контакта в разъеме USB. В отличие от предыдущих версий-предшественников, эта версия обратимая! Конструкция кабеля USB C также позволяет использовать ток более 500 мА для энергоемких устройств.

Внимание! В зависимости от кабеля не все контакты предназначены для USB C. Некоторые кабели могут быть ограничены спецификацией USB 2.0 с 4 контактами, а не полной спецификацией USB 3.1. Двусторонние кабели USB от A до C и SuzyQable — несколько примеров. В зависимости от используемого порта USB вы также можете быть ограничены в количестве тока, который может подаваться на ваше устройство.

Реверсивный USB

С развитием технологий и производства разъемы USB можно вставлять любым способом! Ниже приведены примеры реверсивных разъемов типа A и типа micro-b из каталога.


Если вы ищете USB-разъем или кабель, ознакомьтесь с нашим Руководством по покупке USB-устройств или каталогом.

Разъем SparkFun USB-C

В наличии BOB-15100

SparkFun USB-C Breakout обеспечивает в 3 раза больше энергии, чем предыдущая плата USB, при этом каждый вывод на соединении размыкается…

5

Контроллер GPIB-USB

Распродано BOB-00549

Используйте это уникальное устройство для загрузки данных и управления осциллографами с поддержкой шины GPIB, логическими анализаторами, генераторами функций, мощностью…

7

Аудиоразъемы

Еще одна знакомая группа разъемов — это те, которые используются для аудиовизуальных приложений — RCA и phono.Хотя их нельзя действительно считать принадлежащими к одному семейству, в отличие от различных USB-разъемов, мы будем считать, что они оба принадлежат к одному и тому же коду.

Разъемы типа «телефон»

Вы, вероятно, сразу узнаете версию этого разъема 1/8 «как штекер на конце пары наушников. На самом деле эти разъемы бывают трех распространенных размеров: 1/4» (6,35 мм), 1/8 Разъемы размером «(3,5 мм) и 2,5 мм. ¼» находят широкое применение в профессиональном аудио- и музыкальном сообществе — большинство электрогитар и усилителей имеют разъемы 1/4 дюйма с наконечником (TS).1/8 «наконечник-кольцо-рукав (TRS) очень распространен в качестве разъема для наушников или выходных аудиосигналов на MP3-плеерах или компьютерах. Некоторые сотовые телефоны снабжены разъемом 2,5 мм для наконечника-кольца-кольца-рукава (TRRS) для подключение к наушникам с микрофоном для громкой связи.

Обычная доступность этих разъемов и кабелей делает их хорошим кандидатом для приложений общего назначения — например, задолго до USB, графические калькуляторы Texas Instruments использовали 2.Разъем TRS 5 мм для разъема последовательного программирования. Следует помнить, что типы соединителей типа «наконечник-втулка» не рассчитаны на несущую мощность; во время вставки наконечник и гильза могут на мгновение закоротиться вместе, что может привести к повреждению источника питания. Отсутствие экранирования делает их плохими кандидатами для высокоскоростных данных, но через эти разъемы можно передавать низкоскоростные последовательные данные.

Штекер TRS для наушников, 1/8 дюйма. Обычно через наконечник и кольцо передаются стереофонические аудиосигналы, а через разъем заземляется.

Телефонный штекер 1/8 «. Обратите внимание на отсутствие кольцевого контакта на этом разъеме.

Гнездо для наушников 1/8 «на плате с помеченными контактами, соответствующими разъемам контактов. Когда разъем не вставлен, внутренний переключатель соединяет наконечник и кольцевые контакты с соседними немаркированными контактами, обеспечивая обнаружение вставки.

Разъемы RCA

Известный в течение многих десятилетий как разъем для домашних стереосистем, разъем RCA был представлен в 1940-х годах компанией RCA для домашних фонографов.В аудиовизуальной сфере его постепенно вытесняют соединения, подобные HDMI, но повсеместное распространение разъемов и кабелей делает его хорошим кандидатом для домашних систем. Пройдет много времени, прежде чем он устареет.

Гнездовые разъемы RCA обычно встречаются на устройствах, хотя можно найти удлинительные или переходные кабели с гнездовыми гнездами на них. Большинство разъемов RCA подключаются к одному из четырех типов сигналов: компонентное видео (PAL или NTSC, в зависимости от того, где было продано оборудование), композитное видео, стереозвук или аудио S / PDIF.

Гнездовой разъем RCA, для видеосигналов. Обычно разъемы видеосигнала NTSC или PAL желтого цвета.

Штекерные разъемы RCA обычно находятся на кабелях.

Штекеры RCA. Красный и белый обычно используются для аудиоприложений, а красный означает «правильный» аудиоканал.

Разъемы питания

Хотя многие разъемы передают питание в дополнение к данным, некоторые разъемы используются специально для подключения питания к устройствам.Они сильно различаются в зависимости от области применения и размера, но здесь мы сосредоточимся только на некоторых из наиболее распространенных.

Соединители для цилиндров

Разъемы типа

Barrel обычно используются в недорогой бытовой электронике, которую можно подключить к электросети через громоздкие настенные адаптеры переменного тока. Настенные адаптеры широко доступны, с различными номинальными мощностями и напряжениями, что делает цилиндрические соединители обычным средством подключения питания к небольшим проектам.

Гнездовой цилиндрический соединитель или «джек» можно приобрести в нескольких вариантах: монтаж на печатной плате (поверхностный монтаж или сквозное отверстие), монтаж на кабеле или монтаж на панели.Некоторые из этих разъемов будут иметь дополнительный контакт, который позволяет приложению определять, подключен ли источник питания к цилиндрическому разъему или нет, что позволяет устройству обходить батареи и продлевать срок их службы при работе от внешнего источника питания.

Женский цилиндрический соединитель. Если вилка не вставлена, штифт «обнаружения вставки» будет закорочен на штифт «муфты».

Штекерный цилиндрический соединитель, или «вилка», обычно встречается только в разновидностях концевой заделки проводов, хотя существует несколько способов прикрепления вилки к концу провода.Также можно приобрести штекеры, которые заранее прикреплены к кабелю.

Штекерная вилка с внешней резьбой, для подключения к любому источнику питания. Обратите внимание, что соединение муфты предназначено для обжима провода для дополнительной разгрузки от натяжения. Внимание! Существуют разные мнения относительно пола гнезда и штекера для этих коаксиальных разъемов малой мощности. В зависимости от того, где у вас есть эти разъемы, разъем можно назвать «штекерным» цилиндрическим разъемом из-за штифта в центре и наоборот для разъема.Обязательно ознакомьтесь с изображением продукта и спецификациями, чтобы найти то, что вы ищете! Разъемы типа

Barrel обеспечивают только два соединения, часто называемых «штифтом» или «наконечником» и «гильзой». При заказе есть три отличительных характеристики цилиндрического соединения: внутренний диаметр (диаметр штифта внутри гнезда), внешний диаметр (диаметр гильзы на внешней стороне вилки) и полярность (соответствует ли напряжение втулки. выше или ниже напряжения на наконечнике).

Диаметр втулки чаще всего равен 5.5 мм или 3,5 мм.

Диаметр пальца зависит от диаметра втулки; втулка 5,5 мм будет иметь штифт 2,5 мм или 2,1 мм. К сожалению, это означает, что штекер, предназначенный для вывода 2,5 мм, подойдет к разъему 2,1 мм, но соединение будет в лучшем случае прерывистым. Штекеры 3,5 мм обычно подключаются к разъему со штекером 1,3 мм.

Полярность — последний аспект, который необходимо учитывать; Чаще всего втулка будет считаться 0 В, а на наконечнике будет положительное напряжение относительно гильзы.У многих устройств есть небольшая диаграмма, показывающая полярность, ожидаемую устройством; Соблюдайте это с осторожностью, так как неподходящий источник питания может повредить устройство.

Заглушки обоих размеров втулки обычно имеют длину 9,5 мм, но существуют и более длинные, и более короткие. Во всех продуктах SparkFun используются отрицательная гильза 5,5 мм и положительный штифт 2,1 мм; мы рекомендуем по возможности придерживаться этого стандарта, так как это наиболее распространенный ароматизатор, встречающийся в дикой природе.

Общие схемы полярности для адаптеров переменного тока с цилиндрическими вилками.Положительная полярность (наконечник положительный, гильза 0 В) является наиболее распространенной. Диаграмма любезно предоставлена ​​пользователем Википедии Три четверти десять.

Разъемы «Molex»

Большинство компьютерных жестких дисков, оптических приводов и других внутренних периферийных устройств получают питание через так называемый разъем «Molex». Чтобы быть более точным, это разъем Molex серии 8981 — на самом деле Molex — это название компании, которая изначально разработала этот разъем еще в 1950-х годах, — но его обычное использование несколько опровергло этот факт.

Разъемы Molex

рассчитаны на большой ток: до 11 А на контакт. Для проектов, где может потребоваться много энергии — например, станок с ЧПУ или 3D-принтер — очень распространенным методом питания проекта является использование источника питания настольного ПК и подключение различных системных схем через разъемы Molex.

Разъем Molex — это тот, в котором терминология «папа / мама» немного странная. Гнездовой соединитель обычно находится на конце кабеля и скользит внутри пластикового корпуса, который окружает штыри на штыревом соединителе.Обычно разъемы запрессовываются и очень и очень тугие — они предназначены для подключения и отключения только несколько раз и, как таковые, являются плохим выбором для систем, в которых соединения будут часто меняться.

Штекерный разъем Molex. Пол контактов внутри разъема — это то, что означает пол разъема в целом. Гнездовой разъем Molex на проектном блоке питания.

Разъем IEC

Как и в случае соединителя Molex, здесь обобщенное имя компонента стало синонимом отдельного элемента.Разъем IEC обычно относится к входу блока питания, который обычно встречается в блоках питания настольных ПК. Строго говоря, это разъемы IEC 60320-1 C13 (розетка) и C14 (вилка).

C14 Вход питания IEC, вилка, для проектного источника питания постоянного тока. Обратите внимание, что, как и в случае разъема Molex, пол разъема определяется контактами внутри кожуха. Гнездовой разъем питания IEC C13 на довольно стандартном кабеле питания переменного тока. Кабели с этим концом можно найти по всему миру, обычно с доминирующим локальным разъемом переменного тока на другом конце. Разъемы

IEC используются почти исключительно для подачи питания переменного тока. Приятная вещь в использовании одного в проекте заключается в том, что кабели IEC-to-wall очень распространены. и доступны с локализованными розетками для большинства стран мира!

Разъем JST

В SparkFun мы часто ссылаемся на «разъемы JST 2,0 мм». Это еще одно обобщение конкретного продукта. JST — японская компания, которая производит высококачественные разъемы, и наш предпочтительный 2,0-миллиметровый разъем JST — это двухпозиционный поляризованный разъем серии PH.

Все одноэлементные литий-полимерные ионные батареи SparkFun стандартно поставляются с этим типом разъема JST, и многие из наших плат включают этот разъем (или место для него) в качестве входа источника питания. Его преимущество в том, что он компактный, прочный и сложный для обратного подключения. Еще одна особенность, которая может быть преимуществом или недостатком, в зависимости от того, как вы на нее смотрите, заключается в том, что разъем JST сложно отсоединить (хотя аккуратно примененный диагональный резак может быть полезен!) После его соединения.Хотя это снижает вероятность выхода из строя во время использования, это также означает, что отключение аккумулятора для зарядки может повредить разъем аккумулятора.

2-контактный штекер JST на USB-плате LilyPad Arduino. Опять же, как и в случае с Molex, контакты внутри кожуха определяют пол разъема. Штекерные и розеточные 2-контактные разъемы JST.

Есть разъемы серии PH с более чем двумя позициями; SparkFun даже продает их. Однако чаще всего мы используем 2-позиционное подключение батареи.

Антенные разъемы SMA

Далее следует объяснение сбивающих с толку соглашений об именах для разъемов SMA. Если вы не хотите понимать, почему так принято, вы можете просто взглянуть на 4 картинки и двигаться дальше. В противном случае получайте удовольствие от чтения!

Условные обозначения разъема RF

SparkFun использует разъемы типа SMA на нескольких платах, которым требуется подключение с сопротивлением 50 Ом к внешней антенне (GPS, Bluetooth, сотовая связь, Nordic и XBee).Однако на некоторых из этих плат используются разъемы SMA другого пола и полярности. Поэтому нам нужны разные антенны, чтобы соответствовать определенному полу или полярности РЧ-соединений.

Существует 4 различных типа разъемов SMA, использующих комбинацию пола, которая относится к центральному контакту, и полярности, которая относится к… ..ээ, здесь это сбивает с толку. Википедия пытается это объяснить. Но из того, что я обнаружил, была оригинальная «старая» конструкция разъемов SMA.

Разъемы SMA

Первоначальная конструкция SMA требовала наличия двух совместимых разъемов:

Наружная резьба SMA
Центральный штифт, внутренняя резьба
Внутренняя резьба SMA
Центральное отверстие, внешняя резьба

Два вышеуказанных разъема были разработаны для совместного использования, но с этой конфигурацией возникла проблема, и FCC начала двигаться в направлении соответствия Части 15.Все это означает, что все разъемы SMA RF меняют пол (центральный штифт). Действительно раздражает тех из нас, кому нужно подключить антенну к радиочастотному устройству. Изменение пола FCC было введено, чтобы домашние пользователи не могли повредить радиочастотное оборудование (например, домашний Wi-Fi) при прикручивании антенны. Если все антенны — розетки, повредить центральный разъем невозможно.

Однако есть одна закономерность; все антенны, кабели или что-либо еще было прикреплено к потенциальному стационарному объекту с использованием конструкции с внешней гайкой или внутренней резьбой, а все стационарные устройства использовали конструкцию с внешней резьбой.Это относится ко всем продуктам SparkFun. Все наши антенны либо SMA-штекерные, либо RP-SMA-женские. Все наши платы имеют тип SMA female или RP-SMA male.

Разъемы RP-SMA

Единственное, что изменилось в соответствии с требованиями Части 15, — это центральный штифт, что изменило полярность соединения и сформировало «новый» стандарт; обращенно поляризованный SMA (RP-SMA). RP (обратная полярность) названа в честь «пола резьбы» и имеет штифт противоположного пола.

Следующие две фотографии считаются обратно поляризованными (RP-SMA).

Наружная резьба RP-SMA
Центральное отверстие, «наружная» внутренняя резьба
RP-SMA Внутренняя
Центральный штифт, внутренняя внешняя резьба

Если на плате нет разъема u.FL для подключения внешней антенны, платы и антенны SparkFun RF будут использовать комбинацию старого (SMA) и нового (RP-SMA):

  • Сотовая связь и GPS (900/1700/1800 МГц и 1.57542 ГГц соответственно) обычно используют старое соглашение: вилка SMA для антенн и розетка SMA для модулей.

  • Anything 2.4GHz (Bluetooth, ZigBee, WiFi и Nordic) обычно используют новое соглашение: вилка RP-SMA на антеннах и розетка RP-SMA на модулях.

Действительно, дескриптор пола можно игнорировать. Если у вас есть плата или модуль RP-SMA, вам понадобится антенна RP-SMA и т.д. для SMA. Довольно просто, правда ?! Просто убедитесь, что частота антенны совпадает с частотой вашей платы.

И на всякий случай, если вы найдете старый и новый микшер, мы продаем штекер SMA к штекеру RP-SMA и гнездо RP-SMA к штекерному разъему RP-SMA, которые будут сопрягать большинство комбинаций антенны и разъема.

Надеюсь, вы не совсем запутались!


Если вы ищете радиочастотный разъем или антенну, ознакомьтесь с нашим Руководством по покупке радиочастотных разъемов или каталогом.


Штыревые соединители имеют несколько различных способов подключения.Как правило, одна сторона представляет собой серию контактов, которые припаяны к печатной плате, и они могут быть либо под прямым углом к ​​поверхности печатной платы (обычно называемой «прямой»), либо параллельно поверхности платы (что сбивает с толку как «правый»). -угловые «булавки»). Такие соединители бывают разных шагов и могут иметь любое количество отдельных рядов контактов.

Соединение штырей разъема под прямым углом с внутренней резьбой на базовой плате FTDI.

Наиболее часто встречающиеся контактные разъемы — это одинарные или двухрядные разъемы размером 0,1 дюйма (2,54 мм).Это стандартный шаг, совместимый с макетной платой. Они бывают в версиях «папа» и «мама» и представляют собой разъемы, используемые для соединения плат и экранов Arduino. Пользователи могут легко подключить перемычки к макетным платам.

Разъемы штырей 0,1 дюйма, вилка и розетка, на плате Arduino Uno.

Другие участки не редкость; например, в беспроводном модуле XBee используется версия того же разъема с шагом 2,0 мм. Ниже представлен вид сверху, показывающий гнездовой разъем SMD с шагом 2,00 мм, припаянный к плате.Как вы можете видеть, два ряда металлических сквозных отверстий для разъемов, совместимых со стандартной макетной платой, рядом с заголовками расположены на расстоянии 0,1 дюйма (2,54 мм) друг от друга.

XBee Explorer USB с SMD-разъемами с шагом 2,00 мм, припаянными к плате.

Распространенной разновидностью этой детали является версия с «машинным штифтом». В то время как обычная версия изготавливается из штампованного и гнутого листового металла, соединители машинных штифтов формируются путем придания металлу нужной формы. В результате получается более прочный соединитель с лучшим соединением и более длительным сроком службы, что делает его несколько более дорогим.

Штифтовые разъемы с внутренней резьбой. Обратите внимание, что они предназначены для разделения на более мелкие секции, в то время как стандартные 0,1-дюймовые разъемы для штырей с гнездовой головкой — нет. Также важно отметить, что не все разъемы, не относящиеся к штыревым штырям, совместимы с различными штырями машины.

Кабели, предназначенные для подключения к этим контактным разъемам, обычно бывают двух типов: отдельные провода с обжимными разъемами на них или ленточные кабели с разъемами смещения изоляции .Их можно просто закрепить на конце ленточного кабеля, что создаст соединение с каждым из проводников ленточного кабеля. Как правило, кабели доступны только для женского пола, и ожидается, что с ними будет сопрягаться штекер.

Шестиконтактный обжимной кабель. Каждый провод зачищается по отдельности, к нему обжимается соединитель, а затем соединители вставляются в пластиковую рамку. Разъемы смещения изоляции (IDC) 2×5 на ленточном кабеле. Этот тип кабеля можно быстро собрать, поскольку он не требует зачистки отдельных разъемов.Он также имеет поляризационные выступы на каждом конце, чтобы предотвратить неправильную вставку в соединительный разъем на стороне платы. В гибких схемах

также можно использовать выводы для пайки со стандартным шагом 0,1 дюйма. Эти выводы скреплены скобами через гибкую подложку для обеспечения контакта с полупроводящим материалом.

Паяльный язычок, прикрепленный скобами к гибкому датчику.

В зависимости от вашего проекта и набора навыков существует несколько способов подключения к паяным вкладышам.Пользователи могут вставлять выводы припоя в макетные платы или паять непосредственно к контактам. Однако тонкие выводы под пайку могут со временем сломаться при чрезмерном сгибании и могут ослабнуть в гнезде платы. Гибкие датчики также могут быть чувствительны к теплу из-за полупроводящего материала. В качестве альтернативы, разъемы Amphenol FCI Clincher были разработаны с более толстыми выводами и разъемами, совместимыми с макетными платами, для более надежного соединения.

Amphenol FCI Clincher соединители с опрессовкой на гибкие датчики для более надежного соединения.

Временные соединители

Винтовые клеммы

В некоторых случаях может потребоваться подключить к цепи неизолированный провод без клемм. Винтовые клеммы — хорошее решение для этого. Они также подходят для ситуаций, в которых соединение должно поддерживать несколько различных подключаемых устройств.

Обратной стороной винтовых клемм является то, что они довольно легко откручиваются, оставляя оголенный провод в вашей цепи.Небольшая капля горячего клея может решить эту проблему, и ее не будет слишком сложно удалить позже.

Винтовые клеммы

обычно предназначены для узкого диапазона размеров проводов, и слишком маленькие провода могут быть такой же большой проблемой, как и слишком большие провода. SparkFun имеет четыре типа винтовых клемм — 2,54 мм (стандартная макетная плата 0,1 дюйма), версия с шагом 3,5, 5 и 10 мм.

Нажмите здесь, чтобы узнать больше о винтовых клеммах

Большинство винтовых клемм имеют модульную конструкцию, и их можно легко удлинить на один и тот же шаг, просто соединив вместе две или несколько меньших секций.

Винтовые клеммы с шагом 3,5 мм, показывающие точку вставки подключаемого провода, фиксирующий винт, удерживающий провод на месте, и модульные разъемы по бокам отдельных блоков, позволяющие соединять несколько частей вместе.

Пружинные клеммы

Альтернативой винтовым клеммам являются пружинные клеммы (также известные как разъемы типа «push-in», «cage-clamp» или «poke-home»). Пружинные клеммы работают аналогично винтовым клеммам. Однако вместо того, чтобы затягивать винт для соединения с куском проволоки, пружина сжимает вместе куски металла.

Пружинные клеммы представляют собой альтернативу винтовым клеммам. Они лучше работают в условиях сильной вибрации (например, в автомобильной промышленности) или когда провод расширяется / сжимается из-за циклического изменения температуры. Кроме того, натяжение автоматически регулируется в соответствии с калибром провода (при условии, что оно находится в пределах допустимой толщины провода), в отличие от колебаний натяжения, когда пользователь затягивает винтовой зажим. Ниже приведены несколько пружинных клеммных разъемов, которые SparkFun имеет в каталоге.

Терминал динамика — 4 пружины

На пенсии COM-11145

Вы можете узнать в них разъемы, которые обычно используются для домашних стереодинамиков. У них получается хорошая пружина тэ…

Пенсионер

Некоторые платы (например, gamer: bit, LumiDrive и Qwiic MP3 Trigger и многие другие) оснащены пружинным зажимом для легкого доступа к контактам ввода / вывода.

Шариковая ручка, прижимающая язычок gamer: bit к коннектору poke-home для подключения куска провода.

Банановый соединитель

Большинство единиц оборудования для проверки мощности (мультиметры, блоки питания) имеют очень простой разъем, называемый «банановый разъем». Они соединяются с «банановыми вилками», гофрированными пружинными металлическими вилками, предназначенными для единственного подключения к источнику питания. Они часто доступны в стекируемой конфигурации и могут быть легко подключены к любому типу проводов.Они способны выдерживать ток в несколько ампер и недороги.

Штабелируемый банановый штекер. Обратите внимание, что есть два разных способа подключить дополнительную банановую вилку. Extech Настольный комплект переменного тока с банановыми домкратами спереди.

Зажим для аллигатора

Названные по понятным причинам зажимы типа «крокодил» подходят для тестовых подключений к стойкам или оголенным проводам. Они имеют тенденцию быть громоздкими, легко замыкаются на ближайшем голом металле и имеют достаточно плохой захват, который может быть легко нарушен.В основном они используются для недорогих соединений во время отладки.

Инструмент «третья рука», в котором используются зажимы типа «крокодил» для удержания заготовок, а также удерживается провод с зажимом «крокодил» на концах для электрических испытаний. Обратите внимание на пластиковый чехол вокруг зажима типа «крокодил», чтобы снизить вероятность его короткого замыкания на другие соединения.

Зажим для микросхемы (или крючок для микросхемы)

Для более тонких измерительных операций на рынке имеется множество зажимов для микросхем. Их размер позволяет пользователю закрепить их на выводах ИС, не касаясь соседних выводов; некоторые из них достаточно хрупкие, чтобы их можно было закрепить даже на ножках компонентов SMD с мелким шагом.Эти небольшие зажимы можно найти на логических анализаторах, а также на измерительных выводах, которые отлично подходят для создания прототипов или устранения неполадок схем.

Большой зажим для микросхемы на конце провода. Этот зажим все еще достаточно мал, чтобы его можно было подсоединить к одной ножке на микросхеме со сквозным отверстием, не создавая проблем для соседних контактов.

Разъемы прочие

Модульные соединители типа RJ

Штатные разъемы jack являются стандартными для подключения телекоммуникационного оборудования к местной АТС.Названия, которые обычно ассоциируются с ними (RJ45, RJ12 и т. Д.), Не обязательно верны, поскольку обозначение RJ основано на комбинации количества позиций, количества фактически присутствующих проводников и схемы подключения. Например, хотя концы стандартного кабеля Ethernet обычно обозначаются как «RJ45», на самом деле RJ45 подразумевает не только 8-позиционный 8-проводный модульный разъем, но также подразумевает, что он подключен к сети Ethernet.

Эти модульные соединители могут быть очень полезными, поскольку они сочетают в себе готовность к эксплуатации, несколько проводников, умеренную гибкость, низкую стоимость и умеренную допустимую нагрузку по току.Хотя изначально эти кабели не предназначались для передачи большого количества энергии, они могут использоваться для передачи данных и нескольких сотен миллиампер от одного устройства к другому. Следует позаботиться о том, чтобы разъемы, предусмотренные для подобных приложений, не были подключены к обычным портам Ethernet, так как это может привести к повреждению.

Стандартный модульный разъем 8p8c (8-контактный, 8-проводной) «RJ45». Имейте в виду, что если вы собираетесь использовать этот тип разъема для передачи сигналов постоянного тока и питания, вам следует избегать использования разъемов со встроенными трансформаторами сигналов.

Разъемы типа D-sub

Названные в честь формы корпуса, сверхминиатюрные разъемы D являются классическим стандартом в мире вычислений. Существует четыре наиболее распространенных разновидности этого разъема: DA-15, DB-25, DE-15 и DE-9. Номер контакта указывает количество предоставленных соединений, а буквенное сочетание указывает размер корпуса. Таким образом, ДЕ-15 и ДЕ-9 имеют одинаковый размер корпуса, но разное количество соединений.

Гнездовой разъем DE-9 для монтажа на плату.Пол определяется контактами или гнездами, связанными с каждым сигналом, а не соединителем в целом, что делает этот соединитель гнездовым, несмотря на то, что он эффективно вставляется в оболочку ответного соединителя.

DB-25 и DE-9 — самые полезные для аппаратного хакера; многие настольные компьютеры по-прежнему имеют по крайней мере один последовательный порт DE-9 и часто один параллельный порт DB-25. Также широко доступны кабели с коннекторами DE-9 и DB-25. Как и вышеупомянутый модульный соединитель, он может использоваться для обеспечения питания и двухточечной связи между двумя устройствами.Опять же, поскольку обычное использование этих кабелей не включает передачу энергии , а не , очень важно, чтобы любое перепрофилирование кабелей выполнялось осторожно, поскольку нестандартное устройство, подключенное к стандартному порту, может легко вызвать повреждение.

Ресурсы и дальнейшее развитие

Теперь у вас должно быть хорошее представление о том, какие разъемы лучше всего подходят для определенных приложений и какие разъемы будут вам полезны в вашем следующем проекте. Пожалуйста, ознакомьтесь с этими другими ссылками, чтобы узнать больше о разъемах.

Если вы хотите изучить больше руководств по SparkFun, ознакомьтесь с другими предложениями:

Последовательная связь

Концепции асинхронной последовательной связи: пакеты, уровни сигналов, скорости передачи, UART и многое другое!

Что такое Ардуино?

Что вообще такое «Ардуино»? В этом руководстве подробно рассказывается о том, что такое Arduino, а также о проектах и ​​виджетах Arduino.

Логические уровни

Узнайте разницу между устройствами 3,3 В и 5 В и логическими уровнями.

Электроэнергетика

Обзор электроэнергии, скорости передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальной мощности. 1,21 гигаватта учебного удовольствия!

I2C

Введение в I2C, один из основных используемых сегодня протоколов встроенной связи.

Или ознакомьтесь со следующей записью в блоге:

▷ Типы электрических соединений и заделок (назад к основам)


Давайте вернемся к основам с этой статьей А.Н., экспериментального члена сообщества. Он решил сосредоточиться на соединениях электрических кабелей, и мы рады, что он сделал это!

Если вы тоже хотите опубликовать в блоге, отправьте нам письмо, чтобы мы могли обсудить это.

Электрические соединения и концевые заделки обеспечивают необходимое электрическое соединение, а также механическую поддержку и физическую защиту кабеля.

Существуют различные типы соединений и заделок в зависимости от функции, типа кабеля и строительных материалов.

На конструкцию обычно влияют напряжение и ток, которые пропускает кабель, а также условия эксплуатации.

Концевые заделки силовых кабелей

Концевая заделка электрического кабеля — это физическое и электрическое соединение конца кабеля, который подключается к другому кабелю или к клемме оборудования. Концевые заделки кабеля часто предназначены для обеспечения физического и электрического соединения двух концов кабеля или конца кабеля и терминала на оборудовании.

Рисунок 1: Концевая заделка кабеля низкого напряжения | изображение: emadrlc.blogspot.co.ke

Требования к электрическому подключению относятся к падению напряжения, допустимой нагрузке по току, совместимости материалов и т. Д. Физические требования относятся к защите окружающей среды, а также к механической безопасности.

Способы заделки кабелей различаются в зависимости от типа кабеля, типа разъема и области применения. Распространенными типами оконечных устройств являются обжимное соединение, паяное соединение, компрессионное соединение и соединение с обмоткой проводов, прямое соединение, соединение петлей или глаз.Некоторые из факторов, определяющих тип:

  • Наружное или внутреннее использование
  • Напряжение
  • Текущий
  • Надземный или подземный
  • Тип разъема на оборудовании, к которому будет подключен кабель.

Муфты силовые кабельные

Кабельные муфты используются для подключения кабелей низкого, среднего или высокого напряжения. Типы размеров, формы и конфигурации кабельных соединений зависят от напряжения, структуры, изоляции и количества соединяемых жил кабеля.

Соединения обеспечивают электрическую изоляцию, а также механическую защиту и прочность. Электрическое соединение выполняется различными способами и может быть опрессовано или с использованием механических разъемов, пайки и т. Д.

Напряжение :
Соединения предназначены для низкого, среднего или высокого напряжения, и важно, чтобы емкость соединения соответствовала емкости кабеля, в противном случае соединение кабеля малой мощности выйдет из строя при воздействии высокого тока.
Конструкция :
Кабельные муфты выполняются в соответствии с тем, как кабели должны быть подключены.Простые соединения, такие как прямые соединители, используются для соединения двух силовых кабелей в одной точке, в то время как другие более продвинутые ответвительные соединители могут использоваться для размещения кабеля, отходящего от основной линии, или нескольких кабелей, входящих в одно соединение, чтобы сформировать один основной кабель. .
Жилы :
Кабельные муфты должны иметь такое же количество жил, как и у соединяемых кабелей.
Изоляция :
В зависимости от области применения кабеля различаются изоляция кабеля, и кабельное соединение должно быть совместимо с изоляцией кабеля.

Чтобы сохранить изоляцию соединенных кабелей, существует множество процедур изоляции, которые могут представлять собой термоусадочную или холодную термоусадочную изоляцию, формованный тип изоляции или использование ленты.

Типы кабельных муфт

Существует около четырех обычно используемых типов соединений; они различаются по механическому устройству и по месту использования. Однако некоторые производители могут предоставить индивидуальный дизайн, соответствующий уникальным требованиям клиентов.

  • Прямые соединения
  • Отвод, который может быть тройником или тройником
  • Горловины
  • Концевые заделки для установки внутри и снаружи помещений

Прямые соединения

Это наиболее часто используемый тип соединения, который используется для удлинения отрезков электрических кабелей.Типичное соединение показано на рисунке 2 ниже:

изображение: Multimedia.3m.com

  1. Подъемник
  2. Заземление
  3. C.J соединение
  4. Пластинет
  5. Заливная заслонка
  6. Изоляция сердечника
  7. Лента ПВХ (NA)
  8. Обойма
  9. Лента БОПП, два слоя, каждая половина которых перекрывает пластинет

Прямые муфты могут использоваться для соединения кабелей внутри, снаружи, под водой и под землей. В кабельных соединениях на основе литьевой смолы литейные смолы на основе полиуретана обеспечивают механическую защиту, электрическую изоляцию и влагонепроницаемость соединения.

Разветвитель типа Y и T

Типичный разветвитель типа Y показан на рисунке 3 ниже. Он используется для соединения низковольтных полимерных неэкранированных кабелей от 1 до 5 жил. Соединение ответвлений обеспечивает надежное электрическое соединение, электрическую изоляцию и механическую защиту.

Разъемы бывают компрессионного или механического типа. Ответвительные муфты могут использоваться для соединения кабелей внутри, снаружи, под водой и под землей.

Рисунок 3: Y-образный плечевой сустав | изображение: http: // www.cablejoints.co.uk

Конструкция имеет форму корпуса с уплотнениями и фиксирующими зажимами. Это упрощает выполнение соединения, в то время как герметизация устраняет необходимость заклеивать соединение лентой.

Соединения на торцевых соединениях

На концах кабеля под напряжением используются концевые муфты. В обычном кабеле каждая жила изолирована отдельно с помощью термоусаживаемых заглушек. Затем накладывается экранная повязка для защиты от замыкания на землю, а затем комбинация покрывается толстой стенкой колпачка для термоусадочного кабеля.

Муфты с концевыми наконечниками подходят для временного и постоянного отказа от кабеля, чтобы обеспечить безопасную заделку силовых кабелей под напряжением для внутренних, внешних и подземных кабелей.

Сводка

Кабельные муфты и концевые заделки обеспечивают надежные электрические соединения между различными кабелями или между электрическим кабелем и клеммами оборудования. Существует несколько стандартных типов кабельных муфт и концевых муфт, однако производители могут изготовить индивидуальные муфты в соответствии с различными техническими требованиями.

Требования к соединениям и заделкам заключаются в том, что они должны соответствовать стандартам с точки зрения электрических и механических свойств, изоляции, целостности заземления, защиты окружающей среды и многого другого.

А.Н.
Эта статья вам помогла? Обсудим ниже!

Ослабленные электрические соединения — STS Electric

Плотно выполненное соединение со временем может ослабнуть из-за небольшого расширения и сжатия, которое происходит, когда кабель нагревается во время использования и остывает, когда он не находится под напряжением, поэтому электрические соединения могут ослабнуть по разным причинам.

Возможно, неисправны разъемы или клеммы, поэтому, даже если винт затянут, на самом деле он недостаточно зажимает кабель. Время от времени мы обнаруживаем связи, которые никогда не были затянуты. Возможно, последняя установка была неправильной, а соединительные детали изношены и больше не имеют хорошего контакта.

Это может произойти даже в новых домах и установках. Это символ того, что установка не была произведена должным образом, и мы должны убедиться, что соединение надежно или нет.

Плохая проводка и соединения опасны

Само собой разумеется, что потеря соединения представляет собой риск, но опасность, которая возникла, остается незамеченной. Эти риски или опасности всегда скрыты и начинают нагревать розетку, заставляя электричество проходить через воздушный зазор или меньшую жилу проводки.
При ослаблении проводки электрическое соединение с розеткой будет зависеть от меньшего количества жил в проводке. Меньших жил кабеля будет недостаточно для эффективной передачи электричества, и они будут нагреваться от дополнительного тока, проходящего через них.

Часто они вызывают электрические дуги. Это нагревает розетку и увеличивает вероятность возгорания. Каждое электрическое соединение может нагреваться. С увеличением тепла увеличивается электрическое сопротивление, которое, в свою очередь, заставляет вещи становиться еще теплее.

Ослабленные провода или кабели от телефонов, подключений к Интернету, ноутбуков, компьютеров и различного офисного и лабораторного оборудования могут создавать опасность споткнуться, если они растянуты по проходам или дорожкам, по которым идут люди.Люди могут зацепиться за веревки и споткнуться. Они могут не только получить травму, но и повредить оборудование.

Меры предосторожности:

  • Избавьтесь от опасности споткнуться из-за ослабленных проводов, удалив ненужные провода.
  • Закрепите шнуры с помощью стяжек, чтобы уменьшить провисание и удерживать провода вместе.
  • Переместите провода под или позади мебели или оборудования, чтобы они не мешали.
  • Разместите устройство и подвесные или выдвижные шнуры на поверхности рабочего стола, а не на полу.
  • Если шнуры необходимо протянуть по полу, накройте их лентой или иным образом прикрепите их к полу. Это предотвратит попадание ногой под шнур и спотыкание.

Свяжитесь с нами, если вам нужна помощь в прокладке кабеля в вашем районе или вам нужны дополнительные электрические розетки.

Электрические соединения — постоянные и отделяемые

Соединения в электрических устройствах могут быть постоянными или разъемными.Первые используются в местах, где их никогда не следует разделять, так как их разборка будет хлопотной, отнимет много времени и может создать риск повреждения установки.

Постоянные соединения создаются пайкой или, в редких случаях, сваркой или намоткой проволоки.

В то время как разъемные соединения используются в ситуациях, когда требуется частая сборка и разборка одних и тех же компонентов. Для этого типа стыков используются самые разные соединители.

Постоянные соединения
  • К постоянным соединениям относятся популярные гофрированные соединения .

Они обычно используются в автомобилестроении, электротехнике, электронике и других технических приложениях. К достоинствам этого типа соединений можно отнести хорошие параметры контакта, прочность , устойчивость к вибрациям и простоту исполнения , а следовательно, и невысокую цену.

Для создания гофрированных соединений могут использоваться следующие компоненты:

  • штифты,
  • Разъемы
  • ,
  • Клеммные колодки
  • (фото 1).

Эти соединения работают при условии, что кабель надлежащим образом обжат, т.е.е. жила кабеля и соединительный элемент чистые, хорошо подготовленные и обжимаются с помощью специального инструмента.

Подготовка включает удаление части оболочки, не повреждая структуру проводов, проводящих электричество, и согласование типа и поперечного сечения кабеля с параметрами штыря или разъема.

Только многожильные жилы можно обжать — этот метод нельзя использовать для одножильных кабелей.

Количество жил в таком кабеле должно быть как можно большим.Чем больше проводов, тем они тоньше и чем тоньше провода, тем они более гибкие и подвержены обжимам. Что важно, если жила состоит из множества жил (так называемая жила тонкой проволоки), повреждение нескольких жил не повлияет на параметры соединения.

В суровых условиях окружающей среды следует использовать жилы с луженой медной проволокой.

См. Также: Опрессовки

  • Сварные соединения в основном используются в мощных приложениях в энергетическом секторе.

Эта форма соединения компонентов системы также используется при сборке аккумуляторных батарей.

  • Соединения с проволочной обмоткой можно найти в телекоммуникационном и военном оборудовании, где наиболее важными факторами являются простота и устойчивость к вибрациям.

См. Также:

Соединения разъемные

Эти разъемные соединения основаны на соединителях. Соединительный элемент может иметь вид:

  • винтовой зажим,
  • вилка и розетка,
  • Разъем
  • с пружинным зажимом.

Винтовой зажим позволяет подключать сплошной провод или жилу. Это просто и прочно. Его можно найти в электротехнике, а также в приложениях средней и большой мощности.

Вилки и розетки включает в себя широкий ассортимент продукции, позволяющий использовать соединения кабель-кабель или кабель-плата практически в любых конфигурациях.

Разъемы с пружинным зажимом позволяют выполнять соединение, вставляя кабель в отверстие в разъеме, где он механически зажимается и подключается.Разъемы подходят для одножильных проводов и жил сечением ок. Диаметр от 0,5 мм2 до 2-4 мм2. Их можно найти в электротехнике и электронике. Этот тип соединений становится все более и более популярным из-за их надежности и простоты реализации без специальных инструментов.

См. Также: Разъемные соединения


Резюме

При выборе кабеля для разъемного или неразъемного соединения обычно обращают внимание на его тип, т.е.е. если это одножильный или многожильный провод. Кроме того, нами движет его эффективное сечение. Однако следует также помнить о качестве изоляции, т.е. обращать внимание на рабочее напряжение и диапазон температур. Также может иметь значение количество жил в жиле, так как все эти элементы влияют на качество соединения.

Ремонт электрооборудования | США

МЫ ПРЕДОСТАВЛЯЕМ ОТВЕТЫ, ЕСЛИ У ВАС ЕСТЬ:
ПРЕДУПРЕЖДАЮЩИЕ ЗВУКИ

С возвращением, Snowbirds! Вы приняли мудрое решение отправиться на юг зимой

Не рискуйте жизнью своей семьи

Внимание, снежные птицы!

Летние бури повредили вашу электрическую систему? Звоните сегодня для осмотра

Если вы проводите больше времени дома из-за COVID-19, вы, вероятно, заметили ряд наших предупреждающих звуков и проблем, указанных выше.Пришло время позаботиться об этих проблемах, прежде чем они станут серьезной угрозой для жизни.

Звоните сегодня.

Посмотреть нашу работу

РЫНОК

Спросите мастера
нажмите на Wizard

Дымовые извещатели присутствовали в трех четвертях
(74%) случаев пожаров в домах в 2012–2016 годах.
Почти три из пяти смертей в результате пожара в домах в
2012-2016 гг. Были вызваны пожарами в домах
без дымовых извещателей (40%) или дымовых извещателей
, которые не сработали (17%). Риск смерти
при пожарах в домах, о которых сообщается, на 54% на
ниже в домах с работающими детекторами дыма
, чем в домах, в которых нет или не работают сигнализаторы
. Когда дымовые извещатели присутствовали в
зарегистрированных пожарах, которые считались достаточно большими, чтобы активировать их
, они сработали в 88% пожаров,
— 71% случаев смерти и 81% травм.

FEAR THE FORCE ™

Скрытая опасность, которая есть

без запаха, невидимый и потенциальный убийца скрывается почти в каждом доме в Америке.

Этот тихий убийца прячется в вашем доме?

Проверьте свой дом или бизнес на электромагнитное излучение прямо сейчас!

Что вы можете позволить себе потерять в своем доме при ударе молнии? Молния означает, что скачок напряжения может повредить или разрушить все электрические и электронные устройства в вашем доме или на работе.Сегодня, по мере того, как все больше и больше предметов в нашей повседневной жизни становятся компьютеризированными и «умными», вероятность того, что молния и электрический скачок разрушат что-то ценное в вашем доме, возрастает.

Спросите нас обо всей нашей домашней системе защиты от перенапряжения. Это вложение, которое имеет смысл, если учесть, сколько долларов и центов может стоить вам замена поврежденных предметов.

Что вы можете позволить себе потерять в своем доме?

Мы можем решить проблему за вас.

Разница в электрическом подключении

НАША МИССИЯ

НАШЕ ВИДЕНИЕ

ОСНОВНЫЕ ЗНАЧЕНИЯ

Схема подключения

— все, что вам нужно знать о схеме подключения

Что такое электрическая схема?

Схема подключения — это простое визуальное представление физических соединений и физической компоновки электрической системы или цепи. Он показывает, как электрические провода соединяются между собой, а также может показать, где приспособления и компоненты могут быть подключены к системе.

Когда и как использовать электрическую схему

Используйте электрические схемы, чтобы помочь в создании или изготовлении схемы или электронного устройства. Также они пригодятся при ремонте.

Энтузиасты DIY используют электрические схемы, но они также распространены в домостроении и ремонте автомобилей.

Например, строитель дома захочет подтвердить физическое расположение электрических розеток и осветительных приборов с помощью схемы подключения, чтобы избежать дорогостоящих ошибок и нарушений строительных норм.

Как нарисовать принципиальную схему

SmartDraw поставляется с готовыми шаблонами электрических схем. Настройте сотни электрических символов и быстро вставьте их в схему подключения. Специальные ручки управления вокруг каждого символа позволяют при необходимости быстро изменять их размер или вращать.

Чтобы нарисовать провод, просто нажмите на опцию Draw Lines в левой части области рисования. Если щелкнуть линию правой кнопкой мыши, можно изменить цвет или толщину линии, а также при необходимости добавить или удалить стрелки.Перетащите символ на линию, и он вставится и встанет на место. После подключения он останется подключенным, даже если вы переместите провод.

Если вам нужны дополнительные символы, щелкните стрелку рядом с видимой библиотекой, чтобы открыть раскрывающееся меню, и выберите Дополнительно . Вы сможете искать дополнительные символы и открывать любые соответствующие библиотеки.

Щелкните Set Line Hops в SmartPanel, чтобы показать или скрыть линейные переходы в точках пересечения. Вы также можете изменить размер и форму лески.Выберите Показать размеры , чтобы показать длину проводов или размер компонента.

Щелкните здесь, чтобы прочитать полное руководство SmartDraw о том, как рисовать принципиальные и другие электрические схемы.

Чем электрическая схема отличается от схемы?

Схема показывает план и функции электрической цепи, но не касается физического расположения проводов. На схемах подключения показано, как соединяются провода и где они должны располагаться в реальном устройстве, а также физические соединения между всеми компонентами.

Чем электрическая схема отличается от графической схемы?

В отличие от графической схемы, схема подключения использует абстрактные или упрощенные формы и линии для отображения компонентов. Графические схемы часто представляют собой фотографии с этикетками или подробные чертежи физических компонентов.

Стандартные символы электрических схем

Большинство символов, используемых на схеме соединений, выглядят как абстрактные версии реальных объектов, которые они представляют. Например, выключатель будет разрывом линии с линией под углом к ​​проводу, очень похоже на выключатель, который вы можете включать и выключать.Резистор будет представлен серией волнистых линий, символизирующих ограничение тока. Антенна — это прямая линия с тремя маленькими линиями, отходящими на ее конце, очень похожая на настоящую антенну.

  • Провод токопроводящий
  • Предохранитель, отключается, когда ток превышает определенную величину
  • Конденсатор для хранения электрического заряда
  • Тумблер, останавливает ток при открытии
  • Кнопочный переключатель, мгновенно разрешает прохождение тока при нажатии кнопки, прерывает ток при отпускании
  • Аккумулятор, накапливающий электрический заряд и вырабатывающий постоянное напряжение
  • Резистор, ограничивающий ток
  • Провод заземления, используемый для защиты
  • Автоматический выключатель, используемый для защиты цепи от перегрузки по току
  • Индуктор, катушка, создающая магнитное поле
  • Антенна, принимает и передает радиоволны
  • Устройство защиты от перенапряжения, используется для защиты цепи от скачков напряжения
  • Лампа, излучает свет при протекании тока через
  • Диод, позволяет току течь в одном направлении, указанном стрелкой или треугольником на проводе
  • Микрофон, преобразует звук в электрический сигнал
  • Электродвигатель
  • Трансформатор, изменяет напряжение переменного тока с высокого на низкое или наоборот
  • Наушники
  • Термостат
  • Электророзетка
  • Распределительная коробка

Примеры электрических схем

Лучший способ понять электрические схемы — это посмотреть на несколько примеров электрических схем.

Щелкните любую из этих схем подключения, включенных в SmartDraw, и отредактируйте их:

Просмотрите всю коллекцию примеров и шаблонов схем подключения SmartDraw

Советы по электрическому подключению: что является горячим, нейтральным и заземленным

Перед тем, как приступить к выполнению любого проекта или ремонта вашей электрической системы, вы должны иметь некоторое представление о том, как она работает. Электропроводка — это то, как электричество распределяется по всему дому, что, возможно, делает ее наиболее важной частью вашей электрической системы.Но как по проводке можно транспортировать электричество?

Ответ становится более ясным, если мы посмотрим на три роли, которые должна выполнять проводка: горячая, нейтральная и заземленная. Эти три компонента работают в тандеме для распределения электроэнергии по всему дому, а также помогают поддерживать электробезопасность. Рекомендуется понимать возможности каждого компонента.

Для домовладельцев Милуоки, которым нужны советы по электромонтажу, компания Roman Electric подготовила направляющие для проводов под напряжением, нейтрали и заземления.Следуйте нашему руководству ниже, чтобы лучше понять вашу электрическую систему!

Горячая проволока

Горячая проволока используется в качестве начальной подачи энергии в цепь. Он передает ток от источника питания к розетке. Действуя в качестве первого экземпляра цепи, они всегда проводят электричество, а это означает, что прикасаться к горячей проволоке, пока есть источник питания, питающий ее, опасно.

Горячий провод идентифицируется по его черному корпусу. Это основной цвет горячей проволоки для большинства домов.Однако другие горячие провода могут быть красными, синими или желтыми, хотя эти цвета могут указывать на другую функцию, помимо питания розетки. Тем не менее, со всей горячей проволокой следует обращаться одинаково: не касайтесь горячей проволоки, если нет подключенного и работающего источника питания.

Нейтральный провод

После того, как горячий провод инициализировал начало цепи, должен быть другой провод для замыкания цепи. Эту роль выполняет нейтральный провод. Нейтральный провод возвращает схему к исходному источнику питания.В частности, нейтральный провод соединяет цепь с землей или шиной, обычно подключаемой к электрической панели. Это обеспечивает циркуляцию токов в вашей электрической системе, что позволяет полностью использовать электричество. Кроме того, это предотвращает возникновение неисправного или избыточного тока в вашей розетке.

Нейтральные провода обозначаются белым или серым корпусом. Хотя они не всегда могут пропускать электрический ток, с ними следует обращаться так же осторожно, как с горячей проволокой.

Провод заземления

Итак, если горячая и нейтраль уже используются для создания цепи, какая роль остается? Ответ — конечно же безопасность! Провод заземления действует как защита от нестабильных электрических токов. В нормальных условиях цепи заземляющий провод не пропускает ток. Но когда происходит электрическая авария, такая как короткое замыкание, заземляющий провод отводит нестабильный ток от вашей электрической системы и направляет его к земле.

Заземляющий провод легко узнать по зеленому корпусу.Но не во всех домах он может быть. Хотя это требование NEC для новых домов, в старых домах не всегда есть заземляющий провод. Чтобы узнать, есть ли в вашем доме провод заземления, проверьте свои розетки. Если у ваших розеток три контакта, значит, в вашем доме есть заземляющий провод. Если выводов только два, заземляющий провод использовать нельзя. В последнем случае мы рекомендуем проконсультироваться с Roman Electric, чтобы определить, можно ли в вашем доме установить новый провод заземления.

Заходите на сайт Roman Electric, чтобы получить больше советов по электромонтажу! И обращайтесь к нам за доступными и качественными услугами по электромонтажу и ремонту.Позвоните нам по телефону 414-771-5400, чтобы связаться с ведущими специалистами по электричеству Милуоки.

Ссылки по теме:

Простое электрическое заземление — Ель

Модернизируйте розетку с двумя зубцами новым GFCI — The Spruce

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *