Насосная станция не запускается: не набирает давление, не качает, не включается и других

Содержание

Решаем проблему запуска насоса. | САН САМЫЧ

 Здравствуйте, уважаемые читатели «Сан Самыча». Многочисленные Ваши вопросы, связанные с первым пуском или пуском насосной станции после ремонта каких-либо элементов системы побудили меня к написанию данной статьи. Казалось бы, в теории все просто: залили насос через заливное отверстие водой, завинтили и обжали пробку, включили вилку в розетку. Насос должен удовлетворенно заурчать, поднимая давление в системе до заданного, и после щелчка реле давления отключиться.

Но на практике, почему-то так не получается. Обычно, после включения насоса, стрелка манометра подпрыгивает до отметки в 1,0 бар, после чего медленно скатывается до 0,8, а иногда и до 0,5 бар, где  беспомощно застывает. Из крана на напорной трубе вместе с водой шумно вырывается воздух, и, вырвавшись, затихает. Все затихает: ни воды, ни воздуха – ничего, лишь насос продолжает исступленно подвывать, сорвавшись на холостой ход.  Вы лихорадочно выдергиваете вилку из розетки и пытаетесь сообразить, что Вы сделали не так.

Снова откручиваете пробку, снова заливаете, закручиваете, включаете… Но в результате ничего не меняется.

Давайте разбираться…

Почему насос «срывает»?

Насосы для бытовых насосных станций, хоть и называются «самовсасывающими», но сами они ничего всасать не могут. Этого не позволяет сделать огромная разница в плотности воды и воздуха. А насосы рассчитаны на перекачивание воды, и никак не воздуха. Поэтому прежде чем включить насос, его необходимо заполнить водой, и вместе с ним – всасывающий трубопровод, каким бы длинным он не был. И только в воде лопасти рабочего колеса насоса, вращаясь, создают избыточное давление по внутреннему периметру корпуса и разрежение в его центре.

 Но если в насос, уже после его пуска, попадет воздух, то, во-первых, лопасти сразу же взобьют «смертельный» для насоса коктейль из воды и воздуха и, во-вторых, общая плотность воды с воздухом тут же значительно изменится (это зависит от количества попавшего в насос воздуха), изменяя и перепад давления внутри насоса. Соответственно, всасывающая сила уменьшится так же, как и центробежная (ни всасать, ни выплюнуть) из-за уменьшения плотности «коктейля».

Кроме того, «масла в огонь подливает» и эффект кавитации, образование воздушных каверн за быстродвижущимися лопастями рабочего колеса, уменьшая и без того не очень большую плотность «коктейля». И чем ниже первоначальная плотность «коктейля», тем в большей степени проявляется эффект кавитации, и тем меньше создаваемое насосом давление на напоре.

«Откуда воздух?», — спросите Вы, — «Если все новое, соединения обжаты, насос залит по «самую маковку», воды в колодце или скважине более чем достаточно». Проблема в том, что для образования «коктейля» много воздуха и не нужно. Рабочая зона в корпусе бытового насоса довольно мала, соответственно даже небольшой пузырек всплывшего из всасывающей трубы воздуха может изменить плотность воды в рабочей зоне.

Откуда могут взяться эти пузырьки? Из неровностей всасывающей трубы, положенной и закопанной в грунте. Из неплотного соединения всаса непосредственно к насосу. Из незаметных глазу пазух переходных фитингов. Даже из внутреннего эжектора самого насоса и его рабочего колеса, где мелкие пузырьки могли остаться из-за шероховатостей внутренней поверхности материала. Я могу и дальше продолжать, но нужно ли? Это нормально, это неизбежно.

Вопрос нужно ставить по-другому: Как уменьшить влияние оставшегося на всасе и в насосе воздуха, чтобы система нормально заработала? И каверзный вопрос: Почему при уже работающей системе это  влияние почти не проявляется, и даже если проявляется, исправляется само, автоматически? Ответив на второй вопрос, мы сможем найти решение для первого.

Ответ на второй вопрос кроется в нормальных условиях работы насосной станции. А нормальным режимом работы насосной станции является работа под давлением, ведь даже при пониженных параметрах, реле давления включает насос не при нулевом значении давления в системе. И если напорный трубопровод уже заполнен водой и есть минимальный перепад по высоте между насосом и потребителями (а он, как правило, есть, редко, кто ставит насосную станцию на чердаке), то даже если на манометре «ноль», минимальное давление все равно присутствует. Кроме того, если насос уже запустился и смог, хотя бы однажды, поднять давление в системе, то он уже смог выгнать лишний воздух, по крайней мере из корпуса.

И еще один момент. Как мы все знаем, вода – вещество не сжимаемое, и её объем мало зависит от давления. А вот объем воздуха очень сильно зависит от давления окружающей среды, и первоначальное разрежение на всасе насоса превращает небольшой пузырек воздуха в монстра, который способен на много уменьшить общую плотность водо-воздушного коктейля в корпусе насоса. Соответственно, подняв любым способом, хотя бы на немного, первоначальное давление во всасывающей трубе, мы увеличиваем плотность коктейля, и, тем самым, уменьшаем вероятность срыва насоса.

Резонный вопрос: «А как же кавитация?». А кавитация никуда не делась, но, опять же, объем воздушных каверн зависит от давления в корпусе насоса, а дальше… смотрите предыдущий абзац.

Еще один частый вопрос, связанный с этой темой: «Почему новый насос запускается легче, чем уже проработавший в составе насосной станции энное количество времени? Ведь до этого было все нормально, насос не трогали, поменяли лишь обратный клапан (гидроаккумулятор, реле давления и т.д.)». Да потому что он новый, его еще «не ел песочек», еще не было небольших деформаций внутренних пластиковых стенок из-за перегрева, еще не было работы электродвигателя на пределе возможного, подшипники и сальники еще не изношены и прочее, и прочее. Как бы ни был хорош насос, со временем, все равно происходит износ его рабочих элементов, и его характеристики начинают уменьшаться. Просто у хороших и дорогих насосов это происходит немного позже.

Итак, вывод из всего предыдущего: нужно каким-то образом поднять давление во всасывающей трубе, и не допустить его падение при пуске насоса и в ближайшее после пуска время, до тех пор, пока насос сам не сможет создать устойчивый рост избыточного давления в системе.

Как это сделать? Как обычно, предлагаю на Ваш суд несколько решений.

  Работа внутреннего эжектора центробежного насоса.

 На самом деле, даже производители насосов знакомы с этой проблемой. Иначе зачем, по-вашему, нужны насосы с внутренним, уже встроенным в насос, эжектором. Другое дело, что эжектор этот – далек от идеального из-за ограничения в габаритах и не всегда бывает эффективен. Хотя задумка правильная.

 Вода из нижней части рабочей камеры насоса, там, где меньше вероятность появления воздуха, подается снова на всас насоса, тем самым повышая давление на всасе. Кроме того, сам всас насоса немного приподнят относительно центра насоса, где и расположен реальный вход в рабочую камеру, создавая небольшой гидравлический подпор (смешно, сантиметров 10) и действуя в качестве гидрозатвора, который отводит попадающий воздух в верхнюю часть всаса. Проблема только в том, что плотность «коктейля» настолько мала, что этих мер недостаточно.

 При этом на работу эжектора тратится часть мощности электродвигателя, уменьшая напор и производительность насоса. Но производитель идет на эти жертвы ради устойчивой работы насоса и легкого его пуска.

Владельцы вихревых насосов лишены даже этой малости, зато их насосы обладают большим напором и расходом при, относительно, небольшой мощности электродвигателя.

Поможем насосу запуститься. Заливная воронка на всасе.

 Классическим решением данной проблемы является отдельная заливная трубка с воронкой, подсоединенная через тройник ко всасу насоса. Преимущество такого решения в его простоте и эффективности.

 Заполняя воронку водой, мы, тем самым, на немного (1 метр = 0,1 бар) повышаем первоначальное давление на всасе. И все бы было прекрасно, если бы мы могли поддерживать высокий уровень воды в воронке постоянно, пока насос не «подхватит». Но это не всегда возможно. Можно заменить маловместительную воронку на бутыль или канистру, но где гарантия, что их объема точно хватит для пуска насоса.

Кстати, переместив кран на заливной трубке повыше от тройника, мы устраиваем ловушку для воздуха, приходящего к насосу по всасывающей трубе. К сожалению, только для этой его части. Подсосы воздуха непосредственно на насосе, воздух, появившийся в результате кавитации и оставшийся в насосе, мы устранить не сможем.

Гидрозатвор на всасе.

 Теми же недостатками обладает устройство гидрозатвора на всасе насоса. Но у него есть преимущества по сравнению с обычной заливной воронкой. Если всасывающий трубопровод действительно герметичен, то залить его нужно будет всего один раз, а дальше атмосферное давление само будет заполнять эту емкость, отделяя воздух от воды. Высота гидравлического подпора в этом случае зависит от высоты размещения самого гидрозатвора.

Важным преимуществом такого решения является возможность разместить обратный клапан системы на всасывающей трубе уже после гидрозатвора, т.е. непосредственно перед насосом. Многие читатели спрашивали об этом, не желая откапывать на морозе кессон скважины или лезть в колодец. Я их понимаю.

Ну, и небольшая «ложка дегтя». Высоту подъема воды на всасе, при таком размещении обратного клапана, нужно рассчитывать по высоте входа трубы в гидрозатвор, а не по высоте насоса. И если у Вас насос уже на пределе всасывающих возможностей, то этот вариант Вам не подойдет.

Еще есть некоторые тонкости при использовании такого устройства, но эта тема для отдельной статьи, если Вам будет интересно. И так этот рассказ получается довольно длинным, поэтому я продолжу в следующий раз.

В следующий раз я расскажу еще о нескольких способах облегчить «первый» пуск насоса. Да-да, не об одном, не двух, а о нескольких, в том числе и об универсальном, подходящем, по моему мнению, практически для любого насоса. Надеюсь, Вы сможете выбрать наиболее подходящий для Вас.

За сим, откланиваюсь, уважаемые читатели «Сан Самыча», надеюсь не надолго.

ПРОДОЛЖЕНИЕ.

Насосная станция не отключается. Регулировка реле давления.

Ранее я рассказывал о такой проблеме насосной станции, как частое включение даже при закрытом кране воды. Подробно прочитать можно в статье: «Часто включается насосная станция». Сегодня же рассмотрим иную неисправность, когда насосная станция не отключается вовсе при прерывании подачи воды. А также отключается при нормальной подаче воды. Основная причина, а чаще она и единственная, заключается в реле давления.

Коротко о том, что такое реле давления.

Такое устройство в насосной станции представляет собой выключатель, способный замыкать и размыкать цепь в соответствии с установленным давлением.

При падении давления воды до нижний границы электрическая цепь замыкается, насосная станция начинает работать и качать воду. При достижении верхнего предела цепь размыкается, насосная станция отключается.

Насосная станция не отключается. Причина в реле давления.

Для правильной работы насосной станции, чтобы она включалась и отключалась как положено, необходимо отрегулировать реле. На первый взгляд это может показаться довольно сложной задачей. Но настройка выключателя — это простая и быстрая работа, требующая минимальных навыков, которую мы можем делать самостоятельно. Как правило, существуют различные типы выключателей, но принцип действия у них одинаков, поэтому регулировка производится в соответствии с одинаковыми и простыми инструкциями.

Чтобы отрегулировать этот механизм, нужно подтянуть или ослабить регулирующие гайки (1 и 2 на картинке ниже).

Первая гайка называется «дифференциальной», поскольку она регулирует разность значения давления, при котором насосная станция будет запускаться и останавливаться. Как правило, она расположена на меньшей боковой пружине. Заводская настройка — это дифференциал в 20 psi или в 1,4 bar, является стандартным и рекомендуемым. Вы можете отрегулировать дифференциал под свои нужды, комфорт. Поворачивая малую регулировочную гайку на реле по часовой стрелке, чтобы увеличить, или против часовой стрелки, чтобы уменьшить дифференциал. Данное действие редко требуется.

Малая пружина также считается регулирующей показатель запуска станции. И это понятно, ведь она изменяет дифференциал. Закручивая ее, мы уменьшим значение запуска, а откручивая — увеличим.

Вторая гайка, расположенная на центральной пружине, определяет значение давления, при котором мы хотим, чтобы насос отключился. Поворачивая гайку по часовой стрелке, увеличиваем значение давления, при котором насосная станция отключится. Например, отключалась при 3,5 bar, повернув на четверть оборота, стала отключаться при 3,9.

Заключение

Таким образом приходим к выводу, что насосная станция не отключается по причине неверной настройки реле. Нам нужно отрегулировать большую пружину, уменьшив показатель, при котором насос отключится. Т.е. прокрутив гайку против часовой стрелки. Например, стрелка манометра достигает 4 бар, при этом насосная станция не отключается. Уменьшив показатель всего на 0,1 бар — до 3,9, насосная станция будет работать правильно.

Обратите внимание, что слишком малая разница в диапазоне приведет к тому, что насосная станция будет чаще включаться и отключаться. В свою очередь, это приведет к быстрому выходу из строя самого насоса. А слишком большая разница не удобна для пользования.

Стоит заметить, что вместе с наладкой реле, нужно под эти параметры и подстраивать гидроаккумулятор, проще говоря, накачать в бачок необходимое количество воздуха. Чтобы определить, сколько нам нужно накачать в мембранный бак, умножим показатель запуска насосной станции на 0,9. Например, станция запускается при 1,8 bar, умножаем 0,9, получаем приблизительно 1,6 bar.

Мы разобрали и выяснили причину, почему насосная станция не отключается после закрытия крана. Подробнее о том, как регулировать реле, рассмотрим в следующей статье.

Насосная станция не отключается. Что делать? Причина неисправности.

Автор: · Октябрь 17, 2017

Ранее я рассказывал о такой проблеме насосной станции, как частое включение даже при закрытом кране воды. Подробно прочитать можно в статье: «Часто включается насосная станция». Сегодня же рассмотрим иную неисправность, когда насосная станция не отключается вовсе при прерывании подачи воды. А также отключается при нормальной подаче воды. Основная причина, а чаще она и единственная, заключается в реле давления.

Коротко о том, что такое реле давления.

Такое устройство в насосной станции представляет собой выключатель, способный замыкать и размыкать цепь в соответствии с установленным давлением.

При падении давления воды до нижний границы электрическая цепь замыкается, насосная станция начинает работать и качать воду. При достижении верхнего предела цепь размыкается, насосная станция отключается.

Насосная станция не отключается. Причина в реле давления.

Для правильной работы насосной станции, чтобы она включалась и отключалась как положено, необходимо отрегулировать реле. На первый взгляд это может показаться довольно сложной задачей. Но настройка выключателя — это простая и быстрая работа, требующая минимальных навыков, которую мы можем делать самостоятельно. Как правило, существуют различные типы выключателей, но принцип действия у них одинаков, поэтому регулировка производится в соответствии с одинаковыми и простыми инструкциями.

Чтобы отрегулировать этот механизм, нужно подтянуть или ослабить регулирующие гайки (1 и 2 на картинке ниже).

Первая гайка называется «дифференциальной», поскольку она регулирует разность значения давления, при котором насосная станция будет запускаться и останавливаться. Как правило, она расположена на меньшей боковой пружине. Заводская настройка — это дифференциал в 20 psi или в 1,4 bar, является стандартным и рекомендуемым. Вы можете отрегулировать дифференциал под свои нужды, комфорт. Поворачивая малую регулировочную гайку на реле по часовой стрелке, чтобы увеличить, или против часовой стрелки, чтобы уменьшить дифференциал. Данное действие редко требуется.

Малая пружина также считается регулирующей показатель запуска станции. И это понятно, ведь она изменяет дифференциал. Закручивая ее, мы уменьшим значение запуска, а откручивая — увеличим.

Вторая гайка, расположенная на центральной пружине, определяет значение давления, при котором мы хотим, чтобы насос отключился. Поворачивая гайку по часовой стрелке, увеличиваем значение давления, при котором насосная станция отключится. Например, отключалась при 3,5 bar, повернув на четверть оборота, стала отключаться при 3,9.

Заключение

Таким образом приходим к выводу, что насосная станция не отключается по причине неверной настройки реле. Нам нужно отрегулировать большую пружину, уменьшив показатель, при котором насос отключится. Т.е. прокрутив гайку против часовой стрелки. Например, стрелка манометра достигает 4 бар, при этом насосная станция не отключается. Уменьшив показатель всего на 0,1 бар — до 3,9, насосная станция будет работать правильно.

Обратите внимание, что слишком малая разница в диапазоне приведет к тому, что насосная станция будет чаще включаться и отключаться. В свою очередь, это приведет к быстрому выходу из строя самого насоса. А слишком большая разница не удобна для пользования.

Стоит заметить, что вместе с наладкой реле, нужно под эти параметры и подстраивать гидроаккумулятор, проще говоря, накачать в бачок необходимое количество воздуха. Чтобы определить, сколько нам нужно накачать в мембранный бак, умножим показатель запуска насосной станции на 0,9. Например, станция запускается при 1,8 bar, умножаем 0,9, получаем приблизительно 1,6 bar.

Мы разобрали и выяснили причину, почему насосная станция не отключается после закрытия крана. Подробнее о том, как регулировать реле, рассмотрим в следующей статье.

390—> Насосная станция (или, как её ещё называют, насос-автомат) – это один из самых удобных, практичных и недорогих способов организовать водоснабжение в доме, коттедже, офисе, или производственном здании. При этом применяют оборудование различных фирм. Конструкция насосных станций различных производителей примерно одинаковая (за исключением дорогих и эксклюзивных моделей с частотными преобразователями). Поэтому, при выяснении, почему не включается насосная станция, причины отказов будут одинаковые независимо от производителя.

Пример установки насосной станции Джамбо 70/50

Итак, почему же насосная станция может отказаться включаться и перекачивать воду. Причин может быть несколько. Для начала, разберём: почему чаще всего не включается насосная станция.

Не запускается двигатель

Самая банальная причина, почему насосная станция долго не включается, является банальное отсутствие питания на двигателе. Неисправность возникает, если:

  1. Не поступает электроэнергия из-за неисправностей в вилке или розетке, перетёрся шнур питания, отгорели провода на клеммах мотора.
  2. Окислились контакты реле давления. После зачистки наждачной бумагой работоспособность восстанавливается.
  3. Обрыв в обмотках двигателя. Целостность проверяют тестером. Если диагноз подтвердился или есть запах горелой изоляции мотор заменяют или отдают на перемотку.
  4. Вышел из строя ротор двигателя. Его также проверяют тестером, при необходимости – ротор нужно заменить.
  5. Пусковой конденсатор не функционирует из-за потери ёмкости или внутреннего замыкания. После проверки тестером, конденсатор меняют на исправный.

Взрывной чертёж насосной станции Джамбо 70/50

Мотор гудит, но не вращается

Такая ситуация характерна для сельской местности, где напряжение в электросети нередко падает ниже нормы. Если напряжение низкое – двигатель вполне может отказаться вращаться. Для решения проблемы устанавливают стабилизатор. Гудение при запуске также будет возникать при неисправном пусковом конденсаторе. Причиной, почему не включается насосная станция, а только «мычит», бывает долгий простой оборудования. Например, при консервации на зиму. За время бездействия крыльчатка насоса успевает «слипнуться» с корпусом и у двигателя не хватает мощности сдвинуть её с места. Для устранения неисправности вал несколько раз проворачивают вручную.

Электрика насосной станции Джамбо

Крыльчатка насоса вращается, но вода не поступает

  1. Засорение обратного клапана, установленного на том конце трубы, который опущен в скважину или водоём. Придётся разобрать его, чтобы очистить от песка и ила, которые препятствуют открытию.
  2. Отсутствие воды во всасывающем трубопроводе. Она может уйти при отключении электроэнергии или длительных остановках. Для нормализации работы достаточно залить в трубопровод воду через специальное отверстие на корпусе насосе.
  3. Увеличение зазора между крыльчаткой и корпусом из-за истирания их абразивными частицами, содержащимися в воде. Достаточно заменить насос, но не всю станцию.
  4. Понижение уровня воды в колодце или скважине. Проблему решают, опуская всасывающий трубопровод или шланг до погружения конца ниже поверхности воды. И мы же помним – что поверхностные насосы забирают воду с глубины до 8 метров?

Пересохший колодец

Частое включение

Самый большой износ оборудования происходит в момент пуска насоса – именно здесь в обмотках двигателя появляются весьма значительные пусковые токи. Поэтому — при таком режиме работы быстро изнашивается оборудование. Причиной может быть:

  1. Небольшая вместимость гидроаккумулятора. Для увеличения объёма параллельно подсоединяют дополнительный бак.
  2. Неправильная настройка пределов срабатывания реле давления. Увеличивают разницу между нижним и верхним значениями.
  3. Недостаточное или завышенное давление внутри гидроаккумулятора. После снятия крышки через ниппель манометром замеряют давление (норма 1 — 1,5 атм.). В зависимости от показаний стравливают или подкачивают воздух.
  4. Неплотное перекрытие всасывающего отверстия обратным клапаном. Вода быстро стекает обратно, заставляя насос часто включаться. Если после очистки герметичность не восстановилась, клапан меняют на новый.
  5. Порвана мембрана. Вода будет подаваться толчками. Подобные симптомы характерны и при отсутствии давления в воздушной камере гидробака. Нормальную работу восстанавливают заменой пришедших в негодность деталей и регулировкой давления в воздушной камере.
  6. Нарушение герметичности трубопровода и мест соединения. Через неплотности в систему будет попадать воздух, из-за чего краны будут «плеваться». Протечки устраняют подручными средствами или сваркой.

Большинство неисправностей несложно устранить самостоятельно. Для этого не требуются какие-либо особые инструменты и познания. Однако замену мембраны или груши лучше доверить специалисту. В нашем интернет-магазине Вы всегда сможете найти мембрану для любого гидроаккумулятора любого производителя. Позвоните или напишите нам прямо сейчас!

В 

Похожие статьи

Как подобрать насосную станцию для дачи

В нашей статье разберём критерии выбора для насосной станции на дачу. Чтобы правильно подобрать насосную станцию — обязательно прочтите статью.

В 

Возврат к списку

  • Теплые полы
  • Монтаж
  • Пластиковые баки
  • Джилекс
  • Проектирование
  • Котлы
  • Насосные станции
  • Насосы скважинные
  • Водонагреватели
  • Радиаторы отопления
  • Электрические нагреватели

Похожие статьи

Как подобрать насосную станцию для дачиВ нашей статье разберём критерии выбора для насосной станции на дачу. Чтобы правильно подобрать насосную станцию — обязательно прочтите статью.

Представьте, что для получения воды на даче можно просто открыть кран. Что не нужно ведрами наполнять емкости для элементарных гигиенических процедур, приготовления пищи, уборки. Для этого надо всего лишь установить насосное оборудование с датчиком давления, но прежде следует разобраться с его устройством, согласны?

Наша статья в тонких подробностях познакомит вас с реле давления для насосной станции. Вы узнаете, как работает прибор, каким образом он активизирует и останавливает откачку. Мы подробно описываем востребованные варианты датчиков давления и способы их регулировки.

В материале перечислены технологические нюансы и методы настройки реле. Изложенную информацию идеально дополняют полезные схемы, фото и видео-приложения.

Роль реле давления в системе водоподачи

Небольшое по габаритам устройство относится к группе автоматики, обслуживающей насосное оборудование. Его функционал возможен только в связке с гидроаккумулятором.

Несмотря на свои малые размеры, реле выполняет ряд важных функций:

  • позволяет всем приборам функционировать в заданном режиме;
  • чутко реагирует на изменение порогов включения/выключения;
  • активизирует и останавливает работу насоса при достижении критических значений.

Проще говоря, он регулирует автоматический процесс откачки воды в схемах независимого водоснабжения с мембранным баком. Регулировка производится в ходе коммутации электрических цепей при достижении в системе двух параметров давления, принятых в качестве верхнего и нижнего предела.

Покупая насосную станцию, вы получаете комплект оборудования, частью которого является и реле давления. Внешне модели разных марок и серий похожи, но могут отличаться формой, размером, цветом корпуса, способом настройки и местом расположения.

При самостоятельной сборке автоматики необходимо изучить характеристики приборов и выбрать наиболее подходящие для конкретной системы.

Схема расположения приборов, участвующих в организации водоснабжения частного дома из колодца или скважины. Реле контролирует рабочее давление в сети, а манометр отображает актуальные параметры

Приборы адаптированы под удобную установку и обслуживание насосной станции. Чаще всего они закреплены штуцером на входе гидроаккумулятора, но могут монтироваться и в трубу системы ХВС в непосредственной близости к аппарату.

Галерея изображенийПрибор крепится сбоку и имеет стандартный внешний вид. Заводские установки -1,4/2,8 атм.Особенностью конструкции прибора является манометр, встроенный в корпус реле давленияПрибор установлен в точке подачи воды в гидробак. Начальное значение давления – 1,5 атм.Для удобства обслуживания манометр встроен в корпус, но само реле закреплено снаружиОригинальное реле давления GrundfosРеле с интегрированным манометром AL-KOОтечественное реле давления ВихрьОборудование марки Gardena для дачи

Конструкция и принцип действия

Реле для регулировки давления имеет простую разборную конструкцию, благодаря которой пользователь может самостоятельно настраивать работу гидроаккумулятора, сужать или расширять параметры.

Внутренние детали скомпонованы в прочном пластиковом корпусе, напоминающем коробочку неправильной формы. Она имеет гладкую поверхность и только 3 наружных рабочих элемента: два муфтовых зажима для электрокабелей, идущих от сети и насоса, и металлический патрубок ¼, ½, 1 дюйм для подключения к системе. Резьба на патрубке бывает как наружной, так и внутренней.

Чтобы снять корпус прибора, необходимо вооружиться плоской отверткой и неторопливо и осторожно открутить утопленный в пластик винт, расположенный над осью большой пружины

Внутри находится основание, к которому крепятся рабочие элементы: большая и малая пружины с регулировочными гайками, контакты для подключения, мембрана и пластина, меняющая свое положение в зависимости от повышения/понижения параметров давления в системе.

Галерея изображенийКлеммы для земли имеют наружное подключение и представляют собой два винта, к которым и крепятся желто-зеленые проводаПровода питания подключают к клеммам в верхней части устройства: две предназначены для фиксации коричневого провода, две – для синегоБольшая пружина отвечает за нижний предел давления. Настройка осуществляется с помощью маленькой гайки, накрученной сверхуМаленькая пружина отвечает за дельту (ΔР) – разницу двумя границами давления, верхней и нижней. С помощью гайки можно эти границы немного раздвинутьКлеммы для подключения заземляющего проводаКлеммы для подключения фазы и ноляБольшая пружина и ее назначениеМаленькая регулировочная пружина

Контакты двух электрических цепей, замыкаемые при достижении предельных параметров давления, находятся под пружинами, которые закреплены на металлической пластине. Когда давление повышается, мембрана гидробака деформируется, давление внутри груши увеличивается, масса воды давит на пластину. Та, в свою очередь, начинает воздействовать на большую пружину.

При сжатии пружина срабатывает и размыкает контакт, подающий напряжение на двигатель. В результате этого насосная станция отключается. С понижением давления (обычно это в интервале 1,4 – 1,6 бар) пластина встает в исходное положение и контакты снова замыкаются – мотор начинает работать и производить подкачку воды.

При покупке новой насосной станции рекомендуется произвести тестирование оборудования, чтобы убедиться в работоспособности всех составных частей. Проверка эксплуатационных качеств реле происходит в последовательности, изложенной ниже. В качестве примера – модель Haitun PC-19.

Галерея изображенийПеред включением станции в сеть необходимо установить обратный клапан и залить в гидробак воду. Электронное реле давления мощностью 1,1 кВт начинает работу при 1,5 атм и должно отключиться, когда оно достигает 2,5 атм.Если перекрыть кран, тем самым отключив подачу воды, спустя несколько секунд давление в гидробаке поднимется до максимального, реле сработает и остановит работу станции. Верхнюю границу давления можно отрегулировать вручнуюДля тестирования необходимо несколько раз закрыть/открыть кран. Давление будет то возрастать, то понижаться, соответственно, реле должно срабатывать каждый раз. По манометру можно отследить реальные рабочие границы давления – они не всегда совпадают с заявленнымиУстройство должно отключать работу станции и в том случае, если заканчивается вода в источнике. Давление также резко поднимается и происходит аварийное отключение. На панели индикации загорается оранжевая лампочкаНасосная станция с блоком автоматикиМанометр встроен в корпус релеМониторинг работы оборудованияСигнализация при «сухом ходе»

У механических моделей индикации и панели управления нет, однако они могут быть снабжены кнопкой принудительного включения. Она необходима, чтобы заставить функционировать.

Критерии выбора реле для насоса

Существует множество универсальных моделей, которые продаются отдельно от насосных станций и могут быть использованы для сборки системы своими руками. Приобретая реле или блок автоматики, необходимо опираться на характеристики прибора. Их можно найти в технической документации.

Важно, чтобы возможности реле совпадали по характеристикам с возможностями остального оборудования.

Перед покупкой блока автоматики или реле внимательно изучите технические данные модели. В большинстве случаев они стандартны: номинальное давление от 1,5 атм., максимальное – 3 атм.

Отталкиваться следует от номинального давления, но верхний предел рабочего давления также важен. Необходимо учесть электрические показатели и максимальную температуру воды. Обязательным параметром является класс IP, обозначающий пыле- и влагозащиту: чем выше значение, тем лучше.

Размеры присоединительной резьбы обозначаются в дюймах: например, ¼ дюйма или 1 дюйм. Они должны совпадать с размерами штуцера для подключения. Размеры и масса самих приборов примерно одинаковы и являются второстепенными характеристиками.

Следует также помнить, что существуют встроенные и выносные модели. Большая часть имеющихся в продаже приборов универсальны: они могут подключаться непосредственно к гидробаку или монтироваться на трубу.

Электронные реле имеют те же функции, что и механические: отвечают за подачу воды и защищают механизм насоса от сухого хода. Они более капризные, чем простые модели, и чутко реагируют на взвешенные частицы в воде. Чтобы защитить устройство, перед местом его подключения устанавливают сетчатый фильтр-грязевик.

По сути, электронный прибор представляет собой блок автоматики с удобным дисплеем и системой кнопок, дающей возможность выполнять регулировку без разборки устройства

Одно из отличий от традиционной модели заключается в задержке отключения насоса. Если при повышении давления механическое устройство срабатывает быстро, то электронный аналог выключает оборудование только через 10-15 секунд. Это объясняется бережным отношением к технике: чем реже будет включаться/выключаться насос, тем дольше он прослужит.

Некоторые стрелочные модели, а также блоки автоматики работают без гидроаккумулятора, но их функционал ограничен более простым использованием. Предположим, они прекрасно подходят для полива огорода или перекачки жидкости из одного резервуара в другой, но в системе водоснабжения дома не применяются.

При этом технические характеристики устройств такие же, что и у традиционных реле: заводская настройка 1,5 атм., порог отключения – 3 атм., максимальное значение – 10 атм.

Причины для выполнения индивидуальной настройки

Разборную конструкцию прибора и инструкцию по настройке придумали не зря. Заводские параметры редко когда соответствуют требованиям системы водоснабжения, а также объему гидроаккумулятора.

Перед процедурой коррекции реле обязательно следует убедиться в исправности гидроаккумулятора и налаженной работе системы водоподачи в дом, иначе можно неправильно выставить рабочие параметры

С помощью настройки можно не только «подогнать» верхний и нижний предел под оптимальные значения, но и сделать работу оборудования более щадящей – например, уменьшить число включений/выключений насоса. Для этого достаточно немного увеличить диапазон между рабочими давлениями – дельту.

Можно столкнуться и с некорректной настройкой фабричной модели. Если дельту неправильно скоординировали и сделали слишком маленькой, то насос будет постоянно включаться и выключаться, реагируя на минимальное повышение параметров.

Рекомендации по регулировке прибора

Манипулируя пружинами, можно добиться изменения порога отключения насоса, а также отрегулировать объем воды в гидроаккумуляторном баке. Принято считать, что чем больше дельта, тем больше объем жидкости в баке. Например, при дельте в 2 атм. бак заполнен водой на 50%, при дельте 1 атм. – на 25%.

Чтобы добиться дельты в 2 атм., необходимо установить нижнее значение давления, например, на 1,8 атм., а верхнее на 3,8 атм., изменяя положение малой и большой пружин

Сначала вспомним общие правила регулировки:

  • чтобы повысить верхнюю границу срабатывания, то есть увеличить давление отключения, следует закрутить гайку на большой пружине; для уменьшения «потолка» – ослабить ее;
  • чтобы увеличить разницу между двумя показателями давления, закручиваем гайку на малой пружине, для уменьшения дельты – ослабляем ее;
  • движение гайки по часовой стрелке – увеличение параметров, против – снижение;
  • для настройки необходимо подключение манометра, который показывает начальные и измененные параметры;
  • перед началом регулировки необходимо прочистить фильтры, заполнить бак водой и убедиться в работоспособности всего насосного оборудования.

Все действия по регулировке проводятся только после тестирования системы и обнаружения низкой производительности или явных ошибок в работе. Бывает и так, что станция перестает работать по причине засора, забившего фильтр или один из узких патрубков. На нашем сайте есть еще одна статья, где более подробно изложен процесс регулировки реле давления – переходите по ссылке, чтобы ознакомиться с материалом.

Практические примеры настройки реле

Разберем случаи, когда обращение к регулировке реле давления действительно необходимо. Обычно это происходит при покупке нового прибора или при возникновении частых отключений насоса.

Также настройка потребуется, если вам досталось б/у устройство со сбитым параметрами.

Подключение нового прибора

На этом этапе следует проверить, насколько корректны заводские установки, и при необходимости внести некоторые изменения в работу насоса.

Галерея изображенийОтключаем энергию, полностью опустошаем систему от воды, пока манометр не достигнет отметки «ноль». Включаем насос и следим за показаниями. Запоминаем, на каком значении он выключился. Затем спускаем воду и запоминаем параметры, при которых насос вновь начинает работатьЗакручиваем большую пружину, чтобы увеличить нижнюю границу. Производим проверку: спускаем воду и запоминаем значение включения и выключения. Второй параметр должен увеличиться вместе с первым. Регулируем до тех пор, пока не достигаем нужного результатаПроизводим те же самые действия, но уже с малой пружиной. Действовать нужно аккуратно, так как малейшее изменение положения пружины откликается в работе насоса. Немного закрутив или ослабив гайку, тут же проверяем результат работыЗакончив все манипуляции с пружинами, снимаем конечные показания и сравниваем их с начальными. Также смотрим, что изменилось в работе станции. Если бак стал наполняться в другом объеме, а интервалы включения/выключения изменились, настройка прошла успешноЭтап 1 – подготовка оборудованияЭтап 2 – регулировка величины включенияЭтап 3 – регулировка величины отключенияЭтап 4 – тестирование работы системы

Чтобы проследить за ходом работы, рекомендуется записывать все полученные данные на листок бумаги. В дальнейшем можно вернуть начальные настройки или еще раз изменить параметры.

Насос перестал выключаться

В этом случае принудительно выключаем насосное оборудование и действуем в следующем порядке:

  1. Производим включение, и дожидаемся, когда давление достигает максимальной отметки – предположим, 3,7 атм.
  2. Отключаем оборудование и понижаем давление путем спуска воды – например, до 3,1 атм.
  3. Слегка затягиваем гайку на малой пружине, увеличивая значение дифференциала.
  4. Проверяем, как изменилось давление отключения и тестируем систему.
  5. Настраиваем оптимальный вариант путем подтягивания и ослабления гаек на обеих пружинах.

Если причина была в неправильной первоначальной настройке, ее можно решить, не покупая новое реле. Рекомендуется регулярно, раз в 1-2 месяца, проверять работу реле давления и при необходимости производить регулировку пределов включения/выключения.

Ситуации, не требующие регулировки

Причин, когда насос не выключается или не включается, может быть множество – от засора в коммуникациях до выхода из строя двигателя. Поэтому, прежде чем начать разборку реле, следует убедиться, что остальное оборудование насосной станции работает исправно.

Если с остальными приборами все в порядке, проблема в автоматике. Переходим к осмотру реле давления. Отключаем его от штуцера и проводов, снимаем крышку и проверяем две критические точки: тонкий патрубок подключения к системе и блок контактов.

Галерея изображенийЧтобы проверить, чистое ли отверстие, необходимо произвести демонтаж прибора для осмотра, а при обнаружении засорения выполнить чисткуКачество водопроводной воды не идеально, поэтому часто проблема решается обыкновенной чисткой входного отверстия от ржавчины и минеральных отложенийДаже у приборов с высокой степенью защиты от влаги могут происходить сбои из-за того, что окислились или подгорели контакты проводовДля очищения контактов используют специальный химический раствор или простейший вариант – самую мелкую наждачку. Действовать нужно очень осторожноЗабился патрубок подключения к гидробакуЧистка входного отверстия в релеЗасорились электрические контактыЧистка блока контактов

Если очистительные мероприятия не помогли, а регулировка положения пружин также была напрасной, скорее всего, реле не подлежит дальнейшей эксплуатации и его следует заменить новым.

Предположим, вам в руки попал старый, но действующий прибор. Его регулировка происходит в том же порядке, что и настройка нового реле. Перед началом работы убедитесь в целостности прибора, разберите его и проверьте, все ли контакты и пружины на своих местах.

Выводы и полезное видео по теме

Практические видеосоветы помогут вам лучше понять, как следует производить регулировку нового реле давления насосной станции, если параметры по каким-то причинам вас не устраивают. Также вы узнаете, чем отличается устройство сухого хода.

Рекомендации по настройке автоматики:

Профессиональные советы по правильной регулировке:

Сравнительная характеристика двух видов реле:

Для коррекции работы реле давления специалистов обычно не приглашают, так как это несложная процедура, занимающая немного времени. Вы можете оставить и заводские настройки, однако даже минимальная регулировка поможет продлить эксплуатацию насоса и гидробака, а также оптимизирует работу станции.

У вас есть личный опыт по регулировке реле для насоса и вы можете поделиться дельным советом с посетителями нашего сайта? Пожалуйста, оставляйте свои комментарии, задавайте вопросы, делитесь опытом в расположенном ниже блоке.

31.01.2019 | Водопровод | | Статью прочитали: 1771 раз

Ремонт насосной станции своими руками

Зная самые распространенные и частые причины поломок насосной станции, можно попробовать выполнить её ремонт своими руками. В тех ситуациях, когда насосная станция гудит, а вода не поступает из крана, или, наоборот, когда насосная станция не запускается и не наполняет водой гидроаккумулятор.

В данной статье строительного журнала samastroyka.ru мы разберёмся с наиболее типичными проблемами насосных станций, а также рассмотрим, как их можно решить собственными усилиями.

Ремонт насосной станции — основные причины поломки

Конструкция насосной станции не слишком сложная, хотя и не лишена электроники. Именно она отвечает за давление воды в трубопроводе, нередко ломается или требует чёткой регулировки. Насосная станция состоит из таких узлов с механизмами: насоса с электродвигателем, реле давления, расширительного бака (он же гидроаккумулятор), манометра и фильтра с обратным клапаном.

Поэтому чаще всего, ремонт насосной станции связан именно с гидроаккумулятором и мембраной или с реле, которое отвечает за требуемый уровень давления воды в системе водоснабжения. Ниже будут приведены самые распространенные причины поломки насосных станций.

Выход из строя мембраны гидроаккумулятора

Возможно, вы нередко замечали, что вода из крана льётся вперемешку с воздухом, или такую ситуацию, когда насосная станция слишком часто включается. Так вот, проблемы в данном случае могут быть вызваны из-за повреждения резиновой мембраны внутри гидроаккумулятора.

Кроме того, иногда причинами поломки может стать и отсутствие требуемого давления в гидроаккумуляторе. Чтобы накачать гидроаккумулятор воздухом, следует взять обычный насос и довести объем воздушной массы в мембране до значения, которое бы превышало на 0,2 атм. нижний предел срабатывания насосной станции.

Из-за чего вода может не поступать из насосной станции

Если вода не идет из насосной станции, то прежде чем относить её в мастерскую, можно попробовать решить проблему самостоятельно. В данном случае, ремонт насосной станции своими руками, следует осуществлять последовательно:

1. Сначала потребуется проверить, поступает ли к насосной станции электричество, и не слишком ли занижено напряжение. Если проблема именно в низком напряжении, то потребуется осуществить его стабилизацию, осуществив подключение стабилизатора напряжения. 2. Если насосная станция гудит, а вода из неё не идет. Самая распространенная причина — это скопление большого количества воздуха в насосной станции (просто станция завоздушена). Чтобы стравить воздух, следует открутить болт сверху насосной установки, и дождаться пока из отверстия не начнёт поступать вода.

Также, проблемы могут наблюдаться и вследствие неправильного монтажа. О том, как подключить насосную станцию правильно, читайте в другой статье сайте.

3. Остальными причинами, являются: выход из строя насоса, заклинивание двигателя, вследствие поломки подшипников. Кроме того, нередко после длительного простоя, в насосной станции образуются слишком толстые солевые отложения, из-за чего не может нормально вращаться ротор или крыльчатка обдува.

Чтобы отремонтировать насосную станцию в данном случае, нужно попробовать повернуть её ротор вручную.

4. Если насосная станция включается и слышно как работает двигатель, но вода из неё все равно не поступает, нужно проверить, если требуемый объем воды в емкости или колодце. Также, возможно, сильно засорился фильтр тонкой и грубой очистки, возможен порыв подающего трубопровода.

Что делать, если насосная станция часто включается?

Причины, из-за которых насосная станция всё время включается, могут быть следующими:

1. В гидроаккумуляторе насосной станции нет давления из-за повреждения мембраны или по причине разгерметизации. Следует накачать гидроаккумулятор.

2. Мембрана гидроаккумулятора повреждена. Потребуется заменить резиновую мембрану. К сожалению, ремонту насосная станция в данном случае не подлежит, только замена мембраны.

3. Возможны утечки в системе водоснабжения. В первую очередь обязательно следует проверить исправность обратного клапана, который обязательно должен быть установлен перед насосной станцией. Возможно, именно из-за того, что обратный клапан «не держит», вода и уходит обратно в трубопровод.

4. Неправильно выставлено давление в насосной станции. Чтобы решить подобного рода проблему, следует проверить нижний и верхний порог давления, и при необходимости его подкорректировать. О том, как выполняется регулировка насосной станции, читайте здесь.

Важно — чем больше по значению будет разница между нижним и верхним порогом давления, тем реже по времени будет включаться насосная станция.

6. Гидроаккумулятор насосной станции слишком маленького объёма. К сожалению, это еще одна довольно распространенная причина, из-за которой насосная станция постоянно включается.

Почему насосная станция не включается

Насосная станция может не включаться по целому ряду причин. Самыми распространенными из них, являются:

1. Неправильно отрегулировано реле давления. Другими словами, выставлено слишком большое значение, из-за чего слабомощный насос просто не в силах набрать требуемое давление. Для решения данной проблемы, и ремонта насосной станции своими руками, нужно выставить меньшее давление или произвести замену насоса на более мощный агрегат.

2. Выход крыльчатки насосной станции из строя.

3. Слишком маленькое напряжение в сети 220 Вольт.

4. Обратный клапан или фильтр насосной станции засорились или вышли из строя. Также, причинами этому, может быть и поломка реле блока управления давлением насосной станции.

5. Не хватает мощности насосной станции для того, чтобы поднять воду на определенную высоту. Кроме того, причинами может быть и слишком зауженный трубопровод, вследствие чего, динамическое сопротивление в нём, превышает напор воды.

Рекомендации по обслуживанию насосной станции

2. Время от времени производите проверку и чистку реле давления насосной станции, осуществляйте подтяжку контактов питания насоса, осматривайте болт и отверстие, предназначенное для стравливания воздуха.

3. В том случае, если насосная станция тянет ил со дна колодца, поставьте на дно емкость с грузиком, а в ней разместите всас. Теперь вода из колодца не будет поступать с илом.

4. Сначала начните ремонт насосной станции своими руками с проверки. Для этого возьмите ведро с чистой водой и опустите в него всас, после чего включите насосную станцию. Если установка благополучно заработала, то ищите причину поломки далеко от неё.

Как правило проблема связаны с засорением всасывающей трубы проложенной к насосной станции, фильтров или из-за низкого уровня воды в колодце.

5. Если насосная станция не выключается, то причин этому несколько — утечки в системе водоснабжения и выход из строя реле давления.

Проблемы и неисправности насосных станций и их исправление

Все насосные станции состоят из одинаковых частей и поломки у них, в основном, типичные. Не имеет разницы, оборудование это Грундфос, Джамбо, Алко или каких-либо других фирм. Болезни и их лечение одинаковое. Разница в том, насколько часто эти неисправности случаются, но их перечень и причины обычно идентичны.

Иногда вы замечаете, что насос работает уже долго и никак не отключится. Если смотреть на манометр, то видно, что насосная станция не набирает давление. В этом случае ремонт насосной станции дело длительное — придется перебрать большое количество причин:

Частые включения насоса и короткие промежутки его работы ведут к быстрому износу оборудования, что очень нежелательно. Потому ремонт насосной станции надо проводить сразу после обнаружения «симптома». Такая ситуация возникает по следующим причинам:

Небольшое количество воздуха в воде присутствует всегда, но когда кран начинает «плеваться», значит что-то работает неправильно. Причин тоже может быть несколько:

Первое что стоит проверить — напряжение. Насосы очень требовательны к напряжению, при пониженном просто не работают. Если с напряжением все нормально, дело хуже — скорее всего неисправен мотор. В этом случае станцию несут в сервисный центр или ставят новый насос.

Если система не работает — надо проверить электрическую часть

Из других причин — неисправность вилки/розетки, перетерся шнур, отгорели/окислились контакты в месте крепления электрокабеля к мотору. Это то, что вы сможете проверить и устранить самостоятельно. Более серьезный ремонт электрической части насосной станции проводят специалисты.

Сначала стоит проверить, есть ли вода в колодце или скважине. Далее проверяете фильтр и обратный клапан. Может они забились или неисправны. Чистите, проверяете работоспособность, опускаете трубопровод на место, снова запускаете насосную станцию.

Проверяем крыльчатку — это уже серьезный ремонт насосной станции

Если не помогло, может заклинила крыльчатка. Тогда попробуйте вручную провернуть вал. Иногда после длительного простоя он «прикипает» — зарастает солями и сам сдвинуться не может. Если руками сдвинуть лопасти не получилось, возможно крыльчатку заклинило. Тогда ремонт насосной станции продолжаем тем, что снимаем защитный кожух и разблокируем крыльчатку.

Следующий шаг

Вы проверили устройство на загрязнение и на электросистему, так почему насос не качает воду до сих пор? Теперь осмотрите и тщательно проверьте само устройство. В насосе есть фильтрующее устройство, которое может быть засорено. В этом случае прочистите его либо замените. Такая проблема засорения может встречаться и с обратным клапаном насосной станции.

Если все в порядке, то далее идет более неблагоприятный вариант. Если насос вдруг работал при том что в резервуаре не было жидкости, то датчик внутри устройства мог попросту перегореть из-за перегрева. В этом случае своими руками уже ничего не сделаешь. Не рекомендуется даже идти к специалисту, потому что водяной насос уже не будет показывать столько надежный результат, как в былые времена.

Состав насосной станции и назначение частей

Насосная станция — совокупность отдельных устройств, соединенных между собой. Чтобы понимать, как ремонтировать насосную станцию, надо знать из чего она состоит, как работает каждая из частей. Тогда неисправности устранять проще. Состав насосной станции:

Каждая из частей отвечает за определенный параметр, но один тип неисправности может быть вызван выходом из строя различных устройств.

Теперь давайте рассмотрим, как все эти устройства работают. При первом запуске системы насос накачивает в гидроаккумулятор воду до тех про, пока давление в нем (и в системе) не сравняется с выставленным на реле давления верхним порогом. Пока нет расхода воды, давление стабильно, насос выключен.

Где-то открыли кран, спустили воду и т.п. Какое-то время вода поступает из гидроаккумулятора. Когда ее количество уменьшается настолько, что давление в гидроаккумуляторе падает ниже порога, реле давления срабатывает и включает насос, который снова накачивая воду. Отключается он снова-таки реле давления, когда достигнут верхний порог — порог отключения.

Если идет постоянный расход воды (набирается ванна, включен полив саде/огорода) насос работает продолжительное время: пока в гидроаккумуляторе не создастся нужное давление. Это периодически происходит даже при открытых всех кранах, так как насос подает воды меньше, чем вытекает из всех точек разбора. После того, как расход прекратился, станция еще некоторое время работает, создавая в гироаккумуляторе требуемый запас, потом отключается и включается после того как снова появляется расход воды.

Неисправности защитных систем насосов

Обычно правильно собранная система водоснабжения и качественные насосы имеют устройства, предотвращающие их работу в режиме холостого хода.

В случае неисправности подобных защитных устройств: реле сухого хода скважинного и поплавковые выключатели дренажников, колодезного или фекального насоса, приборы могут работать при отсутствии воды.

Иногда поплавковый выключатель колодезных или дренажных помп вследствие неправильной установки не опускается вместе с падением уровня воды (попадает на бугор или цепляется за выступающий предмет) — это приводит к работе электронасоса в режиме холостого хода и дальнейшему выходу его из строя.

Вибрационные помпы, обычно не имеющие в системе подключения наружных защитных устройств, работая долгое время без воды после падения ее уровня, могут выйти из строя при отсутствии встроенной термозащиты.

Используемые источники:

  • https://lizza-villa.ru/nasosnaya-stanciya-ne-otklyuchaetsya
  • https://my-teplo.ru/articles/pochemu_ne_vklyuchaetsya_nasosnaya_stantsiya.html
  • https://sovet-ingenera.com/vodosnab/nasosy/rele-davleniya-dlya-nasosnoj-stancii.html
  • https://samastroyka.ru/remont-nasosnoj-stancii.html
  • https://mr-build.ru/newsanteh/nasos-ne-kacaet-vodu-iz-skvaziny-priciny.html

Вопрос-ответ

Попробую объяснить, а точнее напомнить суть этого явления, т.к. все это проходили на уроке физики при изучении темы «атмосферное давление». 

Для начала, немного истории:

До середины 17 века считалось неприемлемым утверждение древнегреческого ученого Аристотеля о том, что вода поднимается поршнем насоса потому, что природа не терпит пустоты.

В 1640 г. в Италии герцог Тосканский решил устроить фонтан на террасе своего дворца. Для подачи воды из озера был построен трубопровод и насос большой длины, каких до этого еще не строили. Но оказалось, что система не работает — вода в ней поднималась только до 10,3 м над уровнем водоёма. 

Недоумевающие строители обратились за помощью Галилею, который сострил, что, вероятно, природа перестоит бояться пустоты на высоте более 34 футов, но все же предложил разобраться в этом своему ученику Торричелли. Поиски причин упрямства воды и опыта с более тяжелой жидкости – ртутью, принятые в 1643 году Торричелли привели к открытию атмосферного давления.

Стеклянную трубочку, длиной 1 м, запаянную с одного конца, наполняют доверху ртутью. Затем, плотно закрыв отверстие пальцем, трубочку поворачивают и опускают в чашу с ртутью. После этого палец убирают. Ртуть из трубки начинает выливаться, но не вся!

Осмысливая результаты эксперимента, Торричелли делает 2 вывода: в пространстве над ртутью в трубке нет воздуха (позже его назовут «торричеллиевой пустотой»), а ртуть не выливается из трубки обратно в сосуд потому, что атмосферный воздух давит на поверхность ртути в сосуде. Из этого следовало, что воздух имеет вес.

Столб ртути в трубке установился на высоте 760 мм над поверхностью ртути в сосуде. Вес столба ртути сечением в 1 см2 равен 1,033 кг, т. е. в точности равен весу столба воды такого же сечения высотой 10,3 м. Именно с такой силой атмосфера давит на каждый квадратный сантиметр любой поверхности, в том числе и на поверхность нашего тела.

Точно также, если в опыте с ртутью вместо неё в трубку налить воды, то столб воды будет высотой 10,3 метра.

Чем  меньше атмосферное давление, тем на меньшую высоту может подняться жидкость (т.е. чем выше над уровнем моря, например в горах, тем с меньшей глубины может всасывать насос).   

Чем  меньше плотность жидкости, тем с большей глубины можно её выкачивать, и наоборот, при большей плотности глубина всасывания уменьшится.   

Например, ту же ртуть, при идеальных условиях, можно поднять с высоты не более 760 мм.   

Почему же в расчетах получился столб жидкости высотой 10,3 м, а насосы всасывают только с 9 метров?   

Ответ достаточно простой:   

— во-первых, расчет выполнен при идеальных условиях,   

— во-вторых, любая теория не дает абсолютно точных значений, т.к. формулы эмпирические.   

— и в-третьих, всегда существуют потери: во всасывающей линии, в насосе, в соединениях.   

Т.е. не возможно в обычных водяных насосах создать разряжение, достаточное для того, чтобы вода поднялась выше.   

Итак, какие выводы из всего этого можно сделать:   

1. Насос не всасывает жидкость, а лишь создает разряжение на своём входе (т.е. уменьшает атмосферное давление во всасывающей магистрали). Вода выдавливается в насос атмосферным давлением.   

2. Чем больше плотность жидкости (например, при большом содержании в ней песка), тем меньше высота всасывания.   

3. Рассчитать высоту всасывания (h) можно, зная, какое разряжение создает насос и плотность жидкости по формуле:   

h = P / ( ρ* g) — x,   

где P – атмосферное давление, — плотность жидкости. g – ускорение свободного падения, x – величина потерь (м).   

Примечание: формула может использоваться для расчета высоты всасывания при нормальных условиях и температуре до +30°С.   

Также хочется добавить, что высота всасывания (в общем случае) зависит от вязкости жидкости, длины и диаметра трубопровода и температуры жидкости.   

Например при увеличении температуры жидкости до +60°С, высота всасывания уменьшается почти в два раза.   

Это происходит потому, что возрастает давление насыщенных паров в жидкости.   

В любой жидкости всегда присутствуют пузырьки воздуха.   

Думаю, все видели, как при закипании сначала появляются маленькие пузырьки, которые затем увеличиваются, и происходит кипение. Т.е. при кипении, давление в пузырьках воздуха становится больше, чем атмосферное.   

Давление насыщенных паров и есть давление в пузырьках.   

Увеличение давления насыщенных паров приводит к тому, что жидкость закипает при более низком давлении. А насос, как раз и создает в магистрали пониженное атмосферное давление.   

Т.е. при всасывании жидкости при высокой температуре, существует возможность её закипания в трубопроводе. А никакие насосы не могут всасывать кипящую жидкость. 

В конце дам еще пару рекомендаций:  старайтесь  везде, где возможно использовать погружные насосы. Никогда не используйте насосы на всасывание там, где глубина всасывания приближается к максимальной, т.к. всегда остается вероятность, что в измерении имеется погрешность, условия могут чуть изменится и насос перестанет работать.

Так же необходимо помнить, что 1 метр всасывания уменьшает расходные характеристики насоса примерно на 10%. Поэтому, чем больше глубина всасывания, тем мощнее приходится ставить насос. Что весьма не правильно и не экономично.

Расход, давление и производительность насоса

Кривая производительности насоса суммирует возможности и требования данного насоса. Производители используют множество форматов, но все кривые насоса показывают наиболее важные параметры. К ним относятся напор, требуемый напор и требуемая мощность во всем доступном диапазоне расхода.

Заинтересованы в Stormwater?

Получайте статьи, новости и видео о Stormwater прямо в свой почтовый ящик! Войти Сейчас.

Ливневая вода + Получать оповещения

Проектирование насосной станции — распространенный муниципальный проект. Однако не следует путать простоту и простоту.

Для насосных станций не существует единой оптимальной конструкции. Производительность насосов, тип станции, стратегия управления и множество других факторов способствуют изменению конструкции. Операторы и менеджеры должны знать особенности проектирования станций, чтобы обеспечивать руководство и надзор за проектировщиками.

Насосные станции следует рассматривать как системы. Насосы могут быть наиболее важными элементами, но они не будут работать без электрических, структурных компонентов и компонентов HVAC. Чтобы насосная станция работала успешно, необходимо согласовать отношения между этими компонентами.

Между насосными станциями питьевой, ливневой и сточной воды есть сходство, но есть и различия. В этой статье речь пойдет о перекачке сточных вод.

Определение скорости потока

Первой задачей проектирования является определение расхода, который должна обеспечивать насосная станция.Обычно это означает определение диапазона потоков, поскольку насосные станции должны учитывать значительные колебания спроса. Производительность обычно выражается в галлонах в минуту.

Расчет обычно начинается со среднесуточного расхода. Это номинальный расход, который станция должна обеспечить в конце своего расчетного срока службы. Немногие насосные станции работают со среднесуточным расходом в течение длительного периода времени. Большинство станций рассчитаны на мощность, превышающую текущий ADF. Конструкция станции предназначена для удовлетворения растущих требований к мощности — часто на 20 лет вперед.В первые годы эксплуатации требуемый расход обязательно будет намного ниже — большинство насосных станций работают с одной третью расчетного расхода.

Суточные колебания расхода — это реальность при перекачивании воды и сточных вод. Пиковый расход в засушливую погоду обычно вдвое превышает среднесуточный расход. Колебания расхода на водонасосных станциях обычно меньше, чем на перекачке сточных или ливневых вод.

Дождь и таяние снега, очевидно, определяют размер насосных станций ливневых вод, но они также являются важным фактором при перекачке сточных вод.Приток и инфильтрация обычно определяют максимальную производительность перекачки. Соотношение между средним суточным расходом и пиковой производительностью перекачки называется коэффициентом пика. Обычны четыре или пять факторов, а в общинах со старыми или комбинированными коллекторами используются коэффициенты до восьми.

Изменение производительности или минимальный расход, который система может обеспечить в процентах от максимального расхода, может иметь решающее значение. Оценка расхода должна включать ADF, дневной минимум и максимум, а также максимальный часовой расход.Изменения могут быть компенсированы прерывистой работой насоса. Однако следует избегать насосов увеличенного размера, поскольку они приводят к чрезмерному количеству циклов пуска / останова. Большие насосы более подвержены поломкам из-за частого запуска.

Количество насосов

Регулирующие органы требуют, чтобы насосная станция включала резервные (резервные) насосы. Это означает, что при выходе из строя самого большого насоса оставшиеся насосы должны иметь производительность, позволяющую обеспечить максимальную почасовую подачу. Поскольку один насос, как правило, не может достичь необходимого диапазона изменения, в большинстве конструкций используется несколько небольших насосов вместо большого и идентичного резервного.Стоимость нескольких насосов компенсируется, потому что каждый насос дешевле, чем большой.

Небольшие насосные станции часто бывают «дуплексными» с двумя насосами постоянной скорости. Каждый насос способен обрабатывать пиковый почасовой расход.

Напор

Вторая характеристика для выбора насоса — это напор насоса или давление нагнетания. Термин «напор» происходит от высоты воды, которую насос может преодолеть при заданном расходе, обычно выражается в футах водяного столба (1 фут водяного столба = 0.43 фунта на кв. Дюйм = 6,3 бар). Операторы часто думают, что напор — это давление нагнетания в насосе, но на производительность насоса влияет множество различных аспектов напора (рис. 1).

Разница в напоре от всасывания к нагнетанию определяет производительность и мощность насоса. Это называется полным динамическим напором.

hfs, d = потеря напора на трение во всасывающем и напорном трубопроводах (футы)
ht = общий статический напор; разница в высоте воды на напорной и всасывающей сторонах насоса (футы)

Важно помнить, что насосы производят поток, но сопротивление системы потоку создает напор.Насос с отсоединенной напорной трубой будет производить большой поток, но не давление.

Два компонента TDH, которым уделяется наибольшее внимание при перекачке, — это статический напор и напор трения на нагнетании. Статический напор — это высота воды на стороне нагнетания насоса за вычетом высоты воды на стороне всасывания насоса. Для большинства приложений статический напор почти постоянный.

Напор трения возникает из-за сопротивления воде, движущейся по трубам и фитингам.Потери на трение возникают как на стороне всасывания, так и на стороне нагнетания насоса. Потери на трение изменяются в зависимости от квадрата скорости воды и размера трубы, обратной величине пятой степени.

В некоторых приложениях, таких как головные части очистных сооружений, статический напор является самым большим компонентом TDH. В других случаях, например при прокачке через длинную силовую магистраль, более важен напор трения. Относительные пропорции статического напора и фрикционного напора будут влиять на стратегию управления насосом и характеристики энергопотребления системы.

Два обычно игнорируемых, но важных компонента напора на стороне всасывания насоса — это требуемый чистый положительный напор на всасывании и имеющийся чистый положительный напор на всасывании. Требуемый напор зависит от конструкции насоса. Это установлено испытаниями производителя и отображается на кривой насоса. Доступный и требуемый напор — это абсолютное давление относительно вакуума.

В большинстве муниципальных насосных систем всасывающий патрубок затоплен. Это означает, что уровень воды в мокром колодце выше всасывающего патрубка насоса.Это одна из составляющих имеющейся головки. Другой — атмосферное давление. На уровне моря это составляет 14,7 фунтов на квадратный дюйм (14,7 фунтов на квадратный дюйм = 1,01 бар = 33,9 футов вод. Ст.). По мере увеличения высоты площадки барометрическое давление снижается.

Давление пара — это давление, при котором вода закипает при данной температуре. Давление пара увеличивается с повышением температуры воды с соответствующим уменьшением доступного напора.

pa = барометрическое давление (psia)
Y = удельный вес воды, 62.4 фунта-силы / фут3
hfs = потери на трение во всасывающем трубопроводе (футы)
hts = высота воды выше (+) или ниже (-) всасывания насоса (футы)
pv = давление водяных паров при температуре всасывания (фунты на квадратный дюйм)

Эксплуатация насоса, когда доступный напор ниже требуемого, может привести к повреждению насоса. Всегда должен быть обеспечен запас прочности между расчетным доступным напором и требуемыми изготовителем значениями напора.

Кривая производительности насоса

Кривая производительности насоса суммирует возможности и требования данного насоса (рисунок 2).Производители используют множество форматов, но все кривые насоса показывают наиболее важные параметры. К ним относятся напор, требуемый напор и требуемая мощность во всем доступном диапазоне расхода. Большинство кривых насоса показывают производительность при различных скоростях или диаметрах рабочего колеса.

Кривая насоса не определяет фактическую рабочую точку насоса. Для этого необходимо построить кривую системы (TDH в зависимости от расхода) на кривой насоса. Их пересечение определяет фактический поток.

Когда два насоса работают параллельно, поток не увеличивается вдвое. Статический напор остается постоянным. Однако напор трения увеличивается, что «толкает» рабочий поток ниже. Построение кривой системы с потерями на трение при удвоенном расходе позволяет определить новую рабочую точку.

Смотря вперед

Определение производительности и производительности насоса является первым и наиболее важным шагом при проектировании насосной станции. После определения требований к насосу можно продолжить процесс проектирования станции и ее вспомогательных компонентов.Они будут рассмотрены во второй и третьей частях этой серии.

(PDF) Оптимизация глубины пуска насоса на дренажной насосной станции на основе SWMM и PSO

Water 2019, 11, 1002 16 из 17

5. Эй, Х.Л. и Джунг, Х.К. Конвертируемые методы эксплуатации насосных станций, совместно использующих централизованные резервуары

для повышения устойчивости городских дренажных систем Water 2017, 843, doi: 10.3390 / w9110843.

6. Torregrossa, D .; Хансен, Дж.; Эрнандес-Санчо, Ф .; Cornelissen, A .; Schutz, G .; Леопольд, У. Управляемая данными методология

для поддержки анализа производительности насосов и оптимизации энергоэффективности на очистных сооружениях

для сточных вод. Прил. Энергия 2017, 208, 1430–1440.

7. Yazdi, J .; Choi, H .; Ким, Дж. Методология оптимальной работы насосных станций в городских дренажных системах

. J. Hydro-environment 2016, 11, 101–112.

8. Lee, E.H .; Lee, Y.S .; Joo, J.G .; Jung, D .; Ким, Дж.H. Снижение паводков в городских дренажных системах: кооператив

Эксплуатация централизованных и децентрализованных водохранилищ. Water 2016, 8, 469.

9. Lee, E.H .; Lee, Y.S .; Joo, J.G .; Jung, D .; Ким, Дж. Исследование влияния упреждающей работы насоса и увеличения пропускной способности

на устойчивость городской дренажной системы. J. Water Resour. План. Manag. 2017, 143, 4017024

10. Yazdi, J .; Ким, Дж. Интеллектуальные системы эксплуатации насосов и отвода рек для управления городскими штормами.

J. Hydrol. Англ. 2015, 20, 04015031.

11. Wei, C.-C .; Hsu, N.-S .; Хуанг, К.-Л. Двухступенчатая модель регулирования откачки для смягчения последствий наводнения в затопленных городских дренажных бассейнах

. Водный ресурс. Manag. 2013, 28, 425–444.

12. Hsu, N.-S .; Huang, C.-L .; Вэй, К.-К. Интеллектуальная работа насосной станции городской канализационной системы

в реальном времени. J. Hydrol. 2013, 489, 85–97.

13. Грабер, С.Дэвид Обобщенная методика проектирования ливневой насосной станции.J. Hydrol. Англ. 2010, 15, 901–

908, DOI: 10.1061 / (ASCE) HE.1943-5584.0000268.

14. Грабер, С.Дэвид Замыкание С.Дэвида «Обобщенный метод проектирования ливневой насосной станции»

Граббер. J. Hydrol. Англ. 2011, 16, 761–762, DOI: 10.1061 / (ASCE) HE.1943-5584.0000423.

15. Дык, C.N., Moo Y.H. Модель накопления-накопления-насоса-сброса осадков (RSPD) для устойчивого и устойчивого смягчения последствий наводнений

. В материалах Международной конференции по развитию с низким уровнем воздействия в Китае, 2016 г. — Применение

в строительстве города Губка.Пекин, Китай, 26–29 июня 2016 г.

16. Uchida, T .; Hamabe, R .; Фукуока, С. Исследование воздействий сброса с дренажных насосных станций на паводковый сток

в низинной реке с использованием нестационарного 2D анализа и наблюдаемых профилей водной поверхности. J. Soc.

Hydrol. Водный ресурс. 2012, 25, 201–213.

17. Wei, C.C. Применение насосных моделей работы дренажной системы. Прил. Мех. Матер. 2012, 256–259,

2416–2419, DOI: 10.4028 / www.scientific.сеть / AMM.256-259.2416.

18. Tamoto, N .; Endo, J .; Yoshimoto, K .; Yoshida, T .; Сакакибара, Т. Прогнозный метод работы в

, минимизирующий ущерб от наводнения в городской местности. В материалах 11-й Международной конференции по городскому дренажу

, Эдинбург, Шотландия, Великобритания, 31 августа — 5 сентября 2008 г.

19. Bu X .; Chen H .; Li Y .; Ван В. Оптимизация производительности при низкой удельной скорости в условиях переменного режима

. J. Drain. Ирриг. Мах. Англ.2015, 33, 203–208. DOI: 10.3969 / j.issn.1674-8530.13.1061.

20. Fecarotta O .; Carravetta A .; Morani M.C .; Падулано Р. Оптимальное планирование работы насосов для городского водоотвода в условиях переменного расхода

. Ресурсы 2018, DOI: 10.3390 / resources7040073

21. Чанг, Ф.-Дж .; Chang, K.-Y .; Чанг, Л.-К. Нечеткая нейронная сеть встречного распространения для системы городского управления наводнениями

. J. Hydrol. 2008, 358, 24–34.

22. Chiang, Y.-M .; Chang, L.-C .; Tsai, M.-J .; Ван, Ю.-F .; Чанг, Ф.-Дж. Автоконтроль откачки в канализационных системах

с помощью нечетких нейронных сетей на основе правил. Hydrol. Науки о Земле. 2011, 15, 185–196

23. Chang, F.-J .; Chen, P.-A .; Lu, Y.-R .; Huang, E .; Чанг, К.-Й. Прогноз уровня воды

с несколькими шагами вперед в реальном времени с помощью повторяющихся нейронных сетей для борьбы с наводнениями в городах. J. Hydrol. 2014, 517, 836–846.

24. Yagi, S .; Шиба, С. Применение генетических алгоритмов и нечеткого управления в комбинированной канализационной насосной станции.

N.a. Sci. Technol. 1999, 39, 217–224

25. Jafari, F .; Mousavi, S.J .; Yazdi, J .; Ким, Дж. Работа насосных систем в режиме реального времени при городских паводках

Смягчение последствий: однопериодная и многопериодная оптимизация. Водный ресурс. Manag. 2018, 31, 4643–4660, DOI:

10.1007 / s11269-018-2076-4

26. Wang, J.Y .; Chang, T.P .; Чен, Дж. Усовершенствованный генетический алгоритм для планирования работы насоса с двумя объектами в системе водоснабжения

. Эксперт Syst. Прил. 2009 г., 36, 10249–10258, DOI: 10.1016 / j.eswa.2009.01.054.

27. Ibarra, D .; Арнал, Дж. Методы параллельного программирования, применяемые к задачам планирования водяного насоса. Вода

Ресурс. План Манаг. 2014, 140, 06014002, DOI: 10.1061 / (ASCE) WR.1943-5452.0000439.

28. Mahar, P.S .; Сингх Р.П. Оптимальный дизайн насосной сети с учетом характеристик насоса. J. Pipline Syst.

англ. Пр. 2014, 5, 4013010.

Отвод насоса гидравлического слоя — ресурсный центр xpswmm / xpstorm

Насосная станция концептуально представлена ​​либо как поточная подъемная станция, либо как автономный узел, представляющий мокрый колодец, из которого содержимое перекачивается в другой узел в системе в соответствии с запрограммированной кривой правил.Для перенаправления можно использовать до семи насосов. Насосы можно выбирать в любом порядке.


Насосы могут быть одного из пяти типов:

  1. Насос, номинальный по объему скважины: линейная или автономная насосная станция с мокрым колодцем; скорость откачки зависит от объема (уровня) воды в мокром колодце.
  2. Насос с номинальной глубиной в узле: линейная или автономная подъемная станция, которая перекачивает насос в соответствии с уровнем поверхности воды в перекачиваемом узле.
  3. Насос, номинальный динамический напор: линейный или автономный насос, который перекачивает в соответствии с разницей напора над насосом с использованием многоточечной кривой насоса и отметок пуска и останова.
  4. Насос с номинальным статическим напором: линейный или автономный насос, который качает в соответствии с напором в верхнем по потоку узле с использованием многоточечной кривой насоса и отметок пуска и останова.
  5. Насос с динамическим напором, который использует кривую правил для изменения поведения насоса с динамическим напором в зависимости от глубины в соседнем или несмежном узле.

Имя

Уровень «Гидравлика» теперь позволяет пользователям явно указывать имя насоса. Механизм анализа больше не использует НАСОС №1, НАСОС №2, НАСОС №3 и т. Д.в зависимости от того, где в модели расположен насос. Эти имена могли меняться, когда насос добавлялся в сеть или удалялся из сети, и поэтому были заменены явным именем.

Описание (необязательно)

Введите описание насоса, применимое к этой ссылке и насосу.

Тип насоса

Тип насоса выбирается из глобальной базы данных кривых номинальных характеристик насосов.

Тип насоса (номинальная кривая). Выберите глобальную базу данных, содержащую общие данные кривой номинальных характеристик насоса, применимые к этому насосу.2

Насос, номинальный по

Насос может быть линейным или автономным и рассчитан на динамический напор, статический напор, объем скважины или глубину в узле.

Примечание : Насос с динамическим напором будет продолжать работать даже при положительной разнице напора; т.е. отметка воды выше по течению выше отметки узла ниже по течению (мокрой скважины). В более старых версиях насос не будет работать, поскольку при этом вычисляется отрицательный напор, и на кривой насоса нет отрицательных значений напора для экстраполяции соответствующего расхода.Был создан параметр конфигурации, который в текущей версии включен по умолчанию, чтобы позволить насосу установить максимальную скорость в этой необычной ситуации отрицательного напора. Этот параметр PUMP_NEGHD = ON.

Динамический напор

Встроенный или автономный насос, который перекачивает насос в зависимости от разницы напора.

Динамическая разница напора между узлами выше и ниже по потоку определяет скорость откачки в соответствии с многоточечной зависимостью напора от нагнетания (кривая номинальной мощности) для насоса.Рабочее состояние (то есть включение / выключение) насоса определяется по высоте мокрой скважины из предыдущего расчета на полшага.

Если модель определяет, что насос включен, то его расход рассчитывается на основе динамической разницы напора на основе линеаризованной рабочей кривой насоса, как показано ниже.

Рабочий диапазон насоса ограничен диапазоном между низким и высоким напором независимо от обнаруженного динамического напора. Производительность насоса будет оставаться фиксированной либо на низком, либо на высоком уровне напора до тех пор, пока система не вернется в нормальный рабочий диапазон насоса.

Насос с динамическим напором определяется в терминах:

      • Начальная глубина. Введите начальную глубину в узле притока насоса (футы или м). Эта глубина измеряется от перевернутого узла и не является значением высоты. Используется насосами с динамическим и статическим напором. Начальная глубина должна быть введена в вышестоящий узел в дополнение к этому полю, поскольку начальная глубина в мокрой скважине выводится из начальной глубины узла.

      • Насос запускается (высота). Высота (RL) в узле притока насоса, при котором насос включается (футы или метры). Используется насосами с динамическим и статическим напором.

      • Насос останавливается (высота). Высота (RL) в узле притока насоса, при котором насос выключается (футы или м). Используется насосами с динамическим и статическим напором.

        Насосы изначально установлены в положение «ВЫКЛ.» И не начинают перекачивание до тех пор, пока уровень воды не станет выше назначенного начального уровня.

Статический напор

Встроенный или автономный насос, который качает в соответствии с напором в мокром колодце.

Глубина в узле выше по потоку определяет скорость откачки в соответствии с многоточечным соотношением напор-расход (кривая номинальной мощности) для насоса. Рабочее состояние (то есть включение / выключение) насоса определяется по высоте мокрой скважины из предыдущего расчета на полшага.

Если модель определяет, что насос включен, то ее расход рассчитывается по напору в узле выше по потоку на основе линеаризованной рабочей кривой насоса, как показано ниже.

Рабочий диапазон насоса ограничен диапазоном между низким и высоким напором независимо от обнаруженного динамического напора.Производительность насоса будет оставаться фиксированной либо на низком, либо на высоком уровне напора до тех пор, пока система не вернется в нормальный рабочий диапазон насоса.

Насос со статическим напором определяется как:

      • Начальная глубина. Введите начальную глубину в узле притока насоса (футы или м). Эта глубина измеряется от перевернутого узла и не является значением высоты. Используется насосами с динамическим и статическим напором. Начальная глубина должна быть введена в вышестоящий узел в дополнение к этому полю, поскольку начальная глубина в мокрой скважине выводится из начальной глубины узла.

      • Насос запускается (высота). Высота (RL) в узле притока насоса, при котором насос включается (футы или метры). Используется насосами с динамическим и статическим напором.

      • Насос останавливается (высота). Высота (RL) в узле притока насоса, при котором насос выключается (футы или м). Используется насосами с динамическим и статическим напором.

Объем скважины

Автономная (обычно) насосная станция с мокрым колодцем.Насос должен питаться из собственного мокрого колодца, т.е. к узлу, на котором расположен насос, должен быть подключен только один водовод. Скорость откачки зависит от объема воды в колодце.

Программа устанавливает для узла инвертировать отметку (уровень) на -100.

Обратите внимание, что к узлу, от которого работает этот тип насоса, может быть подсоединен только один трубопровод.

Приток в автономный насос должен поступать из основной канализационной системы через отверстие, водослив или трубу.Приток в узел колодца должен быть свободным, независимо от конструкции отвода. Кривая мощности насоса основана на объеме воды в узле хранения.

Для каждой насосной станции предварительно задана многоточечная кривая номинального объема / расхода: V1

Массовый баланс откачиваемого оттока и притока выполняется в мокром колодце в течение периода моделирования модели.

Если влажный колодец высыхает, производительность насоса снижается ниже скорости R1 до тех пор, пока она не станет равной скорости притока. Когда скорость притока снова становится равной или превышает R1, скорость откачки возвращается к работе по кривой правила. Если Vn превышается в мокром колодце, приток к узлу хранения уменьшается до тех пор, пока он не превысит максимальный перекачиваемый поток.

Насосная станция для влажных скважин определяется в терминах:

Глубина в узле

Встроенный (обычно) подъемный насос.Скорость откачки зависит от уровня воды, т.е. глубины в перекачиваемом узле.

Для линейной станции производительность насоса зависит от глубины воды на стыке насоса. Правило скорости накачки выглядит следующим образом:

903

R1 для

0

R2 для

Y1

Y2

Yn


При Y = 0 подача насоса - это скорость притока к переходу насоса.

Измеренные данные

Измеренные данные временного ряда можно ввести непосредственно в диалоговом окне «Данные насоса» для сравнения с результатами модели. Этот временной ряд отображается на графиках, созданных с помощью инструментов просмотра результатов. Обратите внимание, что шкалы осей x (время) и y (значения) на графиках результатов проверки основаны на диапазонах результатов модели. Измеренные данные за пределами диапазона результатов модели не будут отображаться на графиках. Подробнее об этом параметре читайте на странице Gauged Data в разделе Nodes.

  1. Глубина в гидравлическом режиме относительно инвертирована
  2. Высота или ступень в гидравлике относительно нуля

Насосная станция водоснабжения Aquatech | Машиностроение

Высокие затраты на электроэнергию и обслуживание

Ранее насосная станция водоканала потребляла от 2 до 2,5 миллионов киловатт-часов энергии, чтобы обеспечить 37 000 человек примерно двумя.4 миллиона кубометров чистой питьевой воды ежегодно. Это представляло собой огромный фактор затрат для водоканала. Большая часть электроэнергии потребовалась для привода трех насосов чистой воды, которые закачивают очищенную воду в сеть, а также заполняют три водонапорные башни.

Использование задвижек тратит много энергии

По сегодняшним меркам потребление энергии считается очень высоким из-за устаревшей технологии привода, которая до сих пор используется на многих гидротехнических сооружениях.Для привода насосов использовались обычные электродвигатели мощностью по 55 киловатт каждый, а переключение двигателей осуществлялось с помощью пускателей двигателей. Затем производительность системы постепенно увеличивали путем включения трех насосов один за другим. Чтобы избежать скачков давления во время фазы запуска, для регулирования расхода использовалась задвижка: во время запуска задвижка, которая контролировала поток в систему водоснабжения, изначально оставалась закрытой. Он открывался медленно только после того, как насос достиг полной мощности, так что давление в системе водоснабжения увеличивалось только постепенно.Однако это означало, что насос работал «против» закрытой запорной задвижки во время пуска, так что энергия, подаваемая двигателем, фактически не могла быть использована для перекачивания воды.

С точки зрения производительности, эта технология привода была особенно неэффективной, потому что насосы не могли работать в оптимальной рабочей точке, то есть наиболее энергоэффективным образом, потому что скорость насосов не могла быть изменена - насосы тоже вообще не работал или работал на полную мощность. Если вода не требовалась, обратный клапан предотвращал выталкивание воды из системы подачи.При остановке насосов использовались задвижки для уменьшения обратного потока. Тем не менее, каждое отключение приводило к повышенному износу обратного клапана.

Таким образом, в 2018 году предприятие водоснабжения решило провести комплексную модернизацию насосной станции с целью снижения общих затрат в течение жизненного цикла. Повышение энергоэффективности системы было основным приоритетом. Контракт был присужден компании Aquatech AG, расположенной в Регене, Германия. Aquatech специализируется на электрических, приводных технологиях и технологиях автоматизации, уделяя особое внимание системам водоснабжения, удалению сточных вод и возобновляемым источникам энергии.Он также является партнером Eaton по решениям для приводных технологий в Юго-Восточной Германии.

6 причин, по которым ваш самовсасывающий насос не заправляется

Самовсасывающие центробежные насосы уникальны. Как следует из названия, они обладают способностью заливать себя в условиях всасывания. Они забирают жидкость из резервуаров или ям внизу, что упрощает и безопаснее работать с ними, чем с теми, которые работают под землей. При правильных условиях они освобождаются от увлеченного газа и нормально функционируют сами по себе, но иногда они не могут.Почему? Что вызывает отказ самовсасывающего насоса?

Чтобы понять, почему мы должны понять, как работает самовсасывающий насос.

КАК РАБОТАЕТ САМОВСАСЫВАЮЩИЙ НАСОС

КРАТКОЕ ПРЕДУПРЕЖДЕНИЕ: То, что они могут втягивать в себя жидкость, не означает, что они должны запускаться всухую !! Самовсасывающим насосам для начала работы требуется жидкость в корпусе. Работа всухую, даже кратковременная, приведет к повреждению механического уплотнения и отказу насоса.

После включения насоса рабочее колесо начинает вращаться против часовой стрелки. Жидкость внутри или «начальная заливка» протекает через улитку в напорную полость. Здесь воздух и жидкость разделяются, воздух удаляется через линию с открытым концом или линию выпуска воздуха, в то время как жидкость возвращается к крыльчатке через порт рециркуляции.

Во время рециркуляции жидкости и удаления воздуха из напорной полости в проушине рабочего колеса создается низкое давление.Атмосферное давление выше, чем более низкое давление, создаваемое у проушины рабочего колеса, поэтому жидкость вытесняется вверх по линии всасывания.

По мере того, как жидкость движется вверх по линии всасывания, воздух перед жидкостью вталкивается в корпус и обрабатывается, так как начальная заливка проходила через процесс рециркуляции. Как только жидкость поступает в насос, он работает в обычном режиме.

Это видео от Gorman-Rupp отлично показывает, как работает самовсасывающий насос.

Вот как это должно работать.Если это не ваш случай, вот несколько причин, по которым ваш самовсасывающий насос может не заправляться.

ПОЧЕМУ ВАШ САМОВСАСЫВАЮЩИЙ НАСОС НЕ ПОСТАВИЛ ПРАЙМ

1. УТЕЧКА ВОЗДУХА В ВСАСЫВАНИИ

Поскольку жидкость рециркулирует в насосе и вытесняет воздух из нагнетательной камеры, она пытается создать зону низкого давления. Однако, если во всасывающей линии есть утечка, воздух продолжает втягиваться в насос, никогда не позволяя ему выпустить достаточно, чтобы создать зону низкого давления.

2. МУСОР В РАБОЧЕМ КОЛЕБАНИИ

Если проушина крыльчатки забита мусором, это лишает крыльчатки гидравлической способности создавать зону низкого давления.

3. НАСОС ВОЗДУШНЫЙ

Насос может стать связанным с воздухом, если он попадет в одно из следующих условий:

  • НЕТ ЛИНИИ ВЫПУСКА ВОЗДУХА
    • Если нет линии выпуска воздуха, воздух не может быть выпущен в атмосферу, а вместо этого собирается на стороне выпуска.
  • НАГНЕТАТЕЛЬНАЯ ЛИНИЯ ПОД ДАВЛЕНИЕМ
    • Клапан на линии выпуска воздуха закрыт, а клапан на линии выпуска снова закрыт, не оставляя воздуху места для выхода и выхода из насоса.
  • ЧРЕЗМЕРНЫЙ ЗАЗОР РАБОЧЕГО КОЛЕСА
    • Если имеется чрезмерный зазор между рабочим колесом и изнашиваемой пластиной, насосу трудно создать зону низкого давления. Обычно это вызвано износом, но также может быть следствием неправильной сборки.
4. ЗАГЛУШКА РЕЦИРКУЛЯЦИОННОГО ОТВЕРСТИЯ

Во время процесса заливки, как описано выше, жидкость рециркулирует через спиральный корпус. Если порт рециркуляции закупоривается, проушина крыльчатки не может создать зону низкого давления, в которой жидкость будет вытягиваться по линии всасывания.

5. СЛИШКОМ ВЫСОКИЙ ПОДЪЕМ ДЛЯ СКОРОСТИ НАСОСА ИЛИ ДИАМЕТРА РАБОЧЕГО КОЛЕСА

Если вы уменьшите размер насоса для всасывающей линии, он не сможет создать зону низкого давления, необходимую для заливки.Перед выбором насоса для применения важно понимать требования к высоте всасывания. Используйте «Руководство по выбору насосов» Gorman-Rupp для необходимых расчетов.

Способность самовсасывающих насосов заливать петли в нужных условиях. Насос должен иметь возможность откачивать воздух изнутри насоса, создавать зону низкого давления у проушины рабочего колеса, а также иметь соответствующий размер для правильных условий NPSH.

У вас есть насос, который не заполняется, теряет заливку или заполняется медленно? Спросите нас об этом! Мы с радостью предоставляем техническую помощь предприятиям и муниципалитетам Висконсина и Верхнего Мичигана.

Два отключения на насосной станции Roseland в мае были вызваны внутренним отказом оборудования, не поступившими, результаты отчета Watchdog - CBS Chicago

CHICAGO (CBS) - В новом отчете генерального инспектора определен отказ городского оборудования, а не В связи с отключением электричества в компании ComEd в мае дважды останавливалась водонасосная станция на южной стороне.

Насосная станция Розленда вышла из строя 6 мая, в связи с чем был выдан приказ о круглосуточном кипячении в некоторых районах Беверли, Морган Парк и Розленд.Та же насосная станция снова вышла из строя 25 мая, хотя заказ на кипячение не потребовался для второго отключения.

ПРОЧИТАЙТЕ БОЛЬШЕ: Трудный старт для Флери, поскольку Блэкхокс проигрывает пламени

В то время городские власти обвинили ComEd, заявив, что отключения были результатом ремонтных работ в этом районе, но ComEd отрицал, что это было когда-либо отключение питания насосной станции.

Ald. Мэтт О’Ши (19, -й, ) попросил офис генерального инспектора Джозефа Фергюсона провести расследование после второго останова насосной станции.

В отчете, опубликованном в пятницу, в последний день пребывания Фергюсона в должности, офис генерального инспектора пришел к выводу, что два отключения насосной станции Розленд были результатом отказа арендованного источника бесперебойного питания (ИБП) объекта.

«ИБП - это электрический компонент, который находится между входящей сетью электропитания и некоторым критически важным оборудованием, таким как серверы и комнаты обработки данных, который поддерживает последующее оборудование, поддерживая его надлежащим образом под напряжением. Основная функция ИБП заключается в устранении дисбаланса мощности, будь то провалы или скачки напряжения, чтобы направить правильное напряжение ниже по цепи.Вторичная цель ИБП - поддерживать питание критически важных компонентов в случае сбоя в электроснабжении », - говорится в отчете.

Арендованный ИБП на насосной станции Roseland был установлен в 2018 году и подлежал техническому обслуживанию в июне.

Офис генерального инспектора пришел к выводу, что насосная станция получала стабильный поток достаточной энергии от ComEd в дни обоих отключений, и, несмотря на разногласия между городом и ComEd по поводу того, были ли провалы в электроэнергии, арендованный ИБП отказал в оба дня. .

«Короче говоря, городской ИБП, сдаваемый в аренду, вышел из строя на RPS, что привело к отключению насосов, что привело к падению давления в водопроводе и последующему закипанию. Если бы ИБП был полностью работоспособен во время инцидента, ИБП сработал бы для обеспечения временного энергоснабжения до тех пор, пока не сработает резервный источник питания - собственные дизельные генераторы предприятия. Если бы это произошло, насосная станция возможно, вообще не отключились, и если бы они были, они, вероятно, вернулись бы в сеть гораздо раньше, чем это произошло 6 мая, и порядок кипячения, скорее всего, не потребовался бы », - говорится в отчете.

ПРОЧИТАЙТЕ БОЛЬШЕ: Джексон Спаркс, 8 лет, стал шестой жертвой смерти после того, как внедорожник проплыл через рождественский парад в Ваукеше, залог за подозреваемого Даррелла Брукса установлен в 5 миллионов долларов

После первого отключения насосной станции 6 мая арендованный ИБП был заменили на вторую замену, которая также вышла из строя 25 мая, согласно отчету генерального инспектора.

Тем не менее, городские власти все еще указывают пальцем на ComEd, говоря, что не согласны с заключением офиса Фергюсона.

«Судя по имеющимся документам и записям, падение напряжения электроэнергии и одновременный дисбаланс фаз на всех четырех линиях вызвали отключение основных насосов на RLPS [насосной станции Roseland]. Другими словами, потеря электроэнергии на всех четырех линиях привела к размыканию автоматических выключателей на RLPS, что потребовало от электрика их перезагрузки », - говорится в письме Департамента водного хозяйства в офис Фергюсона. «Это произошло трижды: 6 мая 2021 года и снова 25 мая 2021 года.Это основано на журналах открытия и закрытия выключателей в хранилище ComEd RLPS. Кроме того, сторонние подрядчики, работавшие на объекте, заявили, что свет погас. Кроме того, во время события низкого давления воды 6 мая 2021 года сбой ComEd произошел в то же самое время, когда ComEd выполнял работы на электрическом хранилище RLPS ».

Городские власти

также заявили, что, хотя они согласились с тем, что ИБП на насосной станции не функционировал после отключения 6 мая, подрядчик определил, что невозможно определить, был ли блок поврежден из-за падения напряжения ComEd, или если он был неисправен до этого. .

Оригинальный ИБП на насосной станции Розленда был установлен в 1998 году, но был заменен арендованным блоком в 2018 году, когда он начал выходить из строя из-за своего возраста.

Город арендовал новый ИБП, пока он работал над получением постоянной замены, но этот поиск занял больше времени, чем ожидалось, отчасти из-за пандемии и из-за сложностей, связанных с тем, какой тип батарейного питания следует использовать.

Согласно отчету генерального инспектора, городские власти в настоящее время ищут замену ИБП, в котором используются литий-ионные батареи.

БОЛЬШЕ НОВОСТЕЙ: Погода в Чикаго: больше облаков, ветреная погода Среда,

«Департамент водного хозяйства заверил, что безопасность питьевого водоснабжения Чикаго является его высшим приоритетом. Но проблемы, возникшие на насосной станции Roseland, приведшие к 24-часовому порядку кипячения воды, были серьезными и вызывающими беспокойство по масштабу, что предполагает необходимость лучшего согласования действий и операций DWM с заявленными приоритетами. Члены сообщества в течение многих лет выражали обеспокоенность тем, что в их районах не хватает ресурсов и что ремонт инфраструктуры, как правило, либо игнорируется, либо забывается », - говорится в заявлении Фергюсона.«Такая важная система, как источник бесперебойного питания - которая поддерживает энергоснабжение основного оборудования, обеспечивающего критически важные услуги для всех жителей и предприятий, - должна была быть заменена много лет назад, но в данном случае этого не произошло. Сразу после этого все, что смущенные жители получили, было публичным обвинительным указанием пальца. Мы понимаем, что могут сохраняться основания для разногласий во мнениях относительно причинно-следственной связи и ответственности, но надеемся, что информация, полученная в результате нашего расследования, поможет лучше понять должностных лиц, работающих над исправлениями, и общественность, которой они служат.OIG уверен, и полностью ожидает, что DWM продолжит стремительно двигаться, будет держать себя подотчетным на уровне, которого заслуживает важность этой функции, и оптимально гарантировать, что жители Чикаго больше не будут подвергаться риску ».

Какие проблемы с канализационными насосными станциями?

Обычно канализационная система работает по трубам, идущим от участка к основной канализации. Процесс обычно происходит под действием силы тяжести, когда отходы могут попадать прямо в канализацию, но бывают ситуации, когда это невозможно.

Если объект расположен ниже места, где находится магистральный коллектор, то здесь хорошо работает насосная станция для сточных вод, предлагая альтернативное решение, позволяющее отходам сбрасываться в основную канализацию.

Проблемы с канализационной насосной станцией

Канализационная насосная станция - отличное решение для обеспечения беспрепятственного перетока отходов из вашей собственности в главную канализацию, однако даже самая лучшая насосная система может иметь проблемы. Прежде всего, мы хотели бы сказать, что во избежание серьезных проблем необходимо регулярно проводить техническое обслуживание.Итак, какие проблемы у канализационных насосных станций? Мы описали каждую из распространенных проблем ниже:

В туалете есть резервное копирование

Одна из самых распространенных проблем, которые могут возникнуть с насосными станциями, заключается в том, что унитаз может стать резервным. Хотя насосы предназначены для уменьшения вероятности засорения, это может произойти, если не проводить регулярное техническое обслуживание. Туалеты могут стать резервными из-за того, что люди сливали воду из унитаза в систему.

Например: жир или восковые отложения могут засорить насосную камеру.Когда это происходит, тогда начинаются проблемы, и система канализационного насоса в конечном итоге перестает работать, что приводит к неприятной ситуации, когда унитаз становится резервным.

Явным признаком того, что насосная станция для сточных вод не работает должным образом, является появление неприятного запаха сточных вод. Если вы почувствуете неприятный запах, обратитесь к местному профессиональному инженеру по работе с насосами для сточных вод.

Насос не включается

Существует ряд причин, по которым ваш насос в вашей канализационной насосной станции не включается, и это может быть связано с несколькими факторами:

  • Рабочее колесо насоса заклинило из-за слишком большого количества мусора.
  • Насос не получает достаточно электроэнергии.
  • Насос полностью вышел из строя.
  • Проблема с поплавковым выключателем.

Насос не выключается

Так же, как насос не включается, так же есть проблемы с тем, что насос не выключается. Однако причина того, что насос не выключается, иная. Если есть проблема с регулирующим поплавковым выключателем, например, он не в нужном положении, насос может оставаться включенным.Один из самых узнаваемых признаков того, что помпа не выключается, - это то, что вы можете увидеть резкий скачок счетов за электроэнергию.

Сломанные трубы

Разрыв труб в насосах для сточных вод и отстойников - обычное явление, и, если их не устранить достаточно раньше, это может привести к затоплению сточных вод. Признаки того, что это происходит, могут заключаться в том, что могут быть проблемы с плесенью, трещины в фундаменте или унитаз неработает.

Ремонт сломанных труб - непростая задача, а ремонт может быть дорогостоящим.Если вы заметили какие-либо признаки того, что у вас сломаны трубы, немедленно обратитесь к профессионалу.

Чтобы снизить вероятность затопления, мы всегда рекомендуем, чтобы регулярное обслуживание и ремонт могли гарантировать, что любые проблемы будут обнаружены достаточно рано и будут приняты меры, чтобы проблема не усугубилась.

Тревога издает громкий звук

Когда сигнализация в вашем канализационном насосе начинает издавать звуки, это происходит из-за высокого уровня воды в системе.При высоком уровне воды мы рекомендуем обратиться к специалисту по насосам для сточных вод, так как ваша собственность находится под угрозой затопления.

Как может помочь техническое обслуживание канализационной насосной станции

Большинство перечисленных выше проблем с перекачкой сточных вод можно выявить и устранить с помощью регулярного технического обслуживания. Техническое обслуживание насосной станции будет выполнять инженер по насосам, что обеспечит эффективную и продуктивную работу канализационной насосной системы на регулярной основе.

Это может остановить любые проблемы, ведущие к потенциальным проблемам с наводнением, которые могут возникнуть в будущем.Хотя мы объяснили потенциальные проблемы с насосными станциями для сточных вод, это не означает, что вам следует избегать их.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *