Применение трансформатора от микроволновки: применение, особенности детали и его правильное извлечение
применение, особенности детали и его правильное извлечение
Наверное, каждый любитель авто или человек, у кого любимым хобби является ремонт чего-либо, мечтает об отличном сварочном аппарате. На рынке можно найти множество различных моделей сварочного прибора, но не каждому он будет по карману. Но если есть желание, то, что делать? Если дома имеется сломанная микроволновка, то не стоит ее сразу выбрасывать. Необходимы лишь время и силы, чтобы создать из поломанной детали функционирующий сварочный аппарат.
Аппарат точечной сварки
В данной статье будет обсуждаться, что представляет собой трансформатор от микроволновки, и его применение.
Трансформатор
В микроволновой печи находится трансформатор, который очень пригодится для создания устройства для сварки. Эта важная деталь состоит из двух обыкновенных катушек из медного провода, который намотан на сердечник. Есть первичная и вторичная обмотки. Катушки с обмоткой обладают разным количеством проволочных витков. Это необходимо для того, чтобы во время подключения к первичной обмотке было напряжение, а внутри второй появлялся ток из-за индукции, который имеет более маленькое напряжение. Сила тока должна возрастать.
Извлечение трансформатора
Извлечение
Для самодельного устройства для сварки используется трансформатор, который обладает средней мощностью 750 Вт. C использованием такого прибора можно проводить соединение металлических листов толщиной до одного миллиметра. Это электромагнитное устройство относится к повышающим устройствам. Чтобы обеспечить питание магнетрона, он способен вырабатывать напряжение, которое равняется 4000 В.
Мощный электронный прибор (магнетрон), который имеет абсолютно любая микроволновая печь, для нормального функционирования просит высокое напряжение. Поэтому трансформатор, который подключен к магнетрону, обладает на первой обмотке меньшим количеством витков. На вторичной обмотке витков больше, здесь создается напряжение, равное 2000 В. Но потом напряжение увеличивается в два раза, благодаря применению специально предназначенного удвоителя. Поэтому проводить измерения напряжения не имеет какого-либо смысла.
Производить извлечение трансформатора из микроволновой печи нужно осторожно и аккуратно. Использовать молоток или какие-либо другие тяжелые предметы не следует. Сначала необходимо открутить основу этого кухонного аппарата, после чего надо убрать все крепления. После этого проводится аккуратное извлечение трансформатора с места, где он установлен. Из «внутренностей» сверхвысокочастотной печи (СВЧ) вам пригодятся магнитопровод, первичная обмотка. Первичная обмотка обладает проводом большой толщины и меньшим числом витков.
Вторичная обмотка не нужна, поэтому ее демонтируют. Эту процедуру можно провести при помощи молотка или зубила. Следует действовать предельно аккуратно, иначе можно нанести повреждения первичной обмотке. Если во время данной процедуры обнаружится, что в трансформаторе имеются шунты, которые являются ограничением для силы тока, от них следует избавиться.
Если магнитопровод – это не клееная конструкция, а сварная, то устранение вторичной обмотки необходимо производить с использованием столярного инструмента (стамеска).
Использование стамески
Заменой стамески может быть обыкновенная ножовка. В том случае, если обмотка является плотно набитой в окно магнитного провода, то следует разрезать провода, а затем провести ее извлечение, высверлив ее. В течение работы надо соблюдать аккуратность, иначе магнитопровод можно деформировать.
После окончания демонтирования надо произвести намотку новой вторичной обмотки. Для этого процесса пригодится провод, который обладает диаметром один сантиметр. Если провода с данным диаметром нет, то его надо приобрести. Не следует заморачиваться на том, что провод должен быть многожильным, можно применить пучок, состоящий из отдельных проводников. Главное, чтобы был подходящий диаметр. По окончанию монтирования вторичной обмотки обновленный трансформатор сможет делать выработку силы тока, которая будет равняться 1 кА.
Если нужно сделать сварочное устройство с большей мощностью, то использования одного электромагнитного прибора вряд ли будет достаточно. Придется применить два устройства.
Особенности апгрейда трансформатора
Для того чтобы создать вторичную обмотку, требуется выполнить намотку двух или трех витков на сердечник. Это поможет получить выходное напряжение, которое будет равняться 2 В. И даст 0,8 кА силы кратковременного тока. Данных показателей хватает для полноценного функционирования прибора точечной сварки.
Из-за намотки данного числа витков могут возникнуть проблемы, если провод обладает толстым изоляционным слоем. Устранить ее достаточно легко. Надо произвести снятие стандартной изоляции, после чего обмотать провод изолентой. Изолента должна состоять из хлопчатобумажной ткани.
Положение новой вторичной обмотки
Провод, который используется для вторичной обмотки, должен обладать минимально возможной длиной. Это не позволит сделаться его сопротивлению больше, следовательно, сила тока не станет меньше.
Если вам нужно проводить сварку металлических листов, которые имеют толщину до пяти миллиметров, то для этих целей требуется устройство, обладающее гораздо большей мощностью. Чтобы создать такой агрегат, надо соединить в одну цепь целых два электромагнитных устройства. Чтобы это сделать, нужно строго придерживаться правил. Если будет неверно выполнено подключение выводов первичных и вторичных обмоток, возникнет проблема в виде короткого замыкания. Для того чтобы проверить, правильно ли сделано соединение, нужно воспользоваться измерительным аппаратом напряжения.
После верного соединения обмоток двух электромагнитных устройств, нужно узнать показатель силы тока. Чаще всего, для трансформаторов, предназначающихся для аппаратов точечной сварки, которые запланированы для применения дома, делают ограничения силы тока. Она не превышает 2 кА. В том случае, если показатель будет превышать данное значение, то будут происходить перебои в функционировании электросети. Следует воспользоваться амперметром.
Советы при соединении двух приборов
Допустим, есть два одинаковых трансформатора, имеющих следующие параметры:
- Значение мощности – 500 Вт;
- показатель входного напряжения – 220 В;
- показатель выходного напряжения – 2 В;
- показатель силы тока – 250 А.
Если провести правильное соединение, то получится удвоенный показатель силы тока, то есть 0,5 кА.
Также произойдет увеличение кратковременного тока. Но при создании кратковременного тока, можно будет увидеть потери. Это является следствием огромного сопротивления электроцепи. Нужно провести соединение обоих концов вторичной обмотки с электродами агрегата, который предназначается для точечной сварки.
Первая схема
Бывает так, что при наличии двух трансформаторов большой мощностью выходного напряжения не совсем достаточно для создания аппарата. В данной ситуации надо произвести соединение их вторичных обмоток. Они должны обладать одинаковым числом витков.
Во время их соединения необходимо наблюдать за тем, чтобы направленность витков была согласованной. Если данное условие не будет выполнено, то создастся протифаза, а значение выходного напряжение будет равняться практически нулю.
Вторая схема
Определение одноименных выводов
Возможно, что выводы обмоток электромагнитных приборов, которые должны быть объединены, не имеют маркировки. Поэтому нужно определить одноименные. Первичные и вторичные обмотки нужно соединить последовательно. После этого на вход подается напряжение, к выходу надо осуществить подключение измерительный прибор переменного напряжения.
Измеритель может проявлять себя с разных сторон, это зависит от того, какое направление подключения.
Измерительный аппарат может регистрировать следующее:
- Показать напряжение.
- Не регистрировать напряжения в цепи.
Если прибор для измерения дает показания, это означает то, что в цепи есть разноименные выводы. Это соединение было выполнено неверно, поэтому здесь можно наблюдать следующие явления:
- Значение напряжения, которое подается на вход первичных обмоток, становится меньше наполовину.
- На вторичных показатель становится больше
Поэтому измеритель покажет суммарное напряжение, которое равняется удвоенному показателю входного.
Выводы трансформаторов
Если аппарат для измерения регистрирует нулевое значение, это говорит о том, что напряжения, которые выходят из вторичных обмоток, являются равными, но обладают различными знаками. Они являются компенсацией друг друга. Одна пара обмоток точно соединена одноименными выводами.
Поэтому при верном соединении необходимо ориентироваться на вольтметр и его показатели.
Электроды
Установка электродов
При выборе электродов необходимо обратить свое внимание на диаметр, который должен соответствовать диаметру провода, потому что электроды будут соединены с этим проводом. Для этого можно воспользоваться прутками из меди. Если создается аппарат небольшой мощности, то можно использовать жала от паяльников.
Во время работы электроды сильно изнашиваются. Поэтому их надо регулярно подтачивать. Конечно, со временем их нужно будет заменить.
Итак, провод необходимо присоединить к электроду, делается это при помощи наконечника из меди. Наконечник соединен с помощью пайки.
Совмещение наконечника и электрода проводится с помощью болтового соединения. Это соединение должно отличаться надежностью, потому что при увеличении сопротивления в участке ненадежного контакта приведет к тому, что аппарат потеряет свою мощность. Чтобы избежать этой проблемы, необходимо сделать отверстие в электроде и наконечнике. Эти отверстия должны обладать одинаковым диаметром.
Болты лучше выбирать медные, потому что они имеют минимальное электрическое сопротивление.
Монтирование корпуса
Корпус
Корпус может выполнен из дерева. Задняя часть панели должна быть оборудована выключателем и проводом питания. Для этих элементов необходимо сделать отверстия.
После этого проводятся шлифовка, грунтовка и покраска. После чего – сборка. Потом понадобятся 2 провода из меди, которые нужно отрезать. Длина проводов должна составлять два с половиной сантиметра. Медные провода – это электроды. Далее проводится монтирование выключателя. Затем закрепляется трансформатора на дерево. Это крепление производится при помощи обыкновенных саморезов. Для обеспечения безопасности и удобства необходимо смонтировать микрик. Это кнопка закрепляется к верхнему рычагу. Не забудьте провести изоляцию соединений.
Создать агрегат для точечной сварки, имеющей в своем составе трансформатор от старой микроволновой печи, достаточно легко. Главное – соблюдать определенные правила и нюансы, и все получится.
Трансформатор от микроволновки: сварка, применение, перемотка
Сварочный аппарат хочет видеть практически каждый автолюбитель или просто человек, любящий проводить время за ремонтом либо созданием чего-либо. На рынке представлено большое разнообразие типов и моделей. «Что делать, если не хватает средств на приобретение сварочного аппарата?», — вопрос, всегда возникающий при мысли о покупке. Имея дома поломанную микроволновую печь, не спешите ее выбрасывать. Приложив немного усилий и времени из поломки можно сделать вполне работающий сварочный аппарат. Поговорим сегодня о том, как применяют трансформатор от микроволновки для сварки.
Важная деталь-трансформатор
В микроволновой печи есть только одна важная деталь, способная пригодиться в создании аппарата — трансформатор. Трансформатор в микроволновке представляет собой обычные две катушки из медного провода, намотанного на сердечник. Имеются две обмотки – первичная и вторичная. Катушки с обмоткой имеют разное количество витков проволоки: для того чтобы подключая к первичной обмотке напряжение, во второй катушке из-за индукции возникал ток с меньшим напряжением, а сила тока при этом возросла.
Извлечение
Для извлечения трансформатора из СВЧ печи необходимо аккуратно отсоединить крепеж на корпусе микроволновки, не повредив при этом обмотку трансформатора. При резком или сильно грубом извлечении может возникнуть разрыв в цепи, и тогда появятся лишние проблемы по перемотке катушки с обмоткой. Далее требуется произвести чистку катушек и сердечника от мелких стружек или мусора, попавшего во время разборки. Для проведения чистки можно использовать обычную щетку для покраски, главная чтобы она была сухая и чистая, как на фото.
Подготовка
Каждый сварщик знает, что если сварочный аппарат выдаёт малую силу тока, то это может сказаться на качестве сварного шва. Стоит заметить, что при увеличении ампеража в процессе сварки может возникнуть прожигание металла электродом. Попросту детали будут не свариваться между собой, а резаться. На вторичной обмотке трансформатора микроволновки возникает напряжение в 2 тыс. вольт, что довольно много. Для этого требуется перемотка вторичной обмотки проводом большего сечения. Для этого хорошо подойдёт повод типа ПВ-3 с сечением в 4 квадрата, он обладает хорошей гибкостью и не придется долго выгибать провод вокруг катушки. Производить перемотку требуется очень аккуратно, во избежание сделать повреждения на первичной обмотке. Для начала следует перекусить обмотку в нескольких местах и извлечь её из катушки. Затем, внимательно намотать каждый виток из нового провода. Число витков напрямую зависит от мощности трансформатора, так как микроволновки существуют с разными техническими характеристиками, соответственно трансформаторы монтируются согласно параметрам СВЧ печи. Когда перемотка завершена, следует нанести токоизоляционый лак на поверхность новой обмотки.
Монтирование
Берём во внимание, если мощность трансформатора 600–800 ватт, то будущий сварочный аппарат сможет производить сварку металла толщиной не более одного миллиметра. Если планируется сваривать более толстый металл, можно прибегнуть к соединению между собой двух трансформаторов, что значительно повысит мощность сварочного аппарата. Когда процесс перемотки закончен, и лак хорошо просох на новой обмотке, приступаем к соединению, учитывая, что у нас два трансформатора – первичные обмотки следует соединять параллельно, вторичные соответственно последовательно. Необходимо правильно соединить между собой выводы контактов обмоток, иначе возможно короткое замыкание.
Электроды для аппарата
Сварочный аппарат, как и споттер от микроволновой печи, осуществляет работу под средством электрода. Стержни для надёжной работы следует тщательно обработать, слегка подточив, в противном случае они легко утратят свою форму. Кабель, подходящий к электродам, должен иметь как можно меньшую длину и наименьшее количество соединений, чтобы не было потерь в мощности. На каждом из концов провода следует прикрепить медные наконечники. В процессе сварки возможно окисление меди, неспаянные участки будут давать лишнее сопротивление, что приведёт к потере мощности.
Монтирование корпуса
Будущий сварочный аппарат для безопасности следует поместить в прочный корпус, предварительно проделав по периметру ряд отверстий (чем больше, тем лучше) для осуществления должного охлаждения аппарата во время сварки. Для большего эффекта можно прикрепить с торцов корпуса два вентилятора. Для этого отлично подойдут кулеры охлаждения от системного блока персонального компьютера. Также очень часто такие трансформаторы применяют для создания катушки тесла и лампового усилителя.
Это интересно:
Мощный блок питания из трансформатора микроволновки своими руками
Этот мастер-класс буден немного противоречив и вызовет не одно разрозненное мнение. Я хочу поделиться тем, как сделать из трансформатора микроволной печи мощный выпрямитель — блок питания, на необходимое мне напряжение.
Очень часто микроволновки выходят из строя и выбрасываются на помойку. У меня сломалась недавно ещё одна и я решил дать вторую жизнь её трансформатору.
Трансформатор там повышающий и обычно преобразует 220 В в высокое напряжение 2000-2500 В, необходимое для возбуждения магнетрона.
Я видел как много людей переделывают данные трансформаторы либо под аппарат для контактной сварки, либо аппарат для дуговой сварки. Но никогда не видел чтобы из него делали мощные блоки питания.
Ведь трансформатор очень мощный, порядка 900 Вт, а это не мало. Вообщем я покажу вам как перемотать трансформатор под необходимое для вас напряжение.
Разбираем трансформатор от микроволновой печи
Обычно трансформатор микроволновки содержит три обмотки. Самая многочисленная, намотанная самым тонким проводом — это повышающая, вторичная, на выходе у которой 2000-2500 В. Она нам не нужна, мы ее удалим. Вторая обмотка, более толстая, с меньшим количеством проволоки по сравнению с вторичкой — это сетевая обмотка на 220 В. Ещё, между этими двумя массивными обмотками, есть самая маленькая, которая состоит из нескольких витков провода. Это низковольтовая обмотка примерно на 6-15 В, выдающее напряжение на накал магнетрона.
Срезаем швы магнитопровода
Необходимо спилить швы, удерживающие между собой «Ш»-образные пластины и «I»-образные. Швы китайского производителя на так крепки как кажутся. Спилить их можно болгаркой или вообще расколоть зубилом с молоткам. Я использовал болгарку, это гуманный способ.
Снимаем катушки
Снимаем все катушки. Если они очень крепко засели — постучите аккуратно резиновым молотком. Нам пригодиться только обмотка на 220 В, остальные удаляем. Ставим обратно первичную обмотку на 220 В и помещаем её вниз «Ш»-образного сердечника.
Расчет вторичной обмотки
Теперь нам необходимо рассчитать количество витков вторичной обмотки. Для этого нужно узнать коэффициент трансформации. Обычно, в таких трансформаторах он равен единице, следовательно один виток провода будет выдавать один вольт. Но это не всегда так и нужно это перепроверить.
Берем любой провод и наматываем 10 витков провода на сердечник. Затем собираем сердечник и зажимаем его струбциной, чтобы он не развалился. Обязательно через предохранитель подаем 220 В на первичную обмотку. А в это время замеряем напряжение на выходе 10 -ти витковой обмотки. В теории должно быть 10 В. Если нет, значит коэффициент трансформации не такой как обычно и вам нужно производить расчеты для вычисления напряжения для вашей обмотки. Все это не сложно, математика пятый класс.
У меня имеется в наличии два трансформатора. Один я буду делать на 500 В, другой на 36 В. Вы же можете сделать на любое другое напряжение.
Намотка катушки трансформатора на 500 В
Коэффициент трансформации у моего экземпляра один к одному. И чтобы намотать обмотку на 500 В мне нужно соответственно сделать 500 витков провода на катушке. Берем провод.
Конечно не такой, а смотанный на барабане. Прикидываем силу тока и объем катушки. Из этих значений выбираем диаметр провода.
Вот такое простенькое приспособление я собрал для намотки катушки. Сам сердечник из дерева, боковины из оргстекла. Закрепить его можно на дрель или шуруповерт.
Намотал, собрал, подключил. Замеряю выходное напряжение, почти попал — 513 В, что для меня приемлемо.
Трансформатор на 36 В
Обмотку на 36 В можно намотать и вручную, взяв соответствующий провод. Чтобы одеть и распрямить обмотку на сердечнике можно использовать такие клинья, смотрите фото.
После того как обмотка вся натянется, в образовавшиеся отверстия, после снятия клиньев положите плотно спрессованную бумагу. Это мой примитивный способ. Обмотку потом рекомендую пропитать эпоксидкой, иначе будет сильно гудеть.
Работа над ошибками
Я перемотал обмотку, чтобы сделать её более плотной и мощной. Для этого я намотал её двойным проводом, вместо одного толстого. В конце я их соединю.
После того как все обмотки закреплены, пришло время собрать сердечник трансформатора. Для этого закрепляем всю конструкцию струбциной и свариваем дуговой сваркой те же места что и были раньше. Делать толстый шов не нужно, все должно выглядеть как и было.
Я буду нагружать выпрямитель на 20 А, естественно диодный мост нужно установить на радиатор.
Так же, если вы будете использовать металлический корпус как и я, то не забудьте его заземлить.
О безопасности
Будьте осторожный при подключении трансформатора, никогда не торопитесь и все дважды проверяйте. Подключайте трансформатор только через предохранитель, чтобы избежать возможного замыкания цепи. Не дотрагивайтесь до токоведущих частей во время работы трансформатора.
Также при обработке металла обязательно будьте внимательны и используйте средства защиты органов зрения.
Помните, что все действия вы делаете на свой страх и риск!
Всего доброго!
Original article in EnglishТрансформатор микроволновой печи характеристики. Как применяют трансформатор от микроволновки
Высоковольтный трансформатор микроволновой печи предназначен для формирования напряжений, необходимых для питания магнетрона. Выбор трансформатора по параметрам зависит от характеристик установленного в конкретной печи магнетрона. Чем мощнее магнетрон, тем большую мощность должен развивать питающий его трансформатор. Таким образом, высоковольтный трансформатор и магнетрон образуют некую неразлучную пару. Основу трансформатора составляет сердечник, представляющий собой пакет набранный из Ш – образных пластин, изготовленных из электротехнической стали и скрепленных между собой посредством сварки (на рисунке сварные швы). К нижней части пакета приварен фланец, в виде прямоугольника из стального листа, посредством которого трансформатор крепится к днищу микроволновой печи. Трансформатор содержит три обмотки: первичную (сетевую), и две вторичных. К вторичным обмоткам относятся: обмотка накала и повышающая (анодная) обмотка. Сетевая обмотка намотана (как правило) эмалированным, алюминиевым проводом. Концы обмотки, выведены под клеммы. Накальная обмотка представляет собой 2 – 3 витка монтажного провода и предназначена для питания нити накала магнетрона. Выводы обмотки, в виде проводников оснащены разъемами, для удобства присоединения к клеммам магнетрона. Обмотка накала, выдает напряжение порядка 3,3В., при токе 10А. Точные значения тока и напряжения, зависят от конкретной пары, магнетрон – трансформатор. Повышающая обмотка формирует высокое напряжение необходимое для питания магнетрона. С этой обмотки снимается порядка 2000 вольт при токе 0,3А., точные значения так же зависят от конкретной пары магнетрон – трансформатор. Обмотка намотана эмалированным проводом. Один конец выведен под клемму, второй соединен с сердечником трансформатора (а через сердечник и с корпусом печи) посредством пайки. Вся конструкция трансформатора, для надежной изоляции обмоток и для устранения дребезга при работе, пропитана специальным пропиточным лаком.
К основным неисправностям высоковольтного трансформатора, можно отнести межвитковое замыкание в обмотках. Такая неисправность возникает в следствии нарушения изоляции между витками обмотки (разрушение эмали провода). Сопровождается усиленным гулом при работе трансформатора (даже без нагрузки) и значительным повышением температуры, как обмоток, так и сердечника. Визуально заметно потемнение эмали обмоточного провода и пропиточного материала. При длительной работе ощущается едкий запах.
Так как все обмотки трансформатора выполнены довольно толстым проводом, то обрыв обмоток возникает очень редко (если только в результате внешнего механического воздействия). Чаще, в результате не качественной пайки, возникает потеря контакта между одним из концов обмотки и клеммой (на рисунке место пайки). Клеммы трансформатора выполнены из медного сплава, который хорошо паяется, а вот обмотка намотана алюминиевым проводом, и спаять алюминий и медь, без специального флюса, практически не возможно. Наличие контакта можно проверить омметром. Накальная обмотка должна звониться практически накоротко, сетевая имеет сопротивление в районе 4ом, а повышающая приблизительно 150 – 200ом. Сопротивление обмоток зависит от параметров конкретного трансформатора.
Наиболее распространенной неисправностью цепей питания магнетрона – является пропадание контакта между клеммами обмоток трансформатора и разъемами внешних цепей печи. Происходит это в результате плохого обжима разъемов. Место плохого контакта начинает искрить, контактная поверхность разъема сильно греется и выгорает, в итоге контакт пропадает вовсе. Последствия плохого обжима разъемов изображены на рисунке.
Сварочный аппарат хочет видеть практически каждый автолюбитель или просто человек, любящий проводить время за ремонтом либо созданием чего-либо. На рынке представлено большое разнообразие типов и моделей. «Что делать, если не хватает средств на приобретение сварочного аппарата?», — вопрос, всегда возникающий при мысли о покупке. Имея дома поломанную микроволновую печь, не спешите ее выбрасывать. Приложив немного усилий и времени из поломки можно сделать вполне работающий сварочный аппарат. Поговорим сегодня о том, как применяют трансформатор от микроволновки для сварки.
Важная деталь-трансформатор
В микроволновой печи есть только одна важная деталь, способная пригодиться в создании аппарата — трансформатор. Трансформатор в микроволновке представляет собой обычные две катушки из медного провода, намотанного на сердечник. Имеются две обмотки – первичная и вторичная. Катушки с обмоткой имеют разное количество витков проволоки: для того чтобы подключая к первичной обмотке напряжение, во второй катушке из-за индукции возникал ток с меньшим напряжением, а сила тока при этом возросла.
Извлечение
Для извлечения трансформатора из СВЧ печи необходимо аккуратно отсоединить крепеж на корпусе микроволновки, не повредив при этом обмотку трансформатора. При резком или сильно грубом извлечении может возникнуть разрыв в цепи, и тогда появятся лишние проблемы по перемотке катушки с обмоткой. Далее требуется произвести чистку катушек и сердечника от мелких стружек или мусора, попавшего во время разборки. Для проведения чистки можно использовать обычную щетку для покраски, главная чтобы она была сухая и чистая, как на фото.
Подготовка
Каждый сварщик знает, что если сварочный аппарат выдаёт малую силу тока, то это может сказаться на качестве сварного шва. Стоит заметить, что при увеличении ампеража в процессе сварки может возникнуть прожигание металла электродом. Попросту детали будут не свариваться между собой, а резаться. На вторичной обмотке трансформатора микроволновки возникает напряжение в 2 тыс. вольт, что довольно много. Для этого требуется перемотка вторичной обмотки проводом большего сечения. Для этого хорошо подойдёт повод типа ПВ-3 с сечением в 4 квадрата, он обладает хорошей гибкостью и не придется долго выгибать провод вокруг катушки. Производить перемотку требуется очень аккуратно, во избежание сделать повреждения на первичной обмотке. Для начала следует перекусить обмотку в нескольких местах и извлечь её из катушки. Затем, внимательно намотать каждый виток из нового провода. Число витков напрямую зависит от мощности трансформатора, так как микроволновки существуют с разными техническими характеристиками, соответственно трансформаторы монтируются согласно параметрам СВЧ печи. Когда перемотка завершена, следует нанести токоизоляционый лак на поверхность новой обмотки.
Монтирование
Берём во внимание, если мощность трансформатора 600–800 ватт, то будущий сварочный аппарат сможет производить сварку металла толщиной не более одного миллиметра. Если планируется сваривать более толстый металл, можно прибегнуть к соединению между собой двух трансформаторов, что значительно повысит мощность сварочного аппарата. Когда процесс перемотки закончен, и лак хорошо просох на новой обмотке, приступаем к соединению, учитывая, что у нас два трансформатора – первичные обмотки следует соединять параллельно, вторичные соответственно последовательно. Необходимо правильно соединить между собой выводы контактов обмоток, иначе возможно короткое замыкание.
Электроды для аппарата
Сварочный аппарат, как и споттер от микроволновой печи, осуществляет работу под средством электрода. Стержни для надёжной работы следует тщательно обработать, слегка подточив, в противном случае они легко утратят свою форму. Кабель, подходящий к электродам, должен иметь как можно меньшую длину и наименьшее количество соединений, чтобы не было потерь в мощности. На каждом из концов провода следует прикрепить медные наконечники. В процессе сварки возможно окисление меди, неспаянные участки будут давать лишнее сопротивление, что приведёт к потере мощности.
Монтирование корпуса
Будущий сварочный аппарат для безопасности следует поместить в прочный корпус, предварительно проделав по периметру ряд отверстий (чем больше, тем лучше) для осуществления должного охлаждения аппарата во время сварки. Для большего эффекта можно прикрепить с торцов корпуса два вентилятора. Для этого отлично подойдут кулеры охлаждения от системного блока персонального компьютера. Также очень часто такие трансформаторы применяют для создания катушки тесла и лампового усилителя.
Alexey () Уважаемые подскажите если кто сталкивался…Имеется голое железо от микроволновки LG.и есть желание перемотать на ток 7-10А, вторичка нужна 20вольт.И характеристики данного железа тоже интересны-подойдет ли для зар.устройства авто аккумуляторов? Feb 8, 2017 at 8:33 am
Eduard (Alvena) Алексей, ну а чего ж не подойдет, подойдет конечно! Кинь размеры, я скажу сколько примерно с него мощности снять можно, и расчитаю.
Да, еще, сделай фотку с торца, хочу на набор пластин глянуть, а то по этой фото ниче не понятно.
Alexey (Rimona)
Alexey (Rimona) интересно для долговременного режима работы как он, а то мнения разделились….
Eduard (Alvena) Блин, он что проварен сбоку? Это фигово. Возможно грется будет, но не смертельно, работать должен. Ну измерь размеры окна и сечения стержня.
Eduard (Alvena)
Alexey (Rimona) да проварен.я измерил.под фото файл безымянный.
Alexey (Rimona) ну а насчет грется-склею и стяну железными хомутами
Alexey (Rimona) Насколько мне известно, трансы от микроволновок всё-таки рассчитаны исключительно на кратковременный режим работы.
Eduard (Alvena) Так вот, площадь окна маленькая, плохое охлаждение обмоток, да и витки туда очень тяжело все уместить.
И плюс сварка, ток холостого хода большой будет.А так. Первичка 490 витков провода 0, 55-0, 6мм. Примерно 100 метров провода. Вторичка 46 витков диаметром 1, 8мм, примерно 11-12 метров. Габаритная мощность 130вт, потери в обмотках 5вт, без учета холостого хода. Ну примерно 120вт. В итоге имеем 20в при токе до 6А.
Alexey (Rimona) Алексей, да и у меня такая инфа есть.спасибо.
Alexey (Rimona) Эдуард, спасибо за работу. сомнения мои оправдываются, лучше советского железа еще ничего не придумали, однако все реже и реже встречается.
Eduard (Alvena) Алексей, это не так! Импортное железо лучше, так как позволяет работать на более высокой индукции, за счет этого получаем больше мощности при меньших габаритах! А кратковременный режим работы только потому, что с данного транса пытаются выжать больше чем он может дать. Я дал расчеты на долговременную работу, с запасом по мощности, току, индукции и напряжению. Он может часами работать при полной нагрузке.
Alexey (Rimona) Эдуард, спасибо огромное за проделанную работу и за емкую, дельную информацию, осталось только витки уложить, особенно первичку ну а 6 А как раз для 55 аккумуляторов и то с запасом!!!
Eduard (Alvena) Алексей, а там все вмещается, главное провод найти 0, 55-0, 6 не толще и не тоньше. Первичка примерно 7 слоев, займет с учетом каркаса и межслойной изоляции где то 7-8мм. Вторичка 2 слоя провода 1, 8-2мм, заимет соответственнго где то 4мм, и того 12-13мм в окне, а окно 15, так что все помещается.
Alexey (Rimona) Эдуард, ну и отлично, жалко только намоточного станочка нету чтоб витки считал, придется на руках ну да не в первый раз!
Eduard (Alvena) Алексей, а не надо все считать! Зачем? Считаем первый слой, к примеру 75 витков, а потом просто прибавляем слои! Ведь витки примерно одинаковые будут, ну там +/-2-3 витка, это пустяк. Это вот бублик мотать, да, там с каждым слоем витков все меньше, надо считать.
Ilya (Tobikuma) намоточный станок делается из деревянного бруска, шпильки 30см, пары гаек, магнита, геркона, калькулятора…
Метки: Где можно перемотать трансформатор от микроволновой печи
В этом видео подробно показываю, как легко и быстро разобрать трансформатор от микроволновой печи, всего…
Где взять мощный трансформатор? Из чего можно вытащить? | Автор топика: Егор
Нужны трансформаторы от 400Вт и выше, вот только где так сокровища найти? Старые телевизоры, магнитофоны? Дядя извлек из старого советского телека броневой транс мощёностью 600-650Вт, довольно тяжелый. Не подскажите где такие же? Видел в деревне у соседа стоит в гараже Рубин нерабочий, чё там интересненько? Трансформаторы для дела.
Дмитрий
в старых совковых ламповых цветных телевизорах — 380 вт. .Руслан
можно ободрать всю вторичку и намотать свою. .
проще по барахолкам пройтись..
Павел небыло таких телевизоров пи.. дит твой дядя!
Владислав Старый цветной ламповый телевизор, трансформаторное зарядное устройство д\автомобиля, микроволновая печь, линейные трансформаторы проводного радиовещания.
Григорий Если «Рубин» с импульсным блоком питания, ничего в нём не найдёшь для себя. Походи по рынкам, там часто старьё продают. Обязательно что-нибудь найдёшь.
Илья В старых ЦВЕТНЫХ ламповых телевизорах стояли 250-270Вт, максимум 315 Вт.
Алексей Микроволновки. Но учтите, что там трансформаторы работают с превышением габаритной мощности, в режиме насыщения сердечника.
Валерий Со старых цветных ламповых телевизоров можно изготавливать любые трансформаторы от 250 Вт до 5 КВТ. Остается с железа ободрать все обмотки, сложить железо в нужные пакеты, конечно же понадобиться не один такой транс, сделать новый каркас и перемотать заново обмотки по расчету. Даже сварочный трансформатор можно соорудить с 4-х таких трансформаторов.
Игорь Промышленные есть разных мощностей. На заводах надо интересоваться
трансформатор из микроволновки — Металлический форум
трансформатор из микроволновки: 01072011754.jpg трансформатор из микроволновки: …. перемотать можно, главное чтобы оно было нужно.
Применение трансформаторов от СВЧ печи [Архив] — Форумы АУДИО ПОРТАЛ
Разжился двумя трансформаторами от СВЧ-печи «Лена». Тип — АВЮ… Подскажите — можно ли их использовать в качестве выходных? (С перемоткой… советуйте…. А если использовать только железо, а катушки перемотать?
Мощный блок питания из трансформатора микроволновки
Трансформатор, который имеется в микроволновке, мощный (около 900 Вт), повышающий, преобразующий сетевое напряжение 220 Вв высокое (2000…2500), которым возбуждается магнетрон. Многие делают из него аппараты, с помощью которых выполняют дуговую или контактную сварку. Но из трансформатора можно получить и мощный блок питания.
Начинают работу с разборки трансформатора, который извлекают заранее из микроволновой печи. Как правило, он содержит три обмотки. Повышающей, вторичной, имеющей на выходе 2000…25000 В, является та, на которой больше всего витков провода и он тонкий. Ее удаляют.
Сетевая обмотка имеет меньшее количество витков, намотана более толстым проводом. К ней подключается сетевое напряжение 220 В. Третья обмотка на трансформаторе меньше всех и находится между двумя отмеченными ранее. В ней всего несколько витков провода. Она является низковольтной, рассчитанной на 6…15 В и выдает напряжение, которое «зажигает» накал магнетрона.
Дальше спиливают швы, которые в магнетроне соединяют Ш-образные и I-образные пластины между собой. Удаляют их, используя болгарку или зубило с молотком. После снимают все катушки. Используют в дальнейшем только ту, которая предназначена на 220 В – ее, как первичную, помещают в нижнюю часть Ш-образного сердечника.
Проводят расчет вторичной обмотки. Вначале берут любой провод и делают вокруг сердечника десять витков. К первичной обмотке подают (через предохранитель) напряжение 220 В и замеряют выходное на устроенной 10-витковой вторичной обмотке. Как правило, оно должно равняться 10 В, что говорит о коэффициенте трансформации равном единице. Если на выходе будет другое напряжение, нужно рассчитать коэффициент трансформации, от которого зависит сколько витков нужно делать на выходной обмотке. Зависимость линейная, потому несложная – по силам любому мастеру.
Если коэффициент трансформации оказался равным единице, то чтобы получить на выходе, к примеру, 500 В, на вторичной обмотке нужно намотать 500 витков провода. Если хотите иметь 36 В, то витков нужно сделать – 36.
Подготавливают приспособление. Можно сделать сердечник деревянным, боковины – из оргсетка. Дальше берут провод и наматывают на полученный «барабан» нужное количество витков, например, 500 – в итоге на выходе будет напряжение 500 В.
Дальше следует сборка трансформатора – перенос намотанного провода на сердечник. После подключения измеряют напряжение, которое «выходит» из вторичной катушки. Оно должно быть близким в 500 В. Расхождение обычно небольшое – до 13…15 В.
Подключение трансформатора нужно делать осторожно, не торопясь, дважды все проверяя. Выполнять его необходимо только через предохранитель, что убережет сеть при возможном коротком замыкании. Нельзя дотрагиваться до частей трансформатора во время его работы.
Трансформатор СВЧ микроволновки — БП УМ передатчика — Вспомогательные устройства — Радиосвязь
Устройство для уменьшения тока холостого хода трансформатора от СВЧ печи
——————————————В.МИРОНЕНКО, EW1RT. г.МИНСК ————————————————-
В KB усилителе мощностью до 500 Вт изготовление источника питания анодной цепи генераторной лампы особых трудностей не вызывает. А вот более мощный усилитель потребует громоздкого и довольно дорогого силового трансформатора, поэтому понятен интерес радиолюбителей к любым другим решениям, в том числе, с использованием силового трансформатора от СВЧ печи (СВЧТ). Малые габариты такого трансформатора достигаются за счет большого тока в первичной обмотке, но при этом ухудшается тепловой режим и возрастает расход энергии.
Недавно мне случайно и недорого достался один из таких трансформаторов (TR-91531485/3). На бирке была указана его мощность — 1500 Вт! Разумеется, возникло желание попробовать применить этот трансформатор в усилителе мощности.
Известно, что такие трансформаторы сильно греются. Для снижения тока холостого хода некоторые радиолюбители доматывают первичную обмотку. Однако это приводит к уменьшению габаритной мощности трансформатора и напряжения на вторичной обмотке. Кроме того, не все трансформаторы от СВЧ печей можно разобрать — как правило, их пластины сварены. Выключать трансформатор в паузах при передаче практически невозможно. Это можно сделать только при переходе в режим приема, но каждое включение в режим передачи будет происходить с задержкой и сопровождаться броском тока.
В несколько раз уменьшить энергопотребление и нагрев СВЧТ можно с помощью несложной схемы автоматики (рис.1). В авторском варианте применялся СВЧТ с магнитными шунтами.
Когда усилитель не потребляет мощность по анодной цепи, за счет включения дополнительного реактивного сопротивления(дросселя L1) в цепи первичной обмотки СВЧТ ток холостого хода уменьшается примерно в 10 раз, а напряжение на вторичной обмотке — только в 2 раза. При появлении сигнала на входе усилителя мощности за счет шунтирования дросселя контактами реле К2.1 трансформатор переходит в штатный режим, обеспечивая требуемую мощность. Одновременно к датчику входного сигнала (резистору R1) подключается дополнительный резистор R5. За счет этого суммарное сопротивление датчика уменьшается. Теперь, как только будет снята нагрузка, и ток в первичной обмотке уменьшится до штатного тока холостого хода — 2,44 А (с магнитными шунтами) для данного трансформатора, его можно переключить в дежурный режим. Момент перехода регулируется с помощью резистора R6.
Если в СВЧТ шунты удалены, то придется уточнить данные трансформатора Т1 и сопротивление резисторов R1 и R5. Транзисторы VT1 и VT2 работают в режиме переключения. Транзистор VT1 открывается, когда на резисторе R1 создается падение напряжения за счет тока в первичной обмотке трансформатора Т2 при появлении нагрузки в цепи вторичной обмотки. Порог открывания VT1 регулируется с помощью резистора R2. Контакты К1.1 подключают резистор R3, соединенный с базой транзистора VT2, к «плюсу» источника питания, открывая VT2. Когда контакты К2.1 реле К2 шунтируют дроссель L1, на первичной обмотке Т2 появляется полное напряжение 220 В. Мощность резисторов R1 и R5 (в данном случае 2 — 3 Вт) определяется, как обычно, максимальным током, протекающим через них. Напряжение насыщения транзистора VT1 — 0,2 В. При переходе трансформатора в рабочий режим на резисторе R1 падают сотые доли вольта, поэтому трансформатор Т1 используется для повышения напряжения.
При повторении устройства прежде всего надо определить ток в первичной обмотке силового трансформатора Т2 (СВЧТ) при разных нагрузках. Для этого собирается испытательная установка, схема которой приведена на рис.2.
Вторичная обмотка трансформатора Т2 подключается к вторичной обмотке нагрузочного трансформатора ТЗ габаритной мощностью 1 кВт. Первичная обмотка этого трансформатора нагружается лампами накаливания разной мощности, а его вторичная обмотка уже является заметной нагрузкой для трансформатора Т2, что объясняется меньшим количеством витков вторичной обмотки ТЗ по сравнению с Т2. Поэтому на первичной обмотке ТЗ напряжение составляет 255 В. В СВЧТ установлены 2 магнитных шунта, ограничивающих ток. Измерения проводились с шунтами и без них. Шунты расположены между первичной и вторичной обмотками и закреплены затвердевшим герметиком. Тем не менее, их легко удалить. Для этого СВЧТ закрепляется в тисках за боковые поверхности, шунты выбиваются сильными ударами с помощью пробойника. Если перед этим не удалить накальную обмотку магнетрона, ее можно повредить! Так, в рассматриваемом случае шунт вышел вместе с обмоткой, при этом все 4 витка обмотки были разорваны.
После удаления шунтов трансформатор Т2 в течение 0,5 часа испытывался на нагрев при токе 5,4 А в первичной обмотке. Нагрев составил 70°С. Результаты измерений приведены в таблице.
Итак, можно сделать несколько выводов:
— шунты ограничивают ток до 50% в зависимости от нагрузки;
— не всегда шунты следует удалять, как рекомендуется в [1]. Если трансформатор используется не на полную мощность (например, при работе SSB), и «просадка» напряжения еще находится в допустимых пределах, то их удаление приведет к заметному ухудшению теплового режима;
— после удаления шунтов повышается напряжение, возможно, выше, чем требуется для питания анода лампы. Для снижения напряжения в [1] рекомендуется домотать первичную обмотку, а это по эффекту равнозначно установке магнитного шунта ;
— принудительное охлаждение трансформатора (особенно с удаленными шунтами) при длительном включении под нагрузкой является обязательным;
— потребляемая мощность на холостом ходу без шунтов составляет почти 800 Вт, поэтому затраты на ограничение мощности на холостом ходу быстро окупаются.
Первичная обмотка трансформатора Т1 (рис.1) содержит 50 витков, вторичная —250, диаметр провода — 0,2 мм. «Железо» может быть любым (подойдет, например, от трансформаторов транзисторных приемников). Конденсатор С1 — оксидно-полупроводниковый (К53-16), имеющий минимальную утечку. Следует выбирать диоды VD1 — VD4 с минимальными прямым падением напряжения. В схеме применены диоды Шотки (1N5819), но это не обязательно. Кроме транзистора МП21В, успешно были испытаны МП42Б и МП16, но можно применить другие германиевые транзисторы. При использовании транзистора МП42Б напряжение питания на него подавалось от источника 24 В через делитель напряжения 330 0м/470 Ом на резисторах мощностью 1 Вт (этот вариант на рис.1 не показан). Транзистор VT1 следует выбирать с возможно меньшим напряжением насыщения и большим коэффициентом передачи тока в режиме малого сигнала. Транзистор VT2 — КТ829А. Гальваническая развязка позволяет применить любой другой подходящий транзистор, в этом случае надо уточнить сопротивление резистора R4 для надежного и быстрого перехода транзистора в режим насыщения.
Реле К1 — РЭС-15 на напряжение 10 В или герконовое, подходящее по напряжению срабатывания и сопротивлению обмотки. Конденсаторы С1 и С2 устраняют «дребезг» контактов реле. Реле К2 — К4 — малогабаритные (RP010024, производства Австрии). Их выбор ничем не ограничен — все зависит от возможности приобрести подходящие реле (важно, чтобы они были одинаковыми). Диоды VD5 и VD6 — Д220, но с выбранными реле и транзисторами применять их не обязательно. Параметры дросселя L1 определяются конкретным экземпляром силового трансформатора. В авторском варианте используется магнитопровод УШ 14×21. Число витков — 500. Диаметр провода определяется по формуле:
d = 0,02*кв.кор I,
где d — в миллиметрах;
I— в миллиамперах.
Для тока 320 мА диаметр должен составлять 0,357 мм. За 1 час работы дроссель нагревается до 40 — 45°С. Увеличив число витков, можно пропорционально уменьшить ток.
Интересно, что при токе 320 мА через час работы на холостом ходу повышение температуры «железа» СВЧТ практически не наблюдается, в то время как в [1] отмечается, что «40…45 градусов (на холостом ходу через час) сердечник СВЧТ достигает лишь при холостых токах менее 200 мА. Возможно, расхождение связано с влиянием на нагрев габаритной мощности трансформатора, маркой электротехнической стали или общими теоретическими предположениями, которые в данном случае не подтверждаются практикой.
Ток холостого хода СВЧТ без шунтов с дросселем L1 составил 360 мА, при этом напряжение на вторичной обмотке Т2 — 1600 В.
Испытания подтвердили работоспособность схемы, но некоторые вопросы остались:
— долговечность работы контактов реле К2;
— кратковременный и не всегда проявляющийся «дребезг» контактов К2.1 из-за разброса времени срабатывания реле К2 — К4, хотя решается эта проблема просто — применением реле с тремя группами контактов (например, реле Р15 польского призводства) или тщательной отладкой схемы;
— аварийное шунтирование дросселя L1 в случае несрабатывания контактов К2.1 в рабочем режиме (хотя это вряд ли случится — скорее, контакты К2.1 «залипнут» в положении шунтирования дросселя L1).
ЛИТЕРАТУРА
1. БП из трансформатороа СВЧ печей (http://dl2kq.de/)
Мощный двуполярный блок питания на трансформаторе из микроволновки | Электронные схемы
как разобрать трансформатор из микроволновкикак разобрать трансформатор из микроволновки
В микроволновой печи, для питания магнетрона находится мощный трансформатор-МОТ.На основе такого трансформатора можно сделать любительскую контактную сварку,просто сварку электродом на нескольких МОТ-ов или мощный блок питания.Надо сразу предупредить,что сетевая обмотка потребляет большой ток от сети и магнитопровод будет нагреваться,требуется теплоотвод и обдув.
Для начала надо разобрать трансформатор,чтобы убрать повышающую обмотку и обмотку накала.Для этого спиливают выступающие части повышающей обмотки,а спиливать ее легко,так как это алюминиевый провод.
как разобрать трансформатор из микроволновки сверлением обмоткикак разобрать трансформатор из микроволновки сверлением обмотки
Далее шуруповертом или дрелью просверливают в алюминии отверстие и вытаскивают остатки провода.
магнитные шунты в трансформаторе от микроволновкимагнитные шунты в трансформаторе от микроволновки
Потом надо выбить магнитные шунты и остается одна сетевая обмотка.
Надо узнать,какое переменное напряжение выдает один виток на трансформаторе.Это напряжение будет около 840-870мВ действующего напряжения или где-то 1.2В амплитудного (это напряжение будет на конденсаторе фильтра).
блок питания на основе трансформатора из микроволновкиблок питания на основе трансформатора из микроволновки
Понижающую обмотку выполнил многожильным медным проводом из сетевого шнура.Вначале намотал 12 витков первичной обмотки и напряжение она выдает 11 В.Далее в том-же направлении и поверх первичной намотал вторичную,где-то 12 витков и отматывая или наматывая витки подобрал 11 В действующего напряжения.Две обмотки должны иметь одинаковое напряжение.
как сделать блок питания на трансформаторе из микроволновкикак сделать блок питания на трансформаторе из микроволновки
Двуполярный блок питания собрал по этой схеме.Диодный мост GBPC3510 на ток до 30 А и напряжение 1000В. Конденсаторы фильтра надо выбирать с расчетом 1 Ампер потребления нагрузкой на 1000мкФ,а лучше 2000мкФ на 1 Ампер.
двуполярный блок -источник питания на трансформаторе из микроволновкидвуполярный блок -источник питания на трансформаторе из микроволновки
Каждое плечо выдает 17В постоянного напряжения без нагрузки.
двуполярный блок питания со средней точкой своими рукамидвуполярный блок питания со средней точкой своими руками
Как уже упоминал,магнитопровод трансформатора будет нагреваться.Причина-большой потребляемый ток сетевой обмоткой,который составляет 3А. Чтобы уменьшить нагрев,можно еще намотать к сетевой обмотке несколько десятков витков.
трансформатор из микроволновки греется в чем причинатрансформатор из микроволновки греется в чем причина
Принцип работы трансформатора СВЧ и устранение общих неисправностей
Каков принцип работы трансформатора для СВЧ-печи? Давай сначала понять устройство трансформатора для микроволновой печи. Микроволновая печь трансформатор имеет три обмотки, одна из которых является первичной обмоткой, и переменный ток 220В на эту обмотку подается сетевое напряжение; множество листов кремнистой стали между первичной и вторичной обмотками вставляется определенная толщина, поэтому что в трансформаторе образуется высокое магнитное сопротивление.Магнитный зазор шунт. Итак, каков принцип работы трансформаторов СВЧ, и как устранять распространенные неисправности трансформаторов микроволновых печей? Давайте посмотрим на конкретная ситуация.
Каков принцип работы микроволновки трансформатора
Когда работает магнетрон трансформатора СВЧ, колеблющийся ток течет во вторичной высоковольтной обмотке трансформатора, вызывая железный сердечник для создания магнитного насыщения.Предполагая, что анодное напряжение магнетрона увеличивается, а анодный ток увеличивается из-за сетевого колебания, ток вторичной обмотки трансформатора также увеличивается, что углубляет магнитное насыщение и увеличивает утечку магнитный поток, который делает трансформатор вторичным высоким напряжением. Падение, что есть, анодное напряжение магнетрона уменьшается, а анодный ток равен уменьшается, иначе выполняется обратное, тем самым играя роль автоматическая регулировка анодного напряжения и тока и стабилизация выходная мощность микроволн.
Видно, что трансформатор микроволновой печи в основном поддерживает рабочий ток магнетрона за счет магнитного потока рассеяния, поэтому он также называется трансформатором магнитной утечки. Этот трансформатор может поддерживать стабильность анодного тока магнетрона в широком диапазоне городских мощностей колебания, поэтому он широко используется в микроволновых печах. За исключением специальных продукты, почти все микроволновые печи используют этот тип трансформатора.
Как устранить распространенные неисправности трансформаторов микроволновых печей
Распространенными неисправностями трансформаторов микроволновых печей являются: во-первых, микроволновая печь. не греется или работа нестабильна из-за плохого контакта штепсельной вилки; Есть запахи и другие явления; В-третьих, имеется обрыв цепи или частичное межвитковое замыкание в обмотке и утечка или короткое замыкание происходит между обмоткой и железным сердечником. Среди них короткое замыкание между витками и утечкой также заставит микроволновую печь увеличить рабочий ток и сжечь предохранитель.
Трансформаторы СВЧ имеют открытые обмотки или межвитковые замыкания. схемы. Чтобы отремонтировать их вручную, железный сердечник необходимо разобрать и перемотать. Однако сердечник этого высоковольтного трансформатора отличается от ядро обычных трансформаторов. Для повышения надежности производитель открыл в общей сложности 4 горизонтальных паза с обеих сторон сердечник и сварили все листы кремнистой стали вместе сварочными стержнями.Из-за высокая твердость шва, 4 шва нужно снять ножовкой, напильником, или даже шлифовальный круг и т. д., чтобы разобрать кремний железного сердечника стальной лист, и в то же время заусенец, вызванный листом кремнистой стали необходимо отполировать и разгладить. . Потому что железный сердечник микроволновой печи трансформатор очень толстый, есть много слоев кремнистой стали, и он требуется только много времени для удаления сердечника и выхода из кремнистой стали лист.Кроме того, при перемотке обмотки и повторной сборке железного сердечника необходимо учитывать уровень жаропрочности и электрическая прочность высоковольтного трансформатора, а также обеспечение технической и материальные гарантии. Поэтому ремонтировать его нужно самостоятельно. Требуется высокий навыки обслуживания, а также требует определенного фундамента в специальных инструментах и электрические материалы.
О принципе работы микроволновки трансформатора и как правильно отремонтировать общие неисправности трансформатора СВЧ, мы поделились так много для всех.Фактически, для ответа на вопрос, как устранить распространенные неисправности трансформаторов для микроволновых печей, простой способ Реализация заключается в обновлении трансформатора микроволновой печи, но мы хотим Напомним, что предпочтение отдается однотипному трансформатору для СВЧ. Если вы используете другие модели для замены, тогда необходимо внимательно изучить вопрос согласования мощности и вывода напряжения.
Как работают микроволновые печи?
В современном мире практически у каждого есть микроволновая печь.Но сколько людей задумываются, что именно делают и как работают микроволновые печи? Для любого, кто жил последние несколько десятилетий, микроволновые печи так же нормальны, как и все остальное; тем не менее, для человека, родившегося столетие назад, они будут сочтены чрезвычайно футуристическими. Эта статья объяснит, что делают микроволновые печи, и перечислит детали, которые заставляют микроволновые печи работать, чтобы читатели могли оценить науку об этих чудесных устройствах.
Что делают микроволновые печи
Причина, по которой микроволновые печи предпочтительнее обычных, заключается в том, что микроволновые печи готовят пищу целиком, а не за счет конвекции.В то время как тепло, выделяемое в обычной духовке, поглощается внешней частью пищевого продукта и медленно передается его сердцевине, тепло, выделяемое в микроволновой печи, проходит через весь пищевой продукт сразу. Это связано с тем, что микроволны проходят через обычные предметы, но превращаются в тепло при воздействии жира, жидкостей и сахара.
Магнетрон
Магнетрон — довольно крупное устройство, которое встроено в каждую микроволновую печь. Магнетрон состоит из двух больших магнитов, расположенных на противоположных концах анода.Анод состоит из катода, окруженного высокочастотными полями с полостями, через которые проходят электроны. Когда электричество проходит через магнетрон, электроны управляются таким образом, чтобы создать микроволновое излучение, которое передается в камеру печи.
Камера духовки
Камера духовки — это зона, в которой пища готовится в микроволновой печи. Камера духового шкафа состоит из стеклянной пластины, которая устанавливается поверх вращающегося механизма, так что пища вращается во время приготовления.Это позволяет готовить более толстые блюда, например мясо. Камеры духовки также обычно включают в себя какой-либо свет, чтобы пользователи могли видеть, что они делают, помещая еду в микроволновую печь.
Волновод
Волновод — это полая металлическая трубка, которая позволяет микроволнам проходить от магнетрона в камеру печи. Волноводы важны для направления микроволн по определенному пути, чтобы излучение не попадало туда, где ему не место. Без волноводов микроволны свободно распространялись бы во всех направлениях, повреждая магнетрон, трансформатор и всех, кто стоял рядом.
Трансформатор
Микроволновые печи производят большое количество микроволнового излучения, что означает, что для правильного приготовления пищи требуется много энергии. Чтобы избежать увеличения счета за электроэнергию, микроволновые печи оснащены собственными трансформаторами. Трансформатор отвечает за преобразование электроэнергии, поступающей от источника питания, в гораздо более высокое напряжение. Это работает аналогично тому, как можно использовать бокалы для вина с мокрым наконечником, чтобы вызвать вибрацию других бокалов, когда присутствует высокий шум.
Цепь управления высоким напряжением
Цепь управления высоким напряжением — это электронная плата, которая отвечает за управление чрезвычайно высокими напряжениями, с которыми работают микроволновые печи. Из-за сложной природы как магнетрона, так и трансформатора, особенно из-за того, что они расположены так близко друг к другу и в таком небольшом пространстве, трансформатор теоретически может перегрузиться и взорваться, загореться или вызвать другие повреждения. Цепь управления высоким напряжением способна предотвратить такую перегрузку, отключив трансформатор от источника питания в случае, если что-то пойдет не так.
Источник питания
Микроволновые печи используют переменный ток напряжением 120 В (В), который подается от стандартной домашней розетки. Это стандартное количество электроэнергии, которое используют большие приборы, такие как холодильники и блендеры. К сожалению, микроволновые печи по-прежнему слишком велики и громоздки, чтобы использовать в качестве источника питания что-либо, кроме полупостоянной розетки. Однако в разработке есть несколько идей для портативных микроволновых печей, которые работали бы от батарей.
Обновление трансформатора для микроволновой печи
Испытание на обрыв цепи (потери в стальном сердечнике и намагничивание)
Трансформатор с разомкнутой вторичной обмоткой можно смоделировать, как показано на схеме ниже. Для тестового случая разомкнутой цепи R 1 , R 2 , X 1 и X 2 можно игнорировать, оставив только R w (потери в сердечнике сопротивление) и X м (реактивное сопротивление потерь намагничивания).Испытание обрыва цепи проводится путем оставления вторичной обмотки. открыт, в то время как полное номинальное первичное напряжение подается на первичную обмотку. На данный момент E o , I o и P o сняты показания.
Потери в сердечнике, измеренные ваттметром,
\ (\ begin {выровнено}
П_о = Э_о. И_о. cos \ phi_o
\ конец {выровнено} \)
Коэффициент мощности без нагрузки, \ (\ begin {выровнено} cos \ phi_o = \ frac {P_o} {E_o.I_o} \ конец {выровнено} \)
Составляющая тока потерь в сердечнике, \ (\ begin {выровнено} I_w = I_o. cos \ phi_o \ конец {выровнено} \)
Составляющая тока потерь на намагничивание, \ (\ begin {выровнено} I_m = I_o. грех \ phi_o \ конец {выровнено} \)
Сопротивление потерь в сердечнике, \ (\ begin {выровнено} R_w = \ frac {E_o} {I_w} \ конец {выровнено} \)
Реактивное сопротивление потерь на намагничивание, \ (\ begin {выровнено} X_m = \ frac {E_o} {I_m} \ конец {выровнено} \)
Полное сопротивление без нагрузки, \ (\ begin {выровнено} Z_o = \ sqrt {R_w ^ 2 + X_m ^ 2} = R_w + jX_m \ конец {выровнено} \)
Измерения / расчеты разомкнутой цепи
Напряжение сети подается на первичную обмотку, а вторичная цепь разомкнута.Снимаются значения E o , I o и P o .
\ (\ начало {выровнено} E_o = 240 В, \ text {} I_o = 2,72 A, \ text {} P_o = 53 Вт. \ конец {выровнено} \)
\ (\ начало {выровнено} cos \ phi_o = \ frac {53} {240 \ times 2,72} = 0,081 \ конец {выровнено} \)
\ (\ начало {выровнено} I_w = 2.72 \ раз 0,081 = 0,221 А \ конец {выровнено} \)
\ (\ начало {выровнено} I_m = 2,72 \ раз 0,997 = 2,711А \ конец {выровнено} \)
\ (\ начало {выровнено} R_w = \ frac {240} {0,221} = 1087 \ Omega \ конец {выровнено} \)
\ (\ начало {выровнено} X_m = \ frac {240} {2.711} = 89 \ Omega \ конец {выровнено} \)
\ (\ начало {выровнено} Z_o = \ sqrt {1087 ^ 2 + 89 ^ 2} = 1090 \ Omega \ конец {выровнено} \)
Испытание на короткое замыкание (медь и вихретоковые / гистерезисные потери)
Трансформатор с короткозамкнутой вторичной обмоткой можно смоделировать, как показано на схеме ниже.Для тестового случая короткого замыкания R w и X m можно не учитывать. 1 и 2 объединяются как рандов c . (сопротивление потерь в меди), а X 1 и X 2 объединяются как X i (вихретоковый / реактивное сопротивление потерь на гистерезис). Испытание на короткое замыкание проводится путем короткого замыкания вторичной обмотки, при этом первичное напряжение постепенно увеличивается с помощью вариакла, пока не будет достигнут максимальный номинальный первичный ток.2} \ конец {выровнено} \)
Коэффициент мощности при полной нагрузке, \ (\ begin {выровнено} cos \ phi_s = \ frac {R_c} {Z_s} \ конец {выровнено} \)
Измерения / расчеты короткого замыкания
Variac увеличивается до тех пор, пока не будет достигнут максимальный первичный ток, при вторичном коротком замыкании. Снимаются показания E s , I s и P s .2} = 20,7 \ Омега \ конец {выровнено} \)
\ (\ начало {выровнено} cos \ phi_s = \ frac {16.8} {26.6} = 0,63 \ конец {выровнено} \)
Как превратить трансформатор микроволновой печи в расплавитель металла с высоким током! «Безумная наука :: WonderHowTo
В этом проекте вы шаг за шагом узнаете, как преобразовать трансформатор микроволновой печи в сильноточное устройство, которое может вырабатывать 800 ампер электрического тока, что достаточно для плавления металла.
Если вам понравился Metal Melter, который вы видели в моем предыдущем проекте, вот как вы можете сделать свой собственный!
Для начала найдите старую микроволновую печь бесплатно. Больше лучше.
Вы можете найти их в разных местах, например, на бесплатных досках объявлений или в мусорном ведре у ваших соседей, например, там, где я нашел этот. Трансформатор (MOT) — это то, что вам нужно, и он выглядит так.
ВНИМАНИЕ: Убедитесь, что вы знакомы с опасностями открытия микроволновой печи, потому что внутри есть компоненты, которые могут нести заряд и могут поранить или даже убить вас. Даже если микроволновая печь не подключена к розетке.
Сердечник трансформатора удерживается вместе только двумя очень тонкими сварными швами, как видно сбоку от этого.
Для разрезания сварного шва можно использовать ножовку или угловую шлифовальную машину, а затем молоток и долото, чтобы сломать его, открыв доступ к первичной и вторичной обмоткам.
Изображения с сайта wonderhowto.comБудьте очень осторожны, вынимая первичную катушку, потому что она вам снова понадобится. Следите за тем, чтобы не погнуть, не сломать и не поцарапать его.
ПРИМЕЧАНИЕ. Вторичную катушку вытащить сложнее, и к тому времени она может быть повреждена, но это нормально, потому что она нам не нужна для этого проекта. Однако, если вы сможете спасти его в целости и сохранности, он может быть источником тонкой эмалированной медной проволоки для будущих проектов.
Хорошо, теперь сердечник трансформатора должен быть оголенным.Это секции сердечника «E» и «I», которые были очищены зубилом для удаления клея и бумаги, прилипшей к внутренней части.
Следующим шагом будет осторожная замена первичной обмотки, чтобы убедиться, что она плотно прилегает к нижней части сердечника. Затем добавьте изолированный медный кабель 2 AWG длиной 5 футов. Этот более толстый кабель продлит время, в течение которого может протекать сильный электрический ток, прежде чем кабель перегреется.
Вторичный кабель наматывается только 1-3 / 4 раза вокруг центра.
Если у вас нет возможности снова приварить основание, вы можете использовать двухкомпонентный эпоксидный клей и нанести его на все поверхности, которые будут соприкасаться.
Затем скрепите их вместе, чтобы клей застыл. Я использовал свои настольные тиски в качестве зажима, и они отлично сработали!
Когда клей высохнет, расплавитель металла должен выглядеть примерно так. На самом деле ни один из проводов не касается друг друга, но то, что они могут делать, очень впечатляет.
Выходное напряжение на нем чуть больше 2 вольт, но ампер ближе к 800! Этого тока достаточно, чтобы расплавить железные гвозди и стальные болты при контакте!
Я нашел практическое применение Металлуплавителю, сделав такой точечный сварочный аппарат.
Электрический ток можно сконцентрировать в одной точке, чтобы сплавить вместе тонкие листы металла. Это известно как «точечная сварка».
Вы можете увидеть, как я сделал это в другом проекте.
Теперь вы знаете, как сделать плавильщик металлов!
Если вам понравился этот проект, возможно, вам понравятся некоторые из моих. Посмотрите их на thekingofrandom.com.
Как проверить высоковольтный трансформатор от микроволновой печи
Испытание высоковольтного трансформатора от СВЧ аналоговым измерителем.
Примечание. Перед тестированием каких-либо компонентов в микроволновой печи убедитесь, что устройство отключено от сети и высоковольтный конденсатор разряжен.
Трансформатор состоит из трех обмоток. Первичная обмотка с более толстыми проводами, вторичная обмотка высокого напряжения с более тонкими проводами и вторичная обмотка низкого напряжения, которая находится между первичной и вторичной обмотками.
Чтобы проверить трансформатор, начните с первичной обмотки, ища сопротивление менее пяти Ом.Я предлагаю вам использовать R раз один на глюкометре и откалибровать. Подключите провода измерителя к обоим клеммам, чтобы обеспечить сопротивление менее пяти Ом. Вы также захотите проверить каждую клемму на массу. Лучшее место для заземления — это монтажные отверстия, где винты находятся на трансформаторе. Проверяем, чтобы убедиться, что у вас нет чтения. Если вы когда-либо читаете между землей и одним из выводов, обмотка закорочена. Если вы не получите показания на обоих выводах, обмотка будет разомкнута.
Проверяя нашу вторичную обмотку высокого напряжения, мы захотим пойти дальше и повернуть трансформатор в поисках одиночного провода или лопаточной клеммы, которая может быть там.И мы захотим пойти дальше и установить наш измеритель на R, умноженное на 10, и откалибровать. Мы поместим один метр на вторичную обмотку высокого напряжения, а второй метр на землю, рассчитывая сопротивление от 35 до 150 Ом. Если вы не получаете показания, ваша обмотка разомкнута. Если у вас меньше единицы, ваша обмотка закорочена.
Чтобы проверить нашу последнюю обмотку, вторичное низкое напряжение, которое поступает на магнетрон, снова установите счетчик на R, умноженный на единицу, и откалибруйте. Подсоедините провода измерителя ко вторичной обмотке низкого напряжения, и мы должны увидеть сопротивление менее одного Ом.Опять же, если мы не получаем показания, обмотка разомкнута, а если мы получаем какие-либо показания на землю, обмотка закорочена.
МИКРОВОЛНОВЫЕ ПЕЧИ ТРАНСФОРМАТОРЫ
МИКРОВОЛНОВЫЕ ПЕЧИ ТРАНСФОРМАТОРЫ ИССЛЕДОВАНИЯ ПО ИСПОЛЬЗОВАНИЮ АППАРАТА
МИКРОВОЛНОВАЯ ПЕЧЬ ТРАНСФОРМАТОР (MOT)
P. Wokoun (9/2003)
(Когда вы нажмете на картинку, вернитесь с помощью кнопку назад.)
Эти трансформаторы питают микроволновые печи мощностью 600-1200 ватт, но подходят ли они для хобби или любительского использования?
Трансформаторы большие и тяжелые, что свидетельствует о высокой мощности.Они состоят из первичной обмотки, обычно около 117 вольт переменного тока, высокого напряжения. обмотка около 2000 вольт и обмотка накала около 3 вольт.
Физически тот, что у меня был, отличался по расположению ядра от того, что я обычно вижу в силовых трансформаторах. Обычный сердечник состоит из чередующихся многослойные листы EI, изолированные друг от друга лаком. Я узнал изоляция пластин должна была свести потери сердечника к минимуму. Духовка-трансформер полностью уложенные листы EI стыкуются и свариваются через стыки EI чтобы держать это вместе.Мне было любопытно посмотреть, как это сваривает листы вместе связанные с потерями в сердечнике. Это определенно сделало разборку невозможной, если вы хотел отшлифовать сварной шов. Размер центральной жилы — 3,5 квадратных дюйма. а концевые детали — 1,7 квадратных дюйма.
Трансформатор также имел пару стопок пластин, вклиниваемых между центрами. сердечник и наконечники между первичной обмоткой и обмоткой высокого напряжения (магнитная шунты?). (НАЖМИТЕ ДЛЯ ИЗОБРАЖЕНИЯ) Эти стеки не были прямо напротив сердечника EI, но имели заметные воздушные зазоры (на самом деле бумажные промежутки).Я читал, что это как-то связано с ограничением вины токи через магнетрон. Точно не знаю. Они уменьшили холостой ход потери в сердечнике примерно на 8%, но оказали незначительное влияние во время нормальной эксплуатации область. Я решил предварительно удалить их, чтобы увеличить площадь намотки.
Поскольку меня интересовали приложения с низким напряжением и высоким током, снятие обмотки высокого напряжения привело к появлению довольно большой площади вокруг сердечник намотать соответствующую обмотку.Первым делом удалили бумагу, обнажающую катушка высокого напряжения. Будьте осторожны, чтобы не повредить первичную обмотку, Шинковка HV была расточена с помощью маленькой отвертки (1/8 дюйма) и потянув провода подальше от разреза. (НАЖМИТЕ ДЛЯ ИЗОБРАЖЕНИЕ) Это повторялось с каждой стороны трансформатора. В конце концов ты добраться до точки, где можно будет вытащить кусочки провода из сердечника. У меня заняло примерно 1-1 / 2 часа, чтобы разрезать и удалить всю обмотку. Изобретательность и настойчивость здесь можно расплачиваться.(ЩЕЛКНИТЕ ДЛЯ ИЗОБРАЖЕНИЯ)
После того, как высоковольтная обмотка была снята с сердечника, трансформатор был опирается на два куска дерева (НАЖМИТЕ ДЛЯ ИЗОБРАЖЕНИЕ) и две части магнитного шунта были выбиты с помощью 3/8 дюйма пробойник и большой молоток. (НАЖМИТЕ ДЛЯ ИЗОБРАЖЕНИЕ) Здесь несколько точных и сильных ударов работают лучше, чем много долбят. Как только покрытые лаком стыки будут сломаны, они будут стучать прямо сейчас. Снова постарайтесь не повредить первичную обмотку.У меня был кусок изолированного провода №10, которым я намотал испытательную обмотку в высоковольтном намотка пространства. Мне удалось намотать на сердечник 16 витков, прежде чем закончится пространство и проволока.
Первый тест заключался в запуске различных входных напряжений на первичный и контрольный входной ток. Результаты представлены на Рисунке 1.
РИСУНОК 1
Интересно, что потери в сердечнике постоянно растут примерно до Вход 105 вольт, от которого он начинает быстро расти.Похоже на ядро составляет насыщение около 110 вольт. Мониторинг напряжения на моих 16 витках Тестовая катушка, однако, показывает, что ее напряжение очень линейно увеличивается до более 125 вольт. вход, как показано на рисунке 2.
РИСУНОК 2
Это показывает, что ядро не насыщается. Если бы это был выход напряжение в начале покажет сплющивание. Форма волны вторичного напряжение было синусоидальным без видимых искажений.Это было одинаково как для ненагруженного, так и для нагруженного состояния.
Я взял стандартный силовой трансформатор сопоставимого размера, чтобы посмотреть, как работает его сердечник. потери по сравнению с этим ТО. На рисунке 3 показан другой трансформатор без нагрузки. убытки.
РИСУНОК 3
Сравнивая эти значения со значениями, показанными на Рисунке 1, вы можете см. MOT имеет более чем 4-кратные потери в сердечнике при 105 линейных вольт, в 6 раз при 115 линейных вольт и почти 9 раз при 125 линейных вольтах.Это ТО однозначно другое порода силового трансформатора.
Затем я приложил к испытательной катушке различные нагрузки при разных входных напряжениях линии. (ЩЕЛКНИТЕ ДЛЯ ИЗОБРАЖЕНИЯ) Рисунок 4 — это график результатов.
РИСУНОК 4
Фактически эта цифра состоит из 6 участков. Начало трех сюжетов по оси Y и поднимитесь к верхнему правому углу. Это общая мощность входные кривые, показанные на измерителях напряжения и тока входной линии.Другой три графика начинаются с оси Y и спускаются вниз к правому нижнему углу. Это потери в сердечнике трансформатора при различных линейных напряжениях. Они есть кривые полной потребляемой мощности, из которых вычтена мощность нагрузки. Это Интересно, что потери в сердечнике реально уменьшаются с увеличением нагрузки. Здесь у нас есть трансформатор, который работает более эффективно при полной нагрузке, чем без нагрузки. Но, конечно же, микроволновая печь предназначена для работы в загруженном состоянии, а не в разгруженном!
Что меня немного беспокоило, так это большое увеличение потерь в трансформаторе с 110 до 120 ватт, увеличение примерно с 220 до 470 ватт без нагрузки.Этот трансформатор будет перегреваться при небольшой нагрузке с номинальным входом линии. Затем я провел несколько температурных тестов, чтобы посмотреть, насколько сильно он станет горячим. с разными линейными входными напряжениями и без нагрузки. Здесь ничего особенного, я только что трансформатор, открытый на изолированной площадке. Термометр был проведен плотно прижат к сердцевине с помощью некоторого термокомпонента для улучшения теплопередачи. Температура воздуха в комнате была довольно постоянной — 68 градусов по Фаренгейту.Тестирование на каждой линии входное напряжение продолжалось, пока температура ядра не стабилизировалась несколько выше получасовой период. Рисунок 5 — результат этого температурного испытания. Конечно хватит, трансформатор работал Н * О * Т! Кстати, это ТО находилось в своем печь прямо перед вытяжным вентилятором, который поддерживал бы ее температуру вниз.
РИСУНОК 5
Рисунок 6 показывает, какое напряжение на виток при разных уровнях мощности. есть для этого трансформатора с сетевым напряжением 105 вольт переменного тока.
РИСУНОК 6
Я думал, что действительно не хочу запускать этот трансформатор с более чем 105-110 вольт на первичной обмотке, чтобы поддерживать сердечник в разумных пределах. температура. Что мне нужно, так это дополнительные первичные витки, чтобы сохранить номинальный линейное входное напряжение на исходной первичной обмотке не более 110 вольт. Если входное линейное напряжение было 125 вольт, а я хотел только 110 вольт на первичной обмотке. обмотка, то мне нужно было сбросить 15 вольт.Из рисунка 4 вольты на виток при уровень мощности около 450 Вт, который я проектировал, составляет 0,825 вольт на виток. Чтобы сбросить 15 вольт, мне понадобится 18 дополнительных витков. Я намотал катушку на 18 витков существующей первичной обмотки и в местах, где были расположены два магнитных шунта. Я подключил его последовательно с первичной обмоткой, фазированной, чтобы обеспечить минимальное напряжение. на тестовой катушке с 16 витками. (НАЖМИТЕ ДЛЯ ИЗОБРАЖЕНИЯ) Почти идеально, без нагрузки на входе 125 вольт получается около 109 вольт. появляется поперек исходной первичной обмотки.
Данные рисунка 4 были повторены с этой дополнительной обмоткой в первичной обмотке и рисунка 4. 7 — результат.
РИСУНОК 7
Теперь разница между разными линейные входные напряжения. Максимальные потери в сердечнике при входном напряжении 125 В теперь составляли всего 170 Вт. по сравнению с более чем 600 Вт ранее.
Новый график вольт на виток был построен и показан на рисунке 8.
РИСУНОК 8
Он показывает, что моя вольт на виток для этого трансформатора теперь упала. от 0.825 до 0,694.
Я заменил очень горячий трансформатор на тот, который сейчас требуется больше витков для той же мощности. Например, обмотка на 20 вольт перед потребовалось бы 24 оборота; теперь требуется 29 витков.
Теперь вопрос: достаточно ли места на сердечнике для дополнительных витков?
Мне также любопытно узнать, будут ли другие трансформаторы для микроволновых печей работать так же горячо как этот. Я буду держать глаза открытыми для другого, чтобы «проверить».
Следите за новостями для дальнейших исследований этого трансформатора, если позволит время.
ФЕВРАЛЯ 2006 ОБНОВЛЕНИЕ:
Теперь у меня была возможность проверить две другие микроволновки. трансформаторы печей (MOT), чтобы увидеть, обладают ли они одинаковыми характеристиками как мой оригинальный трансформер. Короче говоря, они есть.
При подаче 120 В переменного тока без нагрузки на вторую ТО входная мощность даже больше, чем у первого ТО, 588 Вт vs.444 Вт, как показано на Рисунке 9. Третье МОЛ имело немного меньшую входную мощность, чем первое, 360 Вт против 444 Вт, как показано на рисунке 10.
Тестовая катушка на втором ТО показала небольшое проседание выходного напряжения выше 110 вольт на входе, что указывает на приближение насыщения состояние, тогда как испытательная катушка на третьем ТО не показала значительного падения выключенный. Эти кривые показаны на рисунках 11 и 12.
И второй, и третий ТО показали примерно одинаковый холостой ход оборотов на вольт как мое первое ТО.
Строительство второй и третьей ТО практически велось. идентичен первому. Пластины EI были соединены встык и сварены. Размер сердечника второго ТО был идентичен первому. Третье ядро ТО просто немного отличался. Центральное ядро было 3,6 квадратных дюйма по сравнению с оригиналом. 3,5 квадратных дюйма. Его торцевые части были 1,6 квадратных дюйма по сравнению с оригиналом. 1,7 квадратных дюйма. Эта основная разница намного меньше, чем мощность без нагрузки. разница в процентах.Я ожидал, что их характеристики под нагрузкой будут очень аналогично первому.
Еще предстоит определить: почему эти трансформаторы производятся такие, какие они есть, такие отличные от обычных трансформаторов.
КОНЕЦ
Страница высокого напряжения Jochen: трансформаторы для микроволновых печей
Страница высокого напряжения Jochen: трансформаторы для микроволновых печейМикроволновые печи содержат очень мощный трансформатор высокого напряжения (MOT = трансформатор для микроволновой печи), см. Фото.Типичное выходное напряжение составляет 2 кВэфф при мощности около 1000 Вт. Это эквивалентно примерно 0,5 А выходного тока eff при выходном напряжении 2 кВ eff . Ток короткого замыкания еще выше.
ТО. Трансформатор из СВЧ печи. Первичная обмотка (нижняя, толстый провод) 230В, вторичная обмотка (верхняя, тонкий провод) 2кВ. Несколько витков очень толстой проволоки, намотанной поверх вторичной обмотки, подают около 3 В на несколько ампер на нить накала магнетрона. |
Однако MOT не ограничены внутренним током (как OBIT).А поскольку дуга в значительной степени является коротким замыканием вторичной обмотки, выходной ток должен быть ограничен извне для создания дуги. Это можно сделать, вставив резистивную или индуктивную нагрузку в первичную или вторичную цепь, см. Рисунок. При использовании трансформатора (например, другого МОТ) в качестве индуктивной нагрузки вторичная обмотка этого трансформатора может быть замкнута накоротко, чтобы уменьшить его индуктивное сопротивление. Без ограничения тока велика вероятность того, что при зажигании дуги сработает сетевой предохранитель.С ограничением тока или без него вторичная обмотка, вероятно, будет перегреваться, если дуга будет иметь место в течение длительного времени.
На рисунке (а) показано ограничение тока на вторичной стороне с использованием второй МОЛ (с закороченной первичной обмоткой) в качестве балласта. На рисунке (b) показано ограничение тока первичной стороны с помощью нагревательного элемента (чем больше, тем лучше). |
При использовании ограничения тока вторичной стороны помните, что ограничивающий элемент находится на полном выходном напряжении! В частности, при использовании трансформатора с заземленной обмоткой, как показано на рисунке, сердечник трансформатора также находится под высоким напряжением, и его нельзя касаться. |
Несмотря на то, что ток не был заметно ограничен, со всеми MOT, которые я тестировал до сих пор, я мог зажечь дугу без сгорания предохранителя, но обмотка нагревается за секунды!
При подключении ТО к сети (т. Е. При включении) в течение очень короткого времени может быть очень высокий ток. Этого может хватить, чтобы сгорел предохранитель. Этой проблемы можно избежать, используя так называемую схему ограничения тока включения, см. Рисунок. Такая схема используется во всех микроволновых печах, и ее тоже следует беречь при каннибализации такого устройства.После включения резистор ограничивает ток до разумного значения на короткое время, необходимое для переключения реле.
Простая схема ограничения тока включения. Реле должно подходить для прямого управления напряжением сети и иметь возможность переключения в несколько ампер. Резистор должен быть мощным (с проволочной обмоткой) мощностью не менее нескольких ватт. |
Правильное заземление важно для ТО. Внутренний конец вторичной обмотки, который находится рядом с сердечником, должен быть соединен с железным сердечником.Во многих ТО это уже так. Причина в том, что изоляция между сердечником и обмоткой обычно недостаточна для выдерживания полного выходного напряжения. Поэтому, как и OBIT, MOT нельзя подключать последовательно для увеличения выходного напряжения. Только два MOT могут использоваться для двойного выходного напряжения, когда жилы соединены, а первичные обмотки антипараллельны, см. Рисунок ниже. Однако, в принципе, можно подключать произвольно много MOT параллельно для увеличения выходного тока (хотя обычно не более двух могут работать на одной и той же сетевой розетке).
Схема с двумя MOT, дающая выходное напряжение 4 кВ между двумя вторичными обмотками. Обратите внимание, что между каждым из выходов и землей остается только 2 кВ. Каждый из двух блоков, отмеченных пунктирными линиями, символизирует одну МОЛ, один конец которой вторичной обмотки подключен к сердечнику. Вместе они действуют как один трансформатор с вторичной обмоткой с отводом от средней точки. |
МОТ очень опасны из-за высокого выходного тока.Прикосновение к клемме с высоким напряжением, вероятно, приведет к смерти, по крайней мере, к очень серьезным ожогам. Хотя напряжение не очень высокое, оно достаточно велико, чтобы преодолеть воздушный зазор, и, таким образом, правило «одной рукой в кармане» становится бесполезным. |
Этот документ защищен авторским правом. Все права защищены. Никакая часть этого документа не может быть воспроизведена без моего разрешения. Разрешение на копирование и публикацию этого документа или его частей в WWW предоставляется до его явного отзыва при условии, что он сопровождается этим или аналогичным уведомлением об авторских правах, включая мое имя и исходный URL-адрес.