Какие виды заземления бывают: Page not found — HouseHill.ru

Содержание

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C.

Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

 


Смотрите также:


Смотрите также:

Виды заземления. Повторное заземление

Назначение заземления

Сначала определимся с определением заземления. Заземление нужно понимать как специальное электрическое соединение некоторых элементов сети, металлических корпусов различных электроприборов или электроустановок с конструкцией заземления.

Заземление нейтрали и защитное заземление

Устройство заземления нужно рассматривать как некоторую конструкцию специальных заземлителей с заземляющими проводниками, которые представляют собой электрическую связь электроустановки с грунтом.

То есть, эта конструкция заземляющих устройств предназначена для поглощения землей опасного для жизни напряжения, появившегося на металлическом корпусе электроустановки при пробое изоляции сетевых проводов. Заземлители обеспечивают надежный контакт с грунтом, и через проводники связаны с металлическими частями электрических установок.

Для оценки надежности и качества ЗУ существуют определенные значения сопротивления заземления с грунтом. Чем меньше величина сопротивления заземления, тем качественнее электрическое соединение между заземлителем и грунтом. Для идеального варианта сопротивление равно нулю, но такого не может быть из-за наличия удельного электрического сопротивления грунта.

Варианты контура заземления для частного дома

Поэтому для различных типов электросетей определены нормированные сопротивления заземления. Сопротивление заземление нейтрали у трансформатора подстанции по нормативу 4 Ома. Величина сопротивления заземления молниезащиты в однофазных сетях 220 В, также в 3-х фазной электросети 380 В составляет 10 Ом. По правилам ПЭУ 1.7. 103 для систем электропитания TN-C-S частных домов и электросети 220/380 В значение сопротивления заземления не превышает 30 Ом.

Виды заземления и их задачи

Существует два типа заземления электроустановок – это рабочее и защитное. Эти виды заземления имеют свою функциональность. Так рабочее заземление обеспечивает нормальные условия работы электроустановок. Рабочее заземление предназначено для заземления отдельных частей установки, необходимое для эффективной работы. Т. е. здесь не говорится о защитных свойствах заземления.

Как пример, является заземление трансформаторов подстанций, генераторов тока с целью создания рабочего режима и повышения устойчивости и надежности энергосистем. А ответственной задачей защитного заземления будет защита от поражения током во время аварии. Таким образом, защитное заземление предотвращает появление опасного напряжения на тех металлических конструкциях, где его не ждут, но оно может появиться.

Рабочее и защитное заземление в разных системах энергоснабжения

Опасное напряжение может появиться на любых металлических конструкциях, трубах, ограждениях, корпусах. Появится опасное напряжение также может в результате пробоя изоляции проводов, утечки тока через изоляцию, электростатических разрядов, молнии. Работа защитного заземления заключается в отводе опасного напряжения с металлических конструкций на землю и создании тока утечки с заземленных участков, для срабатывания УЗО и отключения электросети.

Важным элементом заземления является сам заземлитель, который имеет прямое соприкосновение с землей. Особенно важным параметром заземлителя считается сопротивление заземления, которое уменьшается с увеличением площади заземлителя. Чтобы увеличить площадь заземлителя устанавливают их несколько, увеличивают их длину, меняют конфигурацию. Со стороны грунта – насыщают солями или вовсе засыпают другой грунт или устанавливают заземление в местах с близкими грунтовыми водами.

Заземлению не подлежат трубы централизованного отопления, водопровод, канализация, трубопровод горючих жидкостей и газопроводы.

В качестве заземлителей можно приспособить естественные заземлители – это конструкции установленные в земле которые соответствуют предъявляемым требованиям. К естественным заземлителям можно отнести арматуру фундаментов, бетонных плит, обсадные трубы.

Повторное заземление

Такое заземление снижает величину опасного напряжения при пробое фазного проводника электроустановки, по отношению к земле в обычном рабочем режиме и в случае обрыва нулевого проводника. Можно сказать что повторное заземление – это заземление которое выполняется не в одном месте, а одновременно в нескольких местах на протяжении всей длины нулевого проводника.

Повторное заземление

Повторное заземление должно выбираться так, чтобы при аварии и к. з. на корпус, отключался ближайший автомат. Контур заземления старых домов уже не соответствует современным требованиям, поэтому необходимо делать повторное заземление. Провод заземления, при повторном заземлении должен быть непрерывным относительно каждого источника напряжения и присоединяется с варкой, а к корпусу приборов возможно соединение болтом.

Устройство заземления. Виды и особенности. Правила и монтаж

Большая часть домов в нашей стране оснащена системой электропередач, не имеющей заземления, по старому образцу. Необходимо помнить, что работа современных бытовых устройств без наличия заземляющего контура способствует возникновению в их деятельности различных неисправностей, и, как следствие, выходу из строя. Владельцам домов приходится самостоятельно производить устройство заземления, которое необходимо для создания электробезопасности.

Основной задачей заземления является отключение напряжения сети при возникновении утечки тока. Это может быть выражено в виде прикосновения человека к токоведущим частям, повреждения изоляции электрических проводов. Другой, не менее важной функцией заземления является создание нормальных условий для работы бытовых электрических устройств.

Некоторые устройства требуют кроме заземляющего контакта в розетке, еще и прямого подключения к шине заземления. Для этого имеются специальные зажимы.

Например, микроволновая печь может создавать фон, опасный для человека, если ее не подключить напрямую к заземляющей шине. На задней стенке корпуса печи может находиться специальная клемма для заземления. А если прикоснуться влажными руками к стиральной машине без заземления, то руки может неприятно щипать. Решить эту проблему можно только, подключив «землю» на корпус стиральной машины. С электрической духовкой ситуация похожа на предыдущие случаи.

Также своеобразно реагирует на наличие заземления бытовой компьютер. Если сделать заземление на корпус системного блока, то может повыситься скорость Интернета, и исчезнут всевозможные зависания.

Не менее важным является устройство заземления в частных домах. Тем более, если дом деревянный. Все дело в возможных ударах молнии. На частных усадьбах много различных частей, которые притягивают молнии: скважины, трубы, колодцы и т. д. При отсутствии молниеотвода и контура заземления, удар молнии с большой вероятностью может привести к пожару. Обычно в сельской местности нет пожарной части, или она удалена, поэтому жилые и подсобные помещения могут пострадать или полностью выгореть за короткий срок. Вместе с заземлением рекомендуется выполнять устройство молниеотвода.

Правила устройство заземления

Искусственные системы заземления используют в случаях, когда естественные элементы заземления не удовлетворяют правилам. В качестве естественных элементов могут служить водопроводные стальные трубы, находящиеся в земле, артезианские скважины, элементы зданий из металла, соединенные с землей и т.п.

Запрещается применять бензопроводы, нефтепроводы и газопроводные трубы в виде естественных заземлителей.

Для самодельных элементов заземления рекомендуется использовать металлический уголок 50 х 50 мм, в длину 3 метра. Эти отрезки забивают в землю в траншее, имеющей глубину 0,7 метра. При этом оставляют 10 см отрезков над дном. К ним приваривают проложенный в траншее стальной пруток диаметром от 10 до 16 мм, либо стальную полосу аналогичного сечения по всему контуру объекта.

По правилам в электрических установках до 1000 вольт сопротивление контура заземления должно быть не выше 4 Ом. Для установок более 1000 вольт сопротивление заземления должно быть не выше 0,5 Ом.

Варианты и особенности

Всего существует 6 систем заземления, но в частных постройках используется чаще всего 2 схемы: TN — C — S и TT. В последнее время популярна первая из этих систем. В ней имеется глухозаземленная нейтраль. Шина РЕ и нейтраль N проводится одним проводом РЕN, на входе в здание устройство заземления разделяется на отдельные ветки.

В такой схеме защита осуществляется электрическими автоматами, при этом не обязательно монтировать устройства защитного отключения. Недостатком такой схемы можно назвать следующий момент. Если повреждается проводник РЕN между подстанцией и домом, то на шине заземления в доме возникнет напряжение фазы. При этом оно не отключается никакой защитой. В связи с этим правила требуют обязательное наличие механической защиты проводника РЕN, и резервное заземление на столбах через каждые 200 метров.

Однако, в селах электрические сети в основном не удовлетворяют этим требованиям. Поэтому целесообразно применять схему ТТ. Эту схему лучше применять для отдельных построек, имеющих грунтовый пол, так как есть вероятность прикосновения сразу к заземлению и грунту, что опасно при схеме TN – C — S.

Отличие состоит в том, что «земля» идет на щит от индивидуального заземления, а не от подстанции. Эта система более устойчива к возникновению повреждений защитного проводника, но требует обязательной установки устройства защитного отключения. Иначе не будет защиты от удара током. Поэтому правила называют такую схему резервной.

Монтаж заземления

Устройство заземления существует двух видов, отличающиеся способом монтажа и свойствами материалов. Один вид состоит из модульной штыревой конструкции заводского исполнения с несколькими электродами, а второй вид выполняется самостоятельно из кусков металлопроката. Эти виды отличаются заглубленными частями, а надземная часть и проводники аналогичны друг другу.

Устройство заземления приобретенное в торговой сети, имеет свои преимущества:
  • Продается комплектом, элементы набора разработаны специалистами с соблюдением всех требований правил, изготовлены на заводском оборудовании.
  • Не требуются сварочные работы, и почти не нужны земляные работы.
  • Дает возможность углубиться в землю на значительную глубину с получением малого сопротивления всего устройства заземления.

Устройство заземления заводского исполнения имеет недостаток это высокая стоимость набора.

Материалы и инструменты

Заземлители, изготовленные самостоятельно, должны быть выполнены из оцинкованного металлопроката: прутка, уголка, либо трубы.

Купленные наборы состоят из омедненных штырей с резьбой. Они соединяются муфтами из латуни. Провод заземления соединяется со штырем зажимом из нержавейки с применением специальной пасты. Заземлители запрещается смазывать или окрашивать.

При выборе сечения проката необходимо учесть тот факт, что при воздействии коррозии со временем сечение уменьшится.

Наименьшие сечения проката выбираются:
  • Оцинкованный пруток – 6 мм.
  • Пруток из металла без покрытия – 10 мм.
  • Прямоугольный прокат – 48 мм2.

Штыри соединяют полосой, проволокой или уголком. Ими подводят заземление до электрического щита. Размеры соединяющего проката: пруток – диаметром 5 мм, прямоугольный профиль – 24 мм2.

Сечение провода заземления в здании не должно быть меньше сечения провода фазы. К этим проводникам имеются требования по диаметру жил:
  • Алюминиевый без изоляции – 6 мм.
  • Медный без изоляции – 4 мм.
  • Изолированный алюминиевый – 2,5 мм.
  • Изолированный медный – 1,5 мм.

Для соединения всех проводников заземления нужно применять заземляющие шины, выполненные из электротехнической бронзы. По схеме ТТ элементы щита крепятся на стенку ящика.

Заземлители, изготовленные самостоятельно, забивают в землю кувалдой, а заводские элементы с помощью отбойного молотка. В обоих вариантах целесообразно использовать стремянку. Прокат из черного металла сваривается ручной сваркой.

Земляные работы

Заземлители располагают от фундамента на расстоянии 1 метра. Размечается контур заземления в виде треугольника, окружности или линии. Расстояние между штырями должно быть не менее 1,2 м. Рекомендуется сделать треугольник с 3-метровой стороной, и длиной штырей 3 метра.

Затем копают траншею глубиной 0,8 м. Ее ширина должна быть удобной для сварки проводников. Чаще всего делают траншею шириной 0,7 м.

Подготовка электрода (штыря)

Электрод заостряется с помощью болгарки. Если металлопрокат, бывший в употреблении, то необходимо его очистить от старого покрытия. На штырь заводского исполнения навинчивается острая головка, место соединения смазывается специальной пастой.

Заглубление электродов

Электроды забивают в землю с помощью кувалды. Начинать удары лучше, находясь на стремянке или подмостьях. При мягком металле удары наносят через деревянные бруски. Штыри забиваются не до конца, над поверхностью дна оставляют 10-20 см для выполнения соединения с контуром.

Заводские электроды забивают отбойным молотком. После заглубления штыря, на него навинчивают муфту и другой заземлитель. Далее процесс повторяют до достижения необходимой глубины.

Соединение электродов

Штыри обычно соединяют полосой 40 х 4 мм. Для проката из черного металла используют сварочное соединение, так как болты быстро подвергнутся коррозии, что увеличит сопротивление контура. Сваривать необходимо качественным швом.

Заземление от готового контура проводится полосой к дому, загибается и крепится на фундаменте. На краю полосы приваривают болт для крепления провода от щита.

На последний электрод монтируется крепежный хомут и закрепляется провод. Зажим герметизируют специальной лентой.

Засыпка траншеи

Для засыпания траншеи целесообразно использовать плотную однородную почву.

Устройство заземления, приобретенное в магазине, с одним штырем, может иметь в комплекте пластмассовый колодец для ревизии.

Проведение в щит

Распределительный щит фиксируется на стене здания, кроме мест с высокой влажностью. Сквозь стены провод проводят с применением трубных гильз. В щитке провод заземления соединяется с заземляющей шиной, установленной на корпусе щита, болтовым соединением.

Сопротивление заземления проверяют мультиметром. Если оно оказывается больше 4 Ом, то нужно увеличить число электродов. На разъем шины заземления также подключаются провода заземления в желтой изоляции, которые приходят в щит от потребителей. При присоединении светильников, розеток, различных устройств желтые провода заземления также подключают к своим клеммам. Например, в розетках такая клемма с винтом расположена в центре.

Похожие темы:

Системы заземления: обзор самых популярных

Подключение заземления является одним из наиболее важных способов предохранить человека от поражения блуждающим током электрической сети. Для этого применяются соответствующие системы заземления. От них будет зависеть не только безопасность человека, но и правильное функционирование электротехнических приборов и другого защитного оборудования.

Виды систем

Системы типа TN-C-S на схеме

Системы заземления принято классифицировать. Стандарты, по которым определяется тип защитной конструкции заземления, были приняты Международной электротехнической комиссией и Госстандартом Российской Федерации. Так принято различать несколько типов систем.

Система TN. Данный тип имеет характерное отличие от других – наличие глухозаземленной нейтрали в схеме. В TN все открытые проводящие участки любого электрооборудования подсоединяются к определенному глухозаземленному нейтральному участку отдельного источника питания электроэнергией путем подключения защитных проводников («ноль»). В этой системе глухозаземленная нейтраль означает, что «ноль» трансформатора подключен к заземляющему контуру. Используется для заземления электрического оборудования (телевизоры, системный блок компьютера, холодильник, бойлер и другая техника).

Подсистема TN-C. Это система TN, где защитные и нулевые проводники на всей линии совмещаются в одном PEN. Это значит, что выполнено специальное защитное зануление. Данная система была актуальна в 90-х годах, но на сегодняшний день устарела. Обычно используется для внешнего освещения для экономии средств. Не рекомендуется для установки в современных жилых зданиях.

Подсистема TN-S. В TN-S защитный и нулевой проводники разделены. Данная подсистема считается самой надежной и безопасной, но это обычно влечет большие финансовые траты. Используется для предохранения телевизионных коммуникаций, что позволят устранить большинство помех при слаботочной сети. Подсистема TN-C-S. Система заземления TN C S является промежуточной схемой. В данном случае защитный и рабочий контакты должны совмещаться только в одном месте. Зачастую это делают в главном распределительном щите комплекса.

Схема системы зануления и заземления

Совмещается защитное заземление с занулением. А во всех остальных участках системы TN C S эти проводники должны быть разделены друг от друга. Данная система считается самым оптимальным решением для электрической сети любого здания (промышленные, жилые, общественные).

Выгодное соотношение качества и цены. Другие способы подключения заземляющих электроустановок не позволяют обеспечить надежное функционирование на отдельных частях. В зависимости от требуемого уровня сопротивления подбирается сечения проводников.

Система ТТ. Система данного типа имеет характерную особенность – нулевой проводник источника заземляется, а открытые проводящие части электроустановок подключены к заземлению. Заземляющий контур же независим от заземленной нейтрали основного источника электроснабжения. Это означает, что оборудования используется отдельный контур заземления, не связанный с нулевым проводником.

Система ТТ используется для различных мобильных сооружений или в местах, где нет возможности оборудовать защитное заземление по всем стандартам и нормам. Предусматривается обязательное подключение устройств защитного отключения с качественным заземлением (при напряжении в 380 вольт сопротивление должно быть не менее 4 Ом). Уровень сопротивления должен учитывать конкретный тип автоматического выключателя.

Схема обустройства системы в земле

Система IT. Характерная особенность схемы – нулевой проводник источника питания заземляется через электрические приборы или от земли. Приборы должны иметь высокое сопротивление, а проводящие части электроустановок заземляться при помощи заземляющего оборудования. Высокое сопротивление электрических приборов позволит увеличить надежность системы.

IT используется не часто, обычно для электрооборудования в зданиях особого назначения (например, бесперебойное электроснабжение системного блока ПЭВМ, аварийное освещение больниц), где повышено требование к надежности и безопасности. У каждой из этих систем есть свои преимущества и недостатки. В связи с этим необходимо правильно подбирать схему установки защитного заземления для конкретных ситуаций.

Как работает TN

В соответствии с нормами Правил устройства электроустановок (ПУЭ) система TN является самой надежной. Принцип ее работы позволяет обеспечить надежную защиту человека и подключенного электрооборудования от блуждающих токов.

Главное условие для безопасной и надежной работы системы TN – значение тока между фазным проводником и неизолированной частью при возникновении короткого замыкания в электрической сети обязательно должны превышать значение тока, при котором должны срабатывать защитные устройства. Для данной системы также возникает необходимость подключения устройства защитного отключения и дифференциальных автоматов.

Видео “Продвинутая система заземления”

Устраиваем систему заземления

Если вы решили сделать заземляющий контур самостоятельно, то для заземляющей конструкции необходимо использовать обычный черный металл. Для этого подойдут железные уголки, стальные полосы, трубы и другие конструкции. Такой материал имеет оптимальное сопротивление и невысокую стоимость. Перед началом монтажных работ нужно составить проект, который будет содержать описание конструкции, используемого материала, размеров, места расположения технической коммуникации, тип грунта и другие параметры.

Обязательно нужно знать, в какой тип грунта будет устанавливаться контур заземления. От этого будет зависеть уровень сопротивления. Так в песчаной почве сопротивление значительно выше, чем в обычной земле. На сопротивление будет влиять влажность грунта и наличие подземных вод. Влажность земли будет изменяться в зависимости от климата местности, где будут проводиться монтажные работы.

Схема и монтаж

Специалисты в области электротехники настоятельно рекомендуют использовать готовые схемы по установке заземляющих конструкций. Готовое оборудование можно приобрести в специализированных магазинах. К заземляющему комплекту прилагается соответствующая схема подключения и монтажа. Комплект сертифицирован и имеет гарантию на эксплуатацию.  Но такую конструкцию можно сделать самостоятельно. Наиболее распространенные заземляющие конструкции имеют форму треугольника и квадрата. Первый способ более экономный.

На месте, где будет установлена защитная конструкция, нужно начертить условный равносторонний треугольник. Его вершины должны быть на расстоянии 1,5 м друг от друга. По контуру выкапывается траншея глубиной в 1 м. В местах вершин будут забиты 3 основных проводника – круглая арматура (диаметр – от 35 мм, длина – 2-2,5м). Арматура забивается в землю, затем они должны соединиться металлической шиной (ширина – 40 мм, толщина – 4 мм). Крепление осуществляется сваркой. Заземляющий провод будет отходить от конструкции к распределительному щиту.

Затем траншея зарывается. После завершения монтажных работ нужно провести проверку заземляющего контура. Для этого используется специальное оборудование, которое позволяет измерить сопротивление на отдельных участках земли (до 15 метров от заземляющей конструкции). При правильной установке сопротивление не будет превышать 4 Ома. При более высоких значениях нужно перепроверить места соединения. Мультиметр для проверки не подойдет.

Видео “Зануление и заземление”

Все, что вам необходимо знать о данных понятиях, можно найти в видео-ролике ниже. Основные принципы, нюансы и особенности их подключения и монтажа приведены.

Типы режимов нейтрали электрических сетей

Различают пять типов сетей трёхфазного переменного тока:

1. Трёхпроводная сеть с изолированной от земли нейтралью. В качестве защитного мероприятия применяют заземление корпусов электрооборудования. Буквенное обозначение IT.

I – от французского слова isole, — изолированная

T – от французского слова terre – земля.

Рисунок 1. Система IТ.

2. Трёхпроводная сеть с глухо заземлённой нейтралью с местным защитным заземлением корпусов. Буквенное обозначение ТТ.

1-я Т – заземление нейтрали,

2-я Т –заземление корпусов оборудования.

Рисунок 2. Система ТТ.

3. Четырёхпроводная сеть с глухо заземлённой нейтралью с использованием нейтрали для зануления корпусов электрооборудования.  Буквенное обозначение TN-C. 

1-я Т – заземление нейтрали,

2-я  N – заземление корпусов через нейтральный проводник (N от neutre – нейтральный),

3-я С – что этот проводник является одновременно рабочим и защитным (С от combine – комбинированный, совместный).

Рисунок 3. Система TN-C.

4. Пятипроводная сеть с глухо заземлённой нейтралью и отдельными рабочим и защитным нейтральным (нулевым) проводниками. Буквенное обозначение TN-S.

1-я Т – заземление нейтрали, 

2-я  N – заземление корпусов через нейтральный проводник (N от neutre – нейтральный), 

3-я S – от слова separate – «раздельный».

Рисунок 4. Система TN-S.

5. Частично четырёх, и частично пятипроводная сеть с глухо заземлённой нейтралью – сеть TN – C – S.

Рисунок 5. Система TN-C-S.

Предлагаем вашему вниманию видеоролик о системах заземления. Системы заземления по ПУЭ. 

Виды и особенности применения систем заземления

Заземление — ключевой элемент безопасного электроснабжения промышленного, гражданского, жилого объекта. Принцип действия основан на проведении электрического тока с оказавшегося под напряжением корпуса агрегата, электробытового, сантехнического прибора или иного токопроводящего элемента по пути наименьшего сопротивления.

Необходимость и виды систем заземления

Основная его функция — предохранение людей и животных от поражения электрическим током. При расчёте электрических схем в качестве стандартного показателя сопротивления человеческого тела принимается значение в 1 тыс. Ом (в реальности свыше 3 тыс. Ом). Сопротивление схемы должно превышать 4 Ом. В этом случае действие электрического тока минимизирует неприятные для человека ощущения в виде покалываний, и полностью исключит серьёзные негативные последствия для организма, в том числе тяжёлого травматического характера или летального исхода.

Защитное заземление относится к сложным электрическим конструкциям, которые нуждаются в постоянном контроле, тестировании и профилактике. Особое внимание уделяется проверке уровня сопротивления.

Защита электрических установок от появления напряжения в непредусмотренных местах в результате пробоя изоляции, нарушения схемы соединения электрической цепи производится заземлением или его подвидом — занулением.

  1. Заземление использует принцип снижения разности потенциалов между токопроводящим изделием и непосредственно землёй до безопасного уровня. Включает одиночную или групповую конструкцию проводников. Чаще всего из электродов создаётся специальный контур, который устанавливается в безопасном месте. Из здания к нему подводятся кабели, уложенные в землю.
  2. Зануление. Представляет собой электрическую цепь, в которой напряжение с корпуса электрической установки отводится в распределительный щит или в трансформаторное устройство. В нём вместо защитного заземляющего провода задействуют рабочую нулевую жилу. В отличие от заземления, зануление при резких перепадах напряжения (прикосновение человека к оголённым проводам, корпусу прибора, непредвиденно оказавшегося под напряжением) вызывает в электрической цепи короткое замыкание с немедленным её разрывом через автоматические выключатели, называемые защитными отключающими устройствами (ЗОУ).

При разработке электрической схемы во внимание принимается не сопротивление человека, а максимальное значение тока, которое он может безопасно пропустить через себя. При прикосновении к устройству, находящемуся под напряжением 220 В, частоте 50 Гц, максимальный ток не должен превышать 0,22 А. Показатель 0,5 А смертелен для человека. Зануление применяется в многоэтажных строениях, поскольку имеются сложности с созданием контуров заземления. В малоэтажных строениях и небольших промышленных объектах (мастерские, цеха, станции техобслуживания) предпочтение отдаётся заземлению.

Формы конструкций

Защитное заземление — это специальная электрическая цепь, соединяющая корпуса и иные токопроводящие элементы агрегатов промышленного и бытового назначения с конструкцией заземления. Помимо обеспечения безопасности людей и животных, заземление необходимо для защиты самих объектов. Все молниеотводы замыкаются на общий для дома заземляющий контур. Неправильная установка конструкции приводит к пожарам (20% всех возгораний). Заземление предотвращает аварийное функционирование генераторов и других агрегатов. Основные элементы схемы — заземлители. Они бывают естественными и искусственными

Естественные элементы

Наиболее употребительны, поскольку их использование эффективно с экономической точки зрения. К ним относятся:

  • металлические или железобетонные изделия промышленных и гражданских строений, фермы, лифтовое оборудование, токопроводящие трубы для кабелей. Главное условие — их соприкосновение с землёй;
  • трубопроводы, продуктопроводы, канализационные системы, столбы, вкопанные в землю цистерны, арматура, дренажные системы. Главное условие — отсутствие легковоспламеняющихся, взрывоопасных, горючих веществ;
  • железнодорожные пути, оболочки кабелей из свинца, основания металлических мостовых сооружений, тоннелей.

Искусственные заземлители

Применяются стальные трубы и прутья. Изделия из меди более эффективны, поскольку обладают низким сопротивлением. Однако металл используется редко из-за дороговизны. На смену стали приходят специальные алюминиевые сплавы. По сути, это сложные композиционные материалы, обладающие повышенной прочностью, в 5 раз превышающей показатели аналогичных по размерам стальных изделий. Инертны к воздействию агрессивной среды, не подвержены коррозии, не образуют условий для развития микроорганизмов (плесени, грибков). Хорошо проводят электрический ток.

Факторы, влияющие на выбор системы

Заземление — обязательный атрибут эксплуатация электрических потребителей, независимо от их мощности и функционального назначения. Они могут быть представлены крупными промышленными установками, станками, электрическими двигателями, подъёмными механизмами, кранами или бытовой техникой: холодильники, стиральные машины, кофеварки, электробритвы. Принцип устройства заземления для систем идентичен. Безопасность работы с ними чётко регламентирована «Правилами устройства электроустановок» (ПУЭ).

В документе подчёркнуто, что основным показателем, характеризующим правильность и качество проектирования и монтажа заземления, служит сопротивление всей схемы. Формула его определения сложна. Она должна учитывать множество факторов, включая тип грунта, материал структурных элементов конструкции, площадь взаимодействия устройства с землёй, сечение соединительного кабеля, токопроводящие свойства жилы.

Общие сведения и обозначение

В нормативных документах базовые расчётные показатели приводятся для систем с искусственными заземлителями. Для естественных электродов практически невозможно рассчитать токи рассеивания, сопротивление и другие показатели. Они индивидуальны для каждого конкретного случая.

Все системы искусственного заземления классифицированы с использованием буквенных обозначений. Они утверждены Международной электротехнической комиссией и применяются в ПУЭ. Буква Т (от французского terre — земля) обозначает заземление, I (isole) — изолирование, N (neute) — соединение с нейтральным проводом, C (combined) — объединение функционального и нулевого проводов, S (separated) — разделение этих проводов.

Система TN служит для глухого соединения нуля трансформатора или электрического щитка с землёй. Нейтраль играет основную роль для быстрого срабатывания релейной защиты. К ней подключаются функциональные и защитные жилы кабельных соединений.

Токопроводящие элементы электрических потребителей: корпуса, экраны, розетки, выключатели подключаются к единому нулевому проводу, контактирующему с нейтралью. Помимо глухозаземленной, применяются схемы заземления с изолированной нейтралью (системы IT).

Виды заземлений в электроустановках

В отечественной и зарубежной электротехнической практике получили распространение следующие системы заземлений.

Система TN-S

Высоконадежная схема безопасности электрической сети. Обеспечивает качественную защиту человека от поражения электрическим током. На неё не воздействуют высокочастотные колебания от электробритв, дрелей, пылесосов, стиральных машин, электрических массажных устройств. Для системы нет необходимости частой проверки контуров заземления.

Основная идея способа состоит в том, что для защиты применяется сложно комбинированный нулевой проводник PEN, соединённый с нейтралью. На входе. PEN разделяется на защитный ноль РЕ и рабочий ноль N. Система теряет защитные свойства при повреждении PEN на участке от подстанции до входа в здание. Поэтому нормативные документы требуют применения дополнительных мер для повышения эксплуатационной безопасности проводника.

Система TN-C

Наиболее распространённая, но постепенно снижающая популярность ввиду морального устаревания. Заземляющий контур изготовлен на трансформаторной подстанции. Нулевая жила от контура до потребителя подводится по единственному проводу PEN. При однофазном электроснабжении сооружения применяется двухжильная электрическая проводка (фаза и ноль). При трехфазном — четырехжильная (3 фазы и ноль). Заземление в розетках не предусматривается.

Единственный вариант связан с использованием зануления Защита человека и животных от удара электрическим током существует, но не относится к надёжным. Популярность системы объясняется простотой монтажа. В строящихся зданиях и домах установка системы TN-C запрещена.

Система TN-C-S

Модернизированный тип TN-C. Отличительная черта заключается в том, что проводник PEN на пути к потребителю разделяется на две составляющие: нулевую жилу N и защитный ноль PE. Обычно эта операция проводится в распределительном устройстве (электрический щит), где монтируются нулевая и защитная шины. Они соединяются между собой перемычкой. Защитная шина соединяется с контуром заземления.

При однофазной электропроводке в квартиру или частный дом входит кабель с тремя жилами (фаза, ноль и защита). При трехфазной — пятижильный кабель (3 фазы, N и PE). Это позволяет устанавливать розетки с клеммами для заземления. Защитная жила обеспечивает безопасность электрических установок.

Рабочий ноль служит для передачи электроэнергии потребителю. TN-C-S имеет хорошие перспективы для применения в странах СНГ, поскольку многие домовладельцы по финансовым соображениям не могут устанавливать TN-S.

Система IT

Устаревшая, но не утратившая актуальности схема. Применяется в условиях, требующих повышенной безопасности электроснабжения: шахты, рудники, химические, газоперерабатывающие заводы. На этих предприятиях возможны скопления или внезапные выбросы горючих газов. Заземление с изолированной нейтралью исключает образование искр.

Обычно применяются в сетях с напряжением до 1 тыс. В. Главная особенность — отсутствие разности потенциалов между токопроводящими поверхностями и местным заземлением. Малые токи позволяют продолжать работу электроустановки при однофазном заземлении.

Но в целом система не очень надёжна. В ней неприменимы стандартные токовые защитные аппараты (ЗОУ). Схемы безопасности сложны, требуют постоянного участия оператора.

Системы заземления TN-C-S и особенно TN-S высокоэффективны. ПУЭ только они разрешены для установки на промышленных объектах и в частном домовладении. Остальные схемы с глухозаземленной нейтралью применяются как остаточные явления. Эксплуатационные ресурсы у них невелики.

Опасность пробоя изоляции или возникновения другой неисправности высока. Она возрастает по мере увеличения токовой нагрузки со стороны потребителей. Всё большее распространение получают электрическое отопление, насосы, электрические станки, установки. В частном секторе электроэнергия используется для ведения малого и среднего бизнеса (фермы, мини-заводы по изготовлению строительных материалов, СТО). К заземлению предъявляются повышенные требования. Предпочтение следует отдавать искусственным системам, так как в них чётко регламентируются нормы.

Какие бывают заземления. Как сделать заземление

Мой рассказ будет состоять из трёх частей.
1 часть. Заземление (общая информация, термины и определения).
2 часть. Традиционные способы строительства заземляющих устройств (описание, расчёт, монтаж).
3 часть. Современные способы строительства заземляющих устройств (описание, расчёт, монтаж).

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления

А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

— совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:

— проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).
Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро:-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:

Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).
Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

— проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)
Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро:-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:

— “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:

Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:
в составе внешней молниезащитной системы в виде заземленного молниеприёмника
в составе системы защиты от импульсного перенапряжения
в составе электросети объекта

Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” в конденсаторе и газовый разряд в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.

Классический УЗИП представляет собой газовый разрядник, рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд:-) между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).


Сопротивление в основном зависит от двух условий:
площадь (S) электрического контакта заземлителя с грунтом
электрическое сопротивление (R) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.
(Если интересно, можно посмотреть , используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:
для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)

В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:


Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве — в следующих частях.

Алексей Рожанков, технический специалист.

При подготовке данной статьи использовались следующие материалы:
Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания
ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87
Публикации на сайте “ ”
Собственный опыт и знания

Подключение заземления является одним из наиболее важных способов предохранить человека от поражения блуждающим током электрической сети. Для этого применяются соответствующие системы заземления. От них будет зависеть не только безопасность человека, но и правильное функционирование электротехнических приборов и другого защитного оборудования.

Системы заземления принято классифицировать. Стандарты, по которым определяется тип защитной конструкции заземления, были приняты Международной электротехнической комиссией и Госстандартом Российской Федерации. Так принято различать несколько типов систем.

Система TN. Данный тип имеет характерное отличие от других – наличие глухозаземленной нейтрали в схеме. В TN все открытые проводящие участки любого электрооборудования подсоединяются к определенному глухозаземленному нейтральному участку отдельного источника питания электроэнергией путем подключения защитных проводников («ноль»). В этой системе глухозаземленная нейтраль означает, что «ноль» трансформатора подключен к заземляющему контуру. Используется для заземления электрического оборудования (телевизоры, системный блок компьютера, холодильник, бойлер и другая техника).

Подсистема TN-C. Это система TN, где защитные и нулевые проводники на всей линии совмещаются в одном PEN. Это значит, что выполнено специальное защитное зануление. Данная система была актуальна в 90-х годах, но на сегодняшний день устарела. Обычно используется для внешнего освещения для экономии средств. Не рекомендуется для установки в современных жилых зданиях.

Подсистема TN-S. В TN-S защитный и нулевой проводники разделены. Данная подсистема считается самой надежной и безопасной, но это обычно влечет большие финансовые траты. Используется для предохранения телевизионных коммуникаций, что позволят устранить большинство помех при слаботочной сети. Подсистема TN-C-S. Система заземления TN C S является промежуточной схемой. В данном случае защитный и рабочий контакты должны совмещаться только в одном месте. Зачастую это делают в главном распределительном щите комплекса.


Совмещается . А во всех остальных участках системы TN C S эти проводники должны быть разделены друг от друга. Данная система считается самым оптимальным решением для электрической сети любого здания (промышленные, жилые, общественные).

Выгодное соотношение качества и цены. Другие способы подключения заземляющих электроустановок не позволяют обеспечить надежное функционирование на отдельных частях. В зависимости от требуемого уровня сопротивления подбирается сечения проводников.

Система ТТ. Система данного типа имеет характерную особенность – нулевой проводник источника заземляется, а открытые проводящие части электроустановок подключены к заземлению. Заземляющий контур же независим от заземленной нейтрали основного источника электроснабжения. Это означает, что оборудования используется отдельный контур заземления, не связанный с нулевым проводником.

Система ТТ используется для различных мобильных сооружений или в местах, где нет возможности оборудовать защитное заземление по всем стандартам и нормам. Предусматривается обязательное подключение устройств защитного отключения с качественным заземлением (при напряжении в 380 вольт сопротивление должно быть не менее 4 Ом). Уровень сопротивления должен учитывать конкретный тип автоматического выключателя.


Система IT. Характерная особенность схемы — нулевой проводник источника питания заземляется через электрические приборы или от земли. Приборы должны иметь высокое сопротивление, а проводящие части электроустановок заземляться при помощи заземляющего оборудования. Высокое сопротивление электрических приборов позволит увеличить надежность системы.

IT используется не часто, обычно для электрооборудования в зданиях особого назначения (например, бесперебойное электроснабжение системного блока ПЭВМ, аварийное освещение больниц), где повышено требование к надежности и безопасности. У каждой из этих систем есть свои преимущества и недостатки. В связи с этим необходимо правильно подбирать схему установки защитного заземления для конкретных ситуаций.

Как работает TN

В соответствии с нормами Правил устройства электроустановок (ПУЭ) система TN является самой надежной. Принцип ее работы позволяет обеспечить надежную защиту человека и подключенного электрооборудования от блуждающих токов.

Главное условие для безопасной и надежной работы системы TN – значение тока между фазным проводником и неизолированной частью при возникновении короткого замыкания в электрической сети обязательно должны превышать значение тока, при котором должны срабатывать защитные устройства. Для данной системы также возникает необходимость подключения устройства защитного отключения и дифференциальных автоматов.

Видео «Продвинутая система заземления»

Устраиваем систему заземления


Если вы решили сделать заземляющий контур самостоятельно, то для заземляющей конструкции необходимо использовать обычный черный металл. Для этого подойдут железные уголки, стальные полосы, трубы и другие конструкции. Такой материал имеет оптимальное сопротивление и невысокую стоимость. Перед началом монтажных работ нужно составить проект, который будет содержать описание конструкции, используемого материала, размеров, места расположения технической коммуникации, тип грунта и другие параметры.

Обязательно нужно знать, в какой тип грунта будет устанавливаться контур заземления. От этого будет зависеть уровень сопротивления. Так в песчаной почве сопротивление значительно выше, чем в обычной земле. На сопротивление будет влиять влажность грунта и наличие подземных вод. Влажность земли будет изменяться в зависимости от климата местности, где будут проводиться монтажные работы.

Схема и монтаж

Специалисты в области электротехники настоятельно рекомендуют использовать готовые схемы по установке заземляющих конструкций. Готовое оборудование можно приобрести в специализированных магазинах. К заземляющему комплекту прилагается соответствующая схема подключения и монтажа. Комплект сертифицирован и имеет гарантию на эксплуатацию. Но такую конструкцию можно сделать самостоятельно. Наиболее распространенные заземляющие конструкции имеют форму треугольника и квадрата. Первый способ более экономный.


На месте, где будет установлена защитная конструкция, нужно начертить условный равносторонний треугольник. Его вершины должны быть на расстоянии 1,5 м друг от друга. По контуру выкапывается траншея глубиной в 1 м. В местах вершин будут забиты 3 основных проводника – круглая арматура (диаметр – от 35 мм, длина – 2-2,5м). Арматура забивается в землю, затем они должны соединиться металлической шиной (ширина – 40 мм, толщина – 4 мм). Крепление осуществляется сваркой. Заземляющий провод будет отходить от конструкции к распределительному щиту.

Затем траншея зарывается. После завершения монтажных работ нужно провести проверку заземляющего контура. Для этого используется специальное оборудование, которое позволяет измерить сопротивление на отдельных участках земли (до 15 метров от заземляющей конструкции). При правильной установке сопротивление не будет превышать 4 Ома. При более высоких значениях нужно перепроверить места соединения. Мультиметр для проверки не подойдет.

Содержание:

Важнейшей частью проектирования, монтажа и дальнейшей эксплуатации оборудования и электроустановок является правильно выполненная система заземления. В зависимости от используемых заземляющих конструкций, заземление может быть естественным и искусственным. Естественные заземлители представлены всевозможными металлическими предметами, постоянно находящимися в земле. К ним относится арматура, трубы, сваи и прочие конструкции, способные проводить ток.

Но электрическое сопротивление и другие параметры, присущие этим предметам, невозможно точно проконтролировать, и спрогнозировать. Поэтому с таким заземлением нельзя нормально эксплуатировать любое электрооборудование. Нормативными документами предусматривается только искусственное заземление с использованием специальных заземляющих устройств.

Классификация систем заземления

В зависимости от схем электрических сетей и других условий эксплуатации, применяются системы заземления TN-S, TNC-S, TN-C, TT, IT, обозначаемые в соответствии с международной классификацией. Первый символ указывает на параметры заземления источника питания, а второй буквенный символ соответствует параметрам заземления открытых частей электроустановок.

Буквенные обозначения расшифровываются следующим образом:

  • Т (terre — земля) — означает заземление,
  • N (neuter — нейтраль) — соединение с нейтралью источника или зануление,
  • I (isole) соответствует изоляции.

Нулевые проводники в ГОСТе имеют такие обозначения:

  • N — является нулевым рабочим проводом,
  • РЕ — нулевым защитным проводником,
  • PEN — совмещенным нулевым рабочим и защитным проводом заземления.

Система заземления TN-C

Заземление TN относится к системам с глухозаземленной нейтралью. Одной из его разновидностей является заземляющая система TN-C. В ней объединяются функциональный и защитный нулевые проводники. Классический вариант представлен традиционной четырехпроводной схемой, в которой имеется три фазных и один нулевой провод. В качестве основной шины заземления используется , соединяемая со всеми токопроводящими открытыми деталями и металлическими частями, с помощью дополнительных нулевых проводов.


Главным недостатком системы TN-C является потеря защитных качеств при отгорании или обрыве нулевого проводника. Это приводит к появлению напряжения, опасного для жизни, на всех поверхностях корпусов устройств и оборудования, где отсутствует изоляция. В системе TN-C нет защитного заземляющего проводника РЕ, поэтому у всех подключенных розеток заземление также отсутствует. В связи с этим для всего используемого электрооборудования требуется устройство — подключение деталей корпуса к нулевому проводу.

В случае касания фазного провода открытых частей корпуса, произойдет короткое замыкание и срабатывание автоматического предохранителя. Быстрое аварийное отключение устраняет опасность возгорания или поражения людей электрическим током. Категорически запрещается использовать в ванных комнатах дополнительные контуры, уравнивающие потенциалы, в случае эксплуатации заземляющей системы TN-C.


Несмотря на то что схема tn-c является наиболее простой и экономичной, она не используется в новых зданиях. Эта система сохранилась в домах старого жилого фонта и в уличном освещении, где вероятность поражения электрическим током крайне низкая.

Схема заземления TN-S, TN-C-S

Более оптимальной, но дорогостоящей схемой считается заземляющая система TN-S. Для снижения ее стоимости были разработаны практические меры, позволяющие использовать все преимущества данной схемы.


Суть этого способа заключается в том, что при подаче электроэнергии с подстанции, применяется комбинированный нулевой проводник PEN, соединяемый с глухозаземленной нейтралью. На вводе в здание он разделяется на два проводника: нулевой защитный РЕ и нулевой рабочий N.


Система tn-c-s обладает одним существенным недостатком. При отгорании или каком-либо другом повреждении проводника PEN на участке от подстанции до здания, на проводе РЕ и деталях корпуса приборов, связанных с ним, возникает опасное напряжение. Поэтому одним из требований нормативных документов по обеспечению безопасного использования системы TN-S, являются специальные мероприятия по защите провода PEN от повреждений.

Схема заземления TT

В некоторых случаях, когда электроэнергия подается по традиционным воздушным линиям, становится довольно проблематично защитить комбинированный заземляющий проводник PEN при использовании схемы TN-C-S. Поэтому в таких ситуациях применяется система заземления по схеме ТТ. Ее суть заключается в глухом заземлении нейтрали источника питания, а также использовании четырех проводов для передачи трехфазного напряжения. Четвертый проводник используется в качестве функционального нуля N.


Подключение модульно-штыревого заземлителя осуществляется чаще всего со стороны потребителей. Далее он соединяется со всеми защитными проводниками заземления РЕ, связанными с деталями корпусов приборов и оборудования.

Схема TT применяется сравнительно недавно и уже хорошо зарекомендовала себя в частных загородных домах. В городах система ТТ применяется на временных объектах, например, торговых точках. Подобный способ заземления требует использования защитных устройств в виде УЗО и выполнения технических мероприятий по защите от грозы.

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.


Основной деталью системы IT является изолированная нейтраль источника I, а также Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C, TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

Практически каждый дом оборудован заземлением. Его задачей, является обеспечение безопасности при использовании человеком электрических установок. Среди профессионалов принято разделять системы заземления на несколько видов. О существующих вариантах мы и поговорим в нашей статье.

В мировой области электричества принято классифицировать заземление на три типа, и определить их можно при помощи аббревиатуры ТТ, TN, IT. Каждая из букв имеет следующее значение:

  • Т — заземление, переводится от французского слова terra — почва;
  • N — это нейтраль, означает, что данная система занулена;
  • I — говорит о наличии изоляции заземлителя.

Важно! Расположение букв систем заземления играет важную роль и несет определенное обозначение.

Значение первой буквы показывает принцип заземления источника питания, обозначение второй буквы в системе указывает на заземление проводящих открытых деталей электрического оборудования. Последние буквы говорят о функциональности нулевого и защитного проводников.

Системы заземления для частного дома

Давайте рассмотрим варианты заземления поближе, каждому из которых уделим отдельный раздел.

Заземление TN и его подвиды

О заземляющих системах уже многое казано, однако мало кто уделяет внимание расшифровке. Создавая защиту электрооборудования, нужно обязательно учитывать каждую подробность, ведь впоследствии часто возникают проблемы при ремонте или реконструкции системы.


Эта разновидность отличается от остальных тем, что имеет грузозаземленную нейтраль. Эта установка предусматривает присоединение открытых проводящих частей к нулевой точке питающего источника. Вы наверняка спросите, что такое «глухозаземленная нейтраль». Общими словами, это понятие представляет собой подключение нейтрального проводника непосредственно к заземляющему проводнику на трансформаторной установке.

Электрическая безопасность в этой системе достигается благодаря превышению напряжения открытой части установки и «фазы» над значением срабатывания электрического потенциала за конкретное время.

Система заземления TT: подробная характеристика

Данный тип заземления отличается от предыдущей схемы тем, что имеет «землю» на нейтральном прводе, при этом открытые проводящие части электрооборудования, непосредственно соединяются с системой защиты. Система ТТ предусматривает отдельный монтаж контура заземления . Этот тип защиты применяется в современных условиях для бытовок, мобильных и переносных сооружений.


Системы заземления для квартирного дома

Важно! При разработке этой системы заземления, необходимо использовать устройство защитного отключения (УЗО).

Заземляющая конструкция IT

IT заземление используется значительно реже, в отличие от предыдущих систем. Можно встретить такое оборудование в зданиях специального назначения и на промышленных предприятиях. Преимущественно устанавливается для аварийного освещения.

Характеризуется конструкция наличием заизолированной нейтрали источника питания от «земли». В некоторых случаях возможно ее заземление через потребительные приборы.

Важно! Применять IT систему заземления необходимо только в условиях повышенного требования энергобезопасности.

Каким методом выполняют устройство системы заземления?


Схема системы заземления

Сегодняшним днем зарегистрировано несколько технологий, предусматривающих устройство распространенных систем заземления. Весьма широко применяются два метода, которые мы сейчас и разберём.

  1. Стандартная методика характеризуется выполнением заземлительной конструкции посредством сырья черной металлургии. Изначально разрабатывается проект, и после подготовки всего инструментария, приступают к реализации контура на местности. При этом учитываются ряд факторов, которые могут повлиять на конструкцию. Использование данной технологии усовершенствовалось на протяжении многих лет, и в наше время применяется для многих климатических условий.
  2. Модульное заземление предполагает использование специального комплекта, найти который можно в торговых точках. В этом случае применяются материалы фабричного производства.

Монтаж и сырье для модульного заземления

Для установки подобного типа устройства используют: стальные стержни с омедненными частями, муфты и соединительные детали, комплект для модульного заземлителя (латунные, медные и омедненные детали), стальные наконечники, антикоррозийную пасту, защитную ленту. Когда подготовили материал, следуем правилам монтажа:


Какие бывают виды систем заземления

  • Первым делом устанавливается вертикальный стержень из стали на местности;
  • Замеряется промежуточное сопротивление;
  • Производится установка оставшихся стальных стержней;
  • На этом этапе производится прокладка горизонтального заземляющего проводника;
  • Все элементы конструкции соединяются при помощи клемм или сварного оборудования, покрываются защитной лентой. Также не нужно забывать об антикоррозийной обработке.

Внимание! Выполняя

Все о системах электрического заземления

В этом блоге мы рассмотрим необходимость системы электрического заземления, ее важность, типы заземленной системы, общие методы и факторы, влияющие на установку заземленной системы, советы по безопасности и т. Д. Проще говоря, этот блог посвящен системе электрического заземления.

Земля — ​​это обычная точка возврата электрического потока. Система заземления — это резервный путь, по которому электрический ток может протекать на землю по альтернативному пути из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

Проще говоря, «заземление» означает, что был проложен путь с низким сопротивлением для прохождения электричества в землю. «Заземленное» соединение включает соединение между электрическим оборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока. Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке — это, по сути, предохранительный клапан.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли.«NEC также заявляет, что« земля не должна использоваться в качестве единственного проводника заземления оборудования ». (NEC) ограничивает напряжение от молнии, скачков напряжения в линии и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Заземление электрической системы — это разумный и самый простой способ сделать всю систему более безопасной и обеспечить защиту от колебаний в электросети. Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Необходимость заземленной системы в электрической сети:

Некоторые люди, особенно в крупномасштабных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание. Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грзивача, почетного профессора Национального учебного института OSHA: «Большинство несчастных случаев и смертельных случаев в связи с контактом с линией являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного прикрытия линии или надлежащего заземления.»

Общие риски незаземленной электрической системы — поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением. Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество. В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Как правило, системы питания подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между какими-либо линиями питания и землей.

Типы заземленных систем:

Ниже перечислены три важных типа систем заземления.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой.Хотя эти системы были нормальными в 40-х и 50-х годах, они все еще используются сегодня.

В незаземленной системе ток замыкания на землю незначителен, поэтому его можно использовать для снижения риска поражения людей электрическим током. При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск любой неисправности становится очень трудным и трудоемким процессом.Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление через сопротивление — это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор. Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением: Ограничьте ток замыкания на землю до <10 ампер.

Заземление с низким сопротивлением: Ограничивает ток замыкания на землю в пределах от 100 до 1000 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электропитания напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса.Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах. Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более высокой системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Национальный электротехнический кодекс требует, чтобы заземляющие пластины имели площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Заземляющие трубы и стержни:

Труба из оцинкованной стали (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вставляется вертикально в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, которые влияют на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование наземной системы
  • Расположение котлована

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар.В этом сценарии значительно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать, за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Общие риски незаземленной электрической системы — это серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала. Заземленная система обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт оборудования и время простоя, снижает уровень электрического шума (колебания электрического сигнала).

В электрической системе поддержание заземления должно быть приоритетом для безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности. Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • Заземляющий конец должен быть установлен первым и удален последним при удалении заземления (OSHA 29CFR 1910.269 (n) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения для отключения электропитания на рабочем месте при возникновении неисправности, устройства защиты кабеля для пола для предотвращения срабатывания на рабочем месте и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при работе с постоянным электрическим током.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных комплектов продлевает срок их службы и продлевает их безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, в прибор или в местах, где кабели, проложенные в стене, входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.

Основы заземления электрических систем

Заземление или заземление — это фундаментальная тема для правильной работы электрических систем и устройств.Однако мало кто понимает этот вопрос или причину его использования.

Заземление — это огромная тема, полная стандартов, практических правил, заблуждений, сюрпризов и некоторого волшебства. Правила заземления довольно сложны и порой кажутся неясными.

В этой вводной статье обсуждаются основные принципы заземления, дается обзор основных приложений заземления и закладывается основа для изучения этих приложений от первого до последнего.

Что такое заземление?

При анализе электрических установок вы часто будете встречать термины «заземление», «заземление» и «заземление».Есть несколько формальных определений этих терминов в разных стандартах и ​​кодексах. Однако, как следует из названия, заземление — это соединение электрической системы, электрических устройств и металлических корпусов с землей. Это также известно как заземление, то есть соединение с землей.

Несмотря на то, что незаземленные электрические системы действительно существуют — либо потому, что они исключены из заземления по правилам, либо по эксплуатационным причинам — большинство массивов так или иначе заземлены.

Является ли земля проводником электричества?

Хотя и не самый лучший, да, заземление — это электрический проводник.Он используется для передачи токов повреждения, сигналов и радиоволн.

Распространение земной волны особенно важно в низко- и среднечастотной части радиоспектра. Есть подземные низкочастотные радиоантенны, которые были разработаны в первые дни 20 века. Это электрическое свойство становится видимым, когда молния проходит от земли и от земли.

Заземление. Изображение любезно предоставлено Pixabay.

Также важно знать, что иногда предполагается, что земля как проводник имеет нулевой потенциал и используется в качестве эталона при многих измерениях напряжения.

Заземление энергосистемы очень важно, так как большинство неисправностей связано с заземлением. Кроме того, он играет основную роль в защите своих компонентов, а также в обеспечении безопасности оператора. Для крепления электрической системы к земле используются различные методы заземления. Давайте теперь посмотрим на каждый тип.

Заземление системы

Заземление системы относится к пределу определенных значений напряжения на землю в каждой части электрической системы.Он соединяет токопроводящую точку электрической системы с землей, то есть нейтраль трансформаторов и вращающегося оборудования, а также линии.

Заземление нейтрали

Искусство и наука нейтрального заземления имеют первостепенное значение в этом анализе. Появился выбор методов заземления нейтрали в трансформаторах и вращающемся оборудовании для управления частотой отказов и переходных помех, улучшая непрерывность работы. Основные типы заземления нейтрали:

  • Незаземленный: Заземление не выполняется специально, но система заземлена из-за ее естественной емкости относительно земли
  • Сквозное сопротивление
    • Сопротивление — высокое сопротивление, низкое сопротивление
    • Реактивное сопротивление — высокое реактивное сопротивление, резонансное (также высокое реактивное сопротивление), низкое реактивное сопротивление
  • Цельный (эффективный)

Заземление нейтрали в большинстве случаев надежное.В этом методе нейтраль поддерживается на уровне земли, что дает следующие преимущества:

  • Ограничивает напряжение, которое будет приложено к изоляции оборудования. Напомним, что материалы, используемые в изоляции, должны выдерживать приложенное напряжение;
  • Ограничивает напряжение системы до земли или корпусов оборудования в нормальных условиях и в аварийных условиях, повышая безопасность персонала;
  • Минимизирует возможные переходные перенапряжения;
  • Обеспечивает источник реле тока замыкания на землю, обеспечивая быстрое устранение замыкания.

Другие способы заземления

В системах 600 В и ниже иногда используются другие методы заземления.

  • Заземление линии
    • Трансформатор заземления зигзагообразный
    • Угол дельты
  • Заземление средней фазы

Оборудование и защитное заземление

Люди должны быть защищены, потому что небольшое количество тока, циркулирующего по телу, может вызвать большой ущерб или смерть.

Заземление оборудования соединяет все нетоковедущие металлические части системы электропроводки или оборудования с землей. Примеры включают шкаф сервисного оборудования, рамы трансформаторов и двигателей, металлические кабелепроводы и коробки, металлический экран экранированных кабелей, столбы, опоры и многое другое.

Заземление оборудования ограничивает напряжение между токоведущими частями и между этими частями и землей до безопасного значения, повышая защиту. Это также обеспечивает быстрое устранение неисправностей.

Кроме того, для защиты людей и животных в непосредственной близости электростанции и подстанции строятся на заземляющих матах. Такая практика сводит к минимуму возможность поражения электрическим током.

Заземление оборудования. Изображение любезно предоставлено Pixabay.

Оборудование для склеивания в соответствии со стандартами безопасности

Соединение состоит из соединения всех нетоковедущих металлических частей установки для обеспечения непрерывности и электропроводности.Таким образом, металлические детали имеют общий и минимальный потенциал над землей. Коды требуют соединения в заземленных и незаземленных массивах.

Это соединение ведет себя как путь с низким импедансом, который безопасно проводит ток замыкания на землю и помогает быстро срабатывать устройства защиты от перегрузки по току в заземленной системе, а также срабатыванию детекторов замыкания на землю в заземленных с высоким импедансом и незаземленных системах.

Кодексы

также касаются соединения металлических частей здания (неэлектрических), которые могут случайно оказаться под напряжением.

Защита от статического электричества с помощью статического заземления

Целью контроля статических зарядов является защита людей и имущества.

Трение между двумя поверхностями изолирующих материалов может вызвать перенос электронов с одной поверхности на другую, создавая разность потенциалов в тысячи вольт. Эта разность потенциалов может вызвать статические искры, которые являются источником пожаров и взрывов.

Электронные компоненты и оборудование не способны выдерживать мгновенную мощность, создаваемую статическим электричеством.Существует несколько методов защиты от статического электричества, два из них — заземление.

Статическое заземление обеспечивает заземление с низким сопротивлением, уменьшая образование статического электричества. Это предотвращает искрение между телами.

Опасные места особенно важны для заземления, поскольку в них могут находиться легковоспламеняющиеся или горючие материалы, а искры, вызванные статическим электричеством, могут воспламенить атмосферу.

Электростатическая индукция также может быть причиной переходных состояний, которые вызывают непреднамеренные события в соседних цепях, вызывая ложные срабатывания реле, срабатывания выключателей или ложные сигналы в цепях управления, и это лишь некоторые из них.

Заземление молниезащиты

Молниезащита играет ключевую роль в проектировании и эксплуатации электроэнергетических систем. В районах с частыми штормами молнии — самая частая причина отключений и повреждений.

Система молниезащиты улавливает или отводит молнию и обеспечивает определенный путь для безопасного отвода скачков к земле с помощью соответствующих токоотводов к заземляющим электродам. Таким образом, это помогает предотвратить катастрофические события, такие как пожары, травмы и смерть.

Молниезащита играет ключевую роль в проектировании и эксплуатации электроэнергетических систем. Изображение любезно предоставлено Pixabay.

Помимо систем электроснабжения, высокие конструкции, такие как дымовые трубы, резервуары, башни и здания, могут нуждаться в системах молниезащиты, хотя они потребуются не всем объектам или сооружениям на данном участке. Опять же, опасные места важны, потому что молния вызывает искры, а риск возгорания и взрыва высок.

Имейте в виду, что невозможно защитить 100% конструкции от прямых ударов, кроме как полностью изолировать ее металлом.

Что касается систем передачи, хорошо продуманная система заземляющих проводов может существенно снизить частоту отказов, поскольку она будет экранировать фазные проводники, принимая на себя прямое воздействие ударов молнии.

Защита от перенапряжений, индуцированных молнией

Переходные перенапряжения — это повседневные явления в электроэнергетических системах.Переключение является их основным инициатором, но с коммутационными импульсами относительно легко справиться. Однако разряды молний — самые сильные, и с ними трудно справиться. Они могут увеличить напряжение системы во много раз по сравнению с номинальным напряжением. Если оборудование в энергосистеме не защищено от скачков молнии, это может привести к значительным повреждениям.

Перепуск заземляющих проводов, помимо защиты от прямых ударов молнии, снижает влияние наведенных скачков напряжения.

Аналогичным образом, ограничители перенапряжения подключаются шунтом к частям электрического оборудования, чтобы отводить переходные процессы на землю.

Методы заземления для защиты электронного оборудования

Компьютеры, системы связи, контрольно-измерительные приборы и оборудование управления требуют надлежащего заземления для правильной работы. Чаще всего безопасное заземление оборудования для электронного оборудования такое же, как и для любого другого устройства.

Диспетчерская. Изображение любезно предоставлено Unsplash.

Иногда к электронному оборудованию применяются специальные методы заземления, отличные от обычных методов безопасного заземления, но необходимо соблюдать осторожность, чтобы не допустить, чтобы эти методы приводили к небезопасным действиям.

Некоторые электрические распределительные системы для электронного оборудования были установлены ошибочно с целью минимизировать количество электрических помех, наблюдаемых в системе заземления. Но эти установки не соответствуют правилам Национального электротехнического кодекса (NEC), что ставит под угрозу безопасность персонала.

Защита цепей данных от помех или повреждений не всегда включает заземление, хотя хорошее заземление облегчает эту защиту.

Обзор методов и способов использования заземления

Одним из наиболее важных, но наименее понятных факторов при проектировании электрических систем является заземление.

Заземление состоит из низкоомного соединения с землей. Заземление — плохой проводник, но достаточно хорошее для этой цели.

Заземление играет ключевую роль в правильной работе электрических систем, силовых или электронных, а также в защите людей.

  • Заземление системы помогает обнаруживать и устранять замыкания на землю.
  • Заземление оборудования обеспечивает обратный путь для тока замыкания на землю.
  • Склеивание сохраняет электрическую целостность и проводимость.
  • Статическое заземление предотвращает накопление статического электричества, снижая вероятность возгорания или взрыва при работе с опасными материалами.
  • Заземление для защиты от молний помогает защитить конструкции и оборудование от прямых ударов.
  • Воздушные провода заземления и ограничители перенапряжения, подключенные к земле, могут ограничивать опасные перенапряжения в системе до безопасных значений.

По сути, заземление электронной системы аналогично заземлению любой электрической системы.Однако следует соблюдать осторожность, чтобы специальные методы заземления не создавали опасных условий.

Знакомство с заземлением: заземление, общее заземление, аналоговое заземление и цифровое заземление

Узнайте об основах обозначения заземления, заземления и обозначений заземления. Не все основания одинаковы. В этой статье мы обсудим заземление, общее заземление, аналоговое заземление и цифровое заземление.

Что такое земля?

В электронике и электротехнике принято определять точку в цепи как точку отсчета.Эта контрольная точка известна как земля (или GND) и несет напряжение 0 В. Измерения напряжения являются относительными. То есть измерение напряжения необходимо сравнить с другой точкой в ​​цепи. В противном случае измерение бессмысленно.

Опорная точка земли часто, но не всегда — подробнее об этом позже — представлена ​​стандартным символом земли. См. Рисунок 1.

Рисунок 1. Символ общего заземления.

Обычно эта контрольная точка является базой для всех других измерений напряжения в цепи.Однако не все измерения напряжения берутся из этой контрольной точки. Например, если бы вы измеряли напряжение на верхнем резисторе в резистивном делителе напряжения, ваша контрольная точка не была бы землей. См. Рисунок 2.

Рисунок 2. Не все измерения напряжения относятся к земле.

Земля Земля

Земля Земля в точности так, как звучит. Это земля, физически (и электрически) подключенная к земле через проводящий материал, такой как медь, алюминий или алюминиевый сплав.

Истинное заземление, как определено Национальным электрическим кодексом (NEC), состоит из токопроводящей трубы или стержня, физически вбитой в землю на минимальную глубину 8 футов.

Земля представляет собой электрически нейтральное тело, и благодаря практически бесконечному состоянию нейтральности Земли, она невосприимчива к электрическим колебаниям. Однако следует отметить, что «устойчивость земли к электрическим колебаниям» на самом деле является обобщением. На самом деле, земля — ​​довольно сложный объект, учитывая все переменные и материалы, из которых состоит Земля.И электрический потенциал Земли действительно испытывает некоторые изолированные области изменения из-за таких событий, как, например, удары молнии. Столбы электропередач, которые нанизаны по всему району, также подключены к земле. На рисунке 3 показан заземляющий провод, прикрепленный к силовой опоре.

Рисунок 3. К полюсам питания подсоединены провода заземления.

Третий контакт на электрических розетках (см. Рисунок 4) физически заземлен.

Рисунок 4. Третий штырь, розетка 110 В переменного тока.

Это выходное соединение с заземлением обеспечивает, например, средство для подключения испытательного оборудования к заземлению — заземляющий (зеленый) провод от шнура питания подключается к внутренней раме или шасси оборудования. И при подключении различных частей испытательного оборудования к заземлению все они подключаются к общей точке заземления и, следовательно, имеют общую точку отсчета.Вы можете проверить это, измерив сопротивление между клеммами заземления любых двух единиц испытательного оборудования.

Этот общий вывод выводится для пользователя как вывод заземления. Примечание: корпус вашего настольного компьютера также подключен к заземлению.

Рис. 5. Испытательное оборудование предоставляет пользователю клеммы заземляющего провода. Исходное изображение любезно предоставлено cal-center.us. Примечание добавлено автором.

Символ заземления, к сожалению, используется во многих приложениях в электронике и электротехнике, часто означая разные вещи для разных людей, поэтому некоторых новичков это может немного сбить с толку.Например, символ заземления также используется в качестве общего символа земли или ссылки 0В. Это немного вводит в заблуждение, потому что опорный сигнал 0 В на самом деле не подключен к заземлению. На рисунке 6 показаны различные соединения заземления с использованием символа общего / заземляющего заземления.

Рисунок 6. Различные соединения заземления с использованием символа заземления.

Аналоговые и цифровые заземления

Цифровые схемы генерируют всплески тока, когда цифровые сигналы меняют состояние.При изменении токов нагрузки в аналоговых цепях снова возникают всплески тока.

Несмотря на то, что существует несколько методов надлежащего заземления, когда дело доходит до заземления смешанных сигналов, наиболее важным является — независимо от того, какой метод заземления используется — отделить «более шумные» цифровые обратные токи от «менее шумных» аналоговых. обратные токи. Такое разделение заземлений помогает свести к минимуму или предотвратить возникновение шума в цепях из-за токов заземления.

Такие токи заземления — воспринимайте их как изменяющиеся токи — при приложении к обратным путям заземления создают колебания напряжения (вспомните закон Ома), называемые шумом.Возможно, вы слышали термин «шумная земля». Такой шум может нарушить чувствительность сигналов в локальных цепях. Заземление всегда было серьезным препятствием для инженеров-проектировщиков, инженеров-проектировщиков и инженеров-испытателей.

Один из возможных способов заземления, который может быть полезен в некоторых, но не во всех, ситуациях, использует так называемое «звездное» заземление. Эта философия основана на теории, согласно которой все напряжения в цепи относятся к одной точке заземления.

На рисунке 7 показано соединение одной точки заземления как для аналогового, так и для цифрового заземления.

Рисунок 7. Одноточечное заземление для цифрового и аналогового заземления.

Метод использования одиночных точек заземления (или заземления звездой) отлично смотрится на бумаге. Однако на практике это может быть очень сложно реализовать в зависимости от сложности дизайна. Альтернативный подход — использовать заземленную шину.

Однако имейте в виду, что физическое разделение аналогового и цифрового заземления обычно не требуется, потому что обратными токами можно управлять с помощью правильной компоновки печатной платы, даже если в конструкции используется одна (общая) заземляющая пластина.

Общая ошибка заземления

Трехконтактный источник питания постоянного тока, такой как показанный на Рисунке 8, может немного сбить с толку новичков. Этот источник питания имеет положительную (+), отрицательную (-) и заземляющую клеммы. Как упоминалось ранее, клемма заземления (заземление) физически привязана к шасси, которое, в свою очередь, подключается к заземляющему проводу внутри шнура питания, который, наконец, подключается к земле через трехконтактную розетку.

Довольно распространенная ошибка новичков заключается в подключении нагрузки между плюсовым (+) и GND выводом.Это неправильное соединение не позволит току вернуться к своему источнику энергии (самому источнику питания), и, следовательно, ток не будет течь. Правильное подключение — это подключение нагрузки между положительной (+) и отрицательной (-) клеммами.

Рисунок 8. Источник питания постоянного тока с заземлением (зеленая клемма в центре). Изображение любезно предоставлено GWInstek.com.

Электростатический разряд (ESD)

Заземление вашего испытательного оборудования также помогает в устранении электростатического разряда (ESD).Электростатический разряд возникает, когда статически заряженное тело (то есть вы) соприкасается с испытательным оборудованием. Некоторое испытательное оборудование сверхчувствительно и может быть очень уязвимо к электростатическим разрядам.

Интегральные схемы

(ИС) известны своей крайне уязвимыми для электростатических разрядов. Заземленные коврики (называемые антистатическими матами), заземленные стулья и браслеты обеспечивают адекватную защиту от электростатического разряда для ваших ИС, заземляя вас — таким образом, снимая любые статические электричества, которые могут возникнуть на вашем теле, — до прикосновения к каким-либо чувствительным компонентам.Большинство инженеров и техников также носят антистатические куртки при работе с печатными платами и интегральными схемами для дополнительной защиты от возможных повреждений компонентов и оборудования.

Символы заземления

Следующие символы заземления можно встретить в проектах:

Рисунок 9. Общий символ заземления или заземление (IEEE Std 315-1975, раздел 3.9.1 и IEC 60417-5017).

Рисунок 10. Заземление с низким уровнем шума или функциональное заземление (IEEE Std 315-1975, раздел 3.9.1.1 и IEC 60417-5018).

Рисунок 11. Безопасное или защитное заземление (IEEE Std 315-1975, раздел 3.9.1.2 и IEC 60417-5019).

Рисунок 12. Соединение с шасси или рамой (IEEE Std 315-1975, раздел 3.9.2 и IEC 60417-5020).

Рисунок 13. Общие соединения / уровень потенциала не указан (IEEE Std 315-1975, раздел 3.9.3.2)

Консультации — Инженер по подбору | Заземление и соединение в коммерческих зданиях

Автор: Сэм Р. Александер, PE, LEED AP BD + C, exp, Maitland, Fla. 15 августа 2012 г.

Существуют различные преимущества для заземления и соединения систем передачи и распределения переменного тока. Основание для выбора того или иного типа системы заземления зависит от ее способности обеспечивать безопасность персонала и защиту оборудования.В первую очередь, электроэнергетика занимается снижением опасности поражения электрическим током и вспышкой для персонала, работающего с электрическими системами, ограничением повреждений компонентов электрической системы из-за переходных перенапряжений и минимизацией прерывания коммерческих или промышленных процессов, поддерживаемых электрической системой.

Основываясь на этих критериях, преобладающая философия проектирования заземления заключается в предоставлении заземленной системы вместо незаземленной для достижения этих целей. Тем не менее, понимание основных принципов работы каждого типа системы необходимо для согласования соответствующей топологии заземления с характеристиками электрической системы.Коммерческие здания, в которых большая часть оборудования работает при напряжении 600 В и ниже, похоже, стандартизированы на основе надежного заземления и заземления. Правильное применение этого подхода осуществляется через призму Национального электротехнического кодекса.

Причины для заземленных и незаземленных систем

Согласно NEC, существует две основные цели заземления электрической системы переменного тока: первая — стабилизировать напряжение системы относительно земли в нормальных условиях эксплуатации, обеспечивая систему отсчета земли для системы; другой — поддержание в допустимых пределах избыточных напряжений в системе из-за молний, ​​скачков напряжения в сети и случайного контакта с более высокими напряжениями.Эти две причины позволяют инженеру-проектировщику достичь двух основных целей — защиты оборудования и безопасности персонала для электрической системы. Третья цель заземления — позволить процессам, поддерживаемым электрической системой, продолжаться при наличии неисправного состояния. Обычно это достигается либо с помощью незаземленной системы, либо путем применения специальной формы заземления (заземления с высоким сопротивлением).

Энергетические системы в 1950-х годах, как правило, были незаземленными, трехфазными, трехпроводными, с дельта-трансформатором и дельта-генератором.Основное преимущество этой конфигурации заземления заключается в том, что она позволяет одному замыканию фазы на землю с болтовым соединением работать бесконечно без повреждений в месте повреждения и без срабатывания устройства защиты от сверхтоков. Это обеспечивает непрерывность работы, пока находится неисправный проводник, хотя и с риском поражения электрическим током для персонала. Тем не менее, большинство замыканий на землю имеют не болтовое соединение, а дуговое искрение низкого уровня (повторное зажигание). Эти повторные замыкания на землю из-за их относительно низких токов замыкания могут остаться незамеченными оборудованием для контроля замыканий на землю.Опасность здесь заключается в том, что повторные замыкания на землю вызывают возрастающие переходные перенапряжения на изоляцию проводящей системы. Если не контролировать, напряжение на изоляцию системы может привести к двойному замыканию линии на землю, что приведет к нежелательному срабатыванию устройств защиты от сверхтоков. Еще худший сценарий — это последствия опасности разрушительной дуги. По этой причине сейчас меньше шансов построить незаземленные системы, и они с большей вероятностью будут модернизированы с помощью системы с заземленным сопротивлением какого-либо типа.

В электрической системе есть различные точки, доступные для заземления, например, средняя точка однофазного трансформатора, угол обмоток треугольником или центр обмоток звезды. Точки, которые считаются нейтральной точкой системы, чаще всего используются для заземления. Нейтральная точка влияет и, в свою очередь, одинаково влияет на три другие фазы в сбалансированной трехфазной системе. По своей природе эта точка представляет собой лучшую возможность реализовать две основные цели заземления электроэнергетической системы.Описанные ниже методы заземления включают подключение к нейтральной точке звездообразной системы (генератора или трансформатора). Как правило, там, где нет нейтральных точек для заземления на обмотках генератора или трансформатора, как при соединении треугольником, используются заземляющие трансформаторы, такие как трансформаторы зигзаг или звезда-треугольник. Эти заземляющие трансформаторы эффективно создают нейтральное соединение, которое затем можно заземлить.

Виды заземления

Высокоомное заземление (HRG) , с возможностью применения в диапазоне напряжений от 480 В до 13.8 кВ, обеспечивает средства для ограничения проблем с переходными перенапряжениями, связанными с незаземленными системами, при этом обеспечивая преимущества непрерывности обслуживания. Идеальный диапазон напряжения — 5 кВ и меньше. Как правило, увеличение тока замыкания на землю улучшает контроль перенапряжения, но повышает точку повреждения при коротком замыкании. И наоборот, уменьшение тока замыкания на землю увеличивает перенапряжение, но снижает повреждение в месте повреждения. Правильное применение HRG в диапазоне среднего напряжения (MV) 2.От 4 до 13,8 кВ потребуется максимальный предел для одиночного тока замыкания на землю между точкой замыкания на землю до значения ниже 7 ампер. Кроме того, собственный емкостный зарядный ток между фазой и землей должен быть меньше или равен току через заземляющий резистор. Математически ток замыкания на землю представляет собой векторную сумму тока заземляющего резистора и тока емкостной зарядки. Емкостной зарядный ток — это функция электрической системы, которую необходимо предварительно оценить.При соблюдении этих величин и условий можно рассчитать диапазон токов замыкания на землю HRG.

Схемы низкоомного заземления (LRG) предназначены для ограничения токов замыкания на землю в диапазоне от 100 до 400 ампер в системах с диапазонами напряжения от 480 В до 15 кВ. При таком увеличении величины тока замыкания на землю цель LRG состоит в том, чтобы исключить переходные процессы перенапряжения за счет увеличения повреждений в точках замыкания и замыканий на землю. Однако, чтобы свести к минимуму эти повреждения, система защитных устройств формируется как часть схемы LRG.В идеале неисправность изолирована, а остальная электрическая система продолжает работать. При более высокой величине токов замыкания на землю емкостной зарядный ток относительно земли очень мало влияет на выбор резистора заземления. В этом случае это сопротивление представляет собой просто напряжение между фазой и нейтралью на заземляющем резисторе, деленное на ток замыкания на землю.

Реактивное заземление (RG) — еще одна альтернатива, используемая в системах среднего напряжения в диапазоне от 2,4 до 15 кВ. В этой схеме заземления индуктор используется для ограничения протекания токов замыкания на землю.Было показано, что системы с реактивным заземлением создают переходные перенапряжения при гораздо более высоких токах замыкания на землю, чем системы с резистивным заземлением. Чтобы ограничить переходные перенапряжения до приемлемых пределов, результирующий ток замыкания на землю может составлять до 60% от трехфазного замыкания с болтовым соединением. Поскольку это намного превышает предел в 400 ампер для LRG в том же диапазоне напряжений, реактивное сопротивление не так широко используется в электротехнической промышленности, за исключением заземления с настроенным реактивным сопротивлением.

Нейтрализатор замыкания на землю (GFN) — это еще одна форма заземления реактивного сопротивления, известная как заземление с настроенным реактивным сопротивлением.Как следует из названия, индуктивное реактивное сопротивление настраивается на естественный емкостный зарядный ток незаземленной фазы относительно земли. Этот эффект настройки за счет индуктивного реактивного сопротивления по существу нейтрализует (нейтрализует) вклад тока от емкостного зарядного тока. Это оставляет небольшую часть тока замыкания на землю, которая по своей природе является резистивной. Этот резистивный ток нейтрали относительно земли находится в фазе с напряжением нейтрали относительно земли. Преимущество этого согласования фаз состоит в том, что дуговое замыкание на землю с меньшей вероятностью будет поддерживаться напряжением, когда переменный ток и напряжение одновременно достигают нулевого значения.Приложение GFN похоже на приложение HRG в том, что замыкание на землю может сохраняться, так что электрическое обслуживание продолжается. Обнаружение неисправности обеспечивается скоординированным набором реле защиты от замыканий на землю. Недостаток GFN аналогичен RG в том, что реактивное заземление в целом имеет тенденцию к увеличению переходных перенапряжений. Кроме того, цепь заземления должна быть перенастроена после того, как в электрической системе будет выполнено какое-либо переключение.

Сплошное заземление (SG) обычно было решением более 60 лет назад, когда инженеры искали альтернативу для решения проблемы переходных перенапряжений из-за дугового замыкания на землю в незаземленных системах.Несмотря на то, что его применение не было столь успешным в диапазоне от 2,4 до 13,8 кВ из-за высокой энергии в точке повреждения, SG даже сегодня постоянно применяется при напряжениях ниже 600 В. Система с глухозаземленной нейтралью будет производить максимальный ток повреждения для данного состояния повреждения. Таким образом, он предоставляет наилучшие возможности для раннего обнаружения опасности возникновения дугового разряда в электрических системах. Координация устройства максимального тока, которая является важной частью системы SG, гарантирует, что только неисправная цепь будет изолирована, в то время как остальная часть системы продолжает функционировать.

Граница (зона заземления) электрической системы

Эффекты замыкания на землю различных схем заземления, описанных выше, ограничены определенными областями электрических систем, известными как зоны заземления или системы заземления. Границы этих систем заземления образуются разграничениями, такими как первичные обмотки треугольником трансформаторов или точка постоянного тока инверторов и преобразователей переменного / постоянного тока. Эти системы, которые связаны друг с другом магнитным полем или электрически изолированы, за исключением некоторой формы соединения оборудования, считаются отдельными системами.

На рисунке 1 трехфазная система на 480 В включает в себя первичные обмотки треугольником систем 2 и 4, двигатель с незаземленной звездой, глухо заземленный трансформатор звездой-звездой, генератор источника с незаземленной обмоткой треугольником и заземленную вторичную обмотку звездой. трансформатор источника. Система 2 имеет незаземленную вторичную обмотку трансформатора треугольником и незаземленную первичную обмотку однофазного трансформатора. Система 3 имеет незаземленную вторичную обмотку однофазного трансформатора, а Система 4 — заземленную вторичную обмотку трансформатора звездой.

Когда отдельные системы разрабатывают свои собственные соединения и заземления, они называются отдельно производными системами (SDS). Источники питания, такие как трансформаторы и генераторы, обычно конфигурируются как SDS. Однако, когда они электрически подключены к другой системе, они становятся частью этой системы и классифицируются как не относящиеся к SDS. Трансформатор T1 и генератор G в системе заземления 1 (рисунок 1) не относятся к SDS.

Твердое заземление трансформатора коммерческих зданий

Трансформаторы для коммерческих зданий обычно подключаются как SDS.Основной характеристикой SDS является соединение заземленного нейтрального проводника с соединенным корпусом оборудования или с соединенной шиной заземления. Для трансформаторов существует две конфигурации твердого соединения нейтрали с землей. Первая конфигурация имеет это соединение на самом трансформаторе (см. Соединение A на трансформаторе на Рисунке 2).

Вторая конфигурация имеет это соединение нейтрали с землей у первого средства отключения после трансформатора (см. Соединение C на панели 208 В на Рисунке 2).Эта вторая конфигурация заземления и соединения идентична тому, что требуется для служебного входного оборудования коммерческих зданий, которое обслуживается трансформатором электросети. В этом случае соединение нейтрали с землей называется основной перемычкой заземления. Также указано третье соединение B. Три соединения A, B, C нельзя использовать одновременно, так как это создаст параллельный путь для заземленного проводника. Однако любые два из трех соединений A, B, C будут соответствовать правилам установки на основе 250.30 (А) (1) NEC. В общем, установка заземления и заземления одиночного трансформатора в здании может быть расширена до нескольких трансформаторных схем, где на каждом этаже многоэтажного здания расположено несколько трансформаторов. Это достигается путем протягивания общего заземляющего электрода либо вертикально через полы, либо горизонтально внутри каждого этажа.

Генератор для коммерческих зданий с твердым заземлением

Заземление и заземляющие соединения генераторов в коммерческих зданиях могут быть выполнены как SDS, так и без SDS.Выбор конфигурации для использования определяется выбором передающего оборудования, которое будет передавать силовые соединения от энергосистемы к генератору (генераторам) здания при потере электропитания от энергосистемы общего пользования. Если передаточное оборудование (переключатель) позволяет переключать свои нейтральные соединения (т. Е. 4-полюсные), то генератор, подключенный к передаточному переключателю, должен быть подключен как SDS. Такое расположение обеспечит соответствие требованиям безопасности 250.6 (B), NEC (см. Рисунок 3). Если передаточный переключатель не позволяет переключить свои нейтральные соединения (т.е.е., 3-полюсный), то генератор должен быть подключен как без SDS, чтобы снова соответствовать 250.6 (B), NEC (см. рисунок 4). Несмотря на то, что на генераторе G2 нет соединения нейтрали с землей, генератор не считается незаземленным. Это связано с тем, что нейтральное соединение генератора, хотя оно и не связано с землей на самом генераторе, подключено к земле на оборудовании служебного входа MDP через безобрывный переключатель. Также корпус генератора заземлен вспомогательным заземляющим электродом в соответствии с 250.54, NEC. Этот заземляющий электрод обеспечивает для генератора те же преимущества, что и заземление электрической системы.

Несколько генераторов, обслуживающих коммерческое здание, обычно подключаются как SDS. Это связано с требованиями к устройствам защиты от замыканий на землю на объектах, достаточно больших, чтобы требовать наличия нескольких генераторов. Например, для правильного функционирования этих устройств защиты от замыканий на землю необходимо, чтобы генераторы были подключены как SDS. Параллельно подключенные генераторы создают особые проблемы с точки зрения способов заземления и защиты оборудования.Здесь достаточно сказать, что согласование электрических параметров этих параллельно включенных генераторов сводит к минимуму циркулирующие токи третьей гармоники, которые могут повлиять на устройства защиты от замыканий на землю.

Параллельное заземление генераторов может быть реализовано с помощью общей шины нейтрали, подключенной к одной шине заземления, или с помощью отдельных шин нейтрали, подключенных к их соответствующим шинам заземления. Чтобы использовать параллельную схему с общей нейтральной шиной, распределительный щит с устройствами максимального тока генератора должен располагаться рядом с самими генераторами.Это связано с тем, что соединение нейтрали с землей на SDS должно быть у генераторов или у первого средства отключения после генераторов (250,30 (A) (1) NEC). Согласно требованиям этого кодекса, если распределительный щит генератора должен быть расположен удаленно от самих генераторов, то соединение нейтрали с землей должно быть на встроенном устройстве максимальной токовой защиты каждого генератора. Здесь необходимо подчеркнуть, что такое применение твердого заземления для генераторов, описанное выше, не является обычной практикой для генераторов с напряжением выше 600 В.Это связано с тем, что одиночные замыкания между фазой и землей при твердом заземлении при таких более высоких напряжениях, как правило, больше, чем трехфазные замыкания на болтах, с которыми производители генераторов проектируют свои генераторы.

Независимо от того, заземлены ли генераторы или трансформаторы в виде паспортов безопасности или не-паспорта безопасности, если они обслуживают конкретный коммерческий объект, тогда все заземляющие электроды (250,50 NEC) должны быть соединены вместе, чтобы сформировать систему заземляющих электродов. Это увеличивает целостность системы заземления здания, не нарушая требований к различным зонам заземления, поскольку токопроводящие проводники не соединены между собой между зонами заземления.

Заключение

Существует несколько схем заземления и соединения трансформаторов и генераторов. К ним относятся незаземленные, заземленные по сопротивлению и надежно заземленные. Системы с заземленным сопротивлением подразделяются на системы с высоким сопротивлением, низким сопротивлением, реактивным сопротивлением и настроенным реактивным сопротивлением. Незаземленные системы, которые когда-то были одной из наиболее широко используемых систем заземления, в настоящее время являются наименее используемым методом заземления. Незаземленная система предназначена для того, чтобы первое замыкание на землю могло существовать неограниченное время, чтобы обеспечить непрерывность обслуживания при обнаружении места повреждения.К сожалению, система в этом состоянии имела тенденцию к возникновению переходных перенапряжений, которые приводили к нарушениям изоляции оборудования и проводов.

В целях достижения баланса между непрерывностью работы и снижением переходных перенапряжений были разработаны другие схемы импедансного заземления и твердое заземление. При напряжении выше 600 В твердое заземление не так широко используется из-за более высокого уровня энергии в точке повреждения. Однако при напряжении 600 В и менее надежное заземление является стандартом де-факто для трансформаторов и генераторов коммерческих зданий.При таком более низком напряжении сплошное заземление с включенными в него согласованными устройствами защиты от сверхтоков предназначено для быстрой изоляции замыканий на землю. Таким образом, только неисправная часть системы выходит из строя, в то время как остальная часть системы продолжает работать.

Пояснения к терминам

Заземленная электрическая система — это система, в которой по крайней мере один проводник от системы или точка на проводящей системе соединен либо с землей, либо с другим проводящим телом, которое служит вместо земли.Это соединение может быть с промежуточным устройством импеданса или без него. Считается, что с устройством с очень низким импедансом система надежно или эффективно заземлена. С помощью устройства импеданса система может быть заземлена либо резистивно, либо реактивно.

Связанная электрическая система — это система, в которой нетоковедущие проводящие материалы электрической системы соединены вместе таким образом, что они представляют собой путь с низким импедансом для токов замыкания на землю.Это связанное соединение позволяет токам замыкания на землю в заземленной системе течь обратно к источнику электроэнергии для последующих мер безопасности со стороны системы. Из-за взаимосвязанности заземленной и связанной системы связанная система также способствует достижению цели заземленной системы.

Незаземленная электрическая система не имеет прямого соединения между проводниками системы и землей или землей, за исключением очень высокого естественного реактивного сопротивления из-за емкостной связи между линией и землей.Независимо от значения названия, NEC по-прежнему требует, чтобы корпуса проводящего оборудования незаземленной системы были заземлены по той же причине, по которой заземленная система должна быть заземлена. Этот код также требует, чтобы незаземленная система была подключена аналогично заземленной системе, чтобы обеспечить путь с низким импедансом для межфазных токов замыкания, которые циркулируют обратно к источнику.

Токи замыкания на землю — это нежелательное протекание электрических токов в электрической системе из-за непреднамеренного соединения между незаземленным проводником электрической цепи и землей.Замыкания на землю в среднем составляют 95% всех неисправностей в электрических системах, причем наиболее распространенным типом замыканий на землю является дуговое замыкание. Все формы заземления и соединения направлены на минимизацию или устранение замыканий на землю. Следовательно, различные упомянутые методы заземления будут рассматриваться в контексте обработки токов замыкания на землю.


Александр — старший инженер-электрик с опытом работы. Его опыт в области электротехники для строительных систем, и он работает в основном в коммерческих и правительственных зданиях.


Список литературы

Л. Дж. Кингри, Р. Д. Пейнтер, A.S. Локер, «Применение заземления нейтрали с высоким сопротивлением в системах среднего напряжения», IEEE Trans. Ind. Appl., Vol. 47, № 3, май / июнь 2011 г.

Д. Д. Шипп, Ф. Дж. Анджелини, «Характеристики методов заземления нейтрали различных энергосистем: факты и вымысел», Катлер-Хаммер, 1988.

Д. Пол, С. Л. Венугопалан, «Метод заземления с низким сопротивлением для энергосистем среднего напряжения», ICF Kaiser Engineers, 1991.

Б. Бриджер мл., «Заземление с высоким сопротивлением», IEEE Trans. Ind. Appl., Vol. IA-19, No. 1, январь / февраль 1983 г.

Л. А. Бей, Дж. Айверсон, «Заземление генераторов переменного тока и переключение нейтрали в аварийных и резервных энергосистемах, части 1 и 2», Cummins Power Generation, 2006.

K. J .S. Хунхун, Дж. Л. Кёпфингер, М. В. Хаддад, «Резонансное заземление (нейтрализатор замыкания на землю) подключенного генератора», IEEE Trans. Ind. Appl., Vol. ПАС-96, № 2, март / апрель 1997 г.

Дж. Р. Дунки-Якобс, «Влияние дугового замыкания на землю на конструкцию низковольтной системы», IEEE Trans. Ind. Appl., Vol. 1A-8, No. 3, май / июнь 1972 г.

Рекомендуемая практика IEEE для заземления промышленных и коммерческих энергосистем, IEEE Std 142, 2007.

Рекомендуемая практика IEEE для систем аварийного и резервного питания для промышленных и коммерческих приложений, IEEE Std 446, 1995.

Справочник национальных правил по электротехнике, Национальная ассоциация противопожарной защиты, 2011 г.

▷ 10 самых известных систем заземления для промышленности

В прошлый раз мы поделились статьей о 10 лучших способах повышения энергоэффективности и производительности насосных систем.

А вот еще один пересекающийся топ-10 самых известных систем заземления для промышленных секторов…

… Но перед этим давайте сначала разберемся, что такое заземление / земля.

Заземление

Заземление, также называемое землей или нулевым потенциалом, представляет собой процедуру, которая включает в себя заземление проводника на землю (нулевой потенциал) от сети, чтобы позволить излишку электричества течь в него во время внезапных скачков напряжения.

Виды источников питания

В зависимости от переходных процессов напряжения, рабочих нагрузок и типа нагрузки, каждая электрическая система может требовать различных методов заземления.

Типы источников Техника заземления
Коммунальные службы Зависит от конфигурации вторичной проводки подстанции Трансформатор
Генератор Зависит от конфигурации обмотки статора
Трансформатор Зависит от конфигурации вторичной обмотки
Статический преобразователь мощности Зависит от конфигурации вторичной обмотки

Крупномасштабные электрические системы, работающие в промышленности, относятся к вышеупомянутым четырем категориям.

А теперь давайте взглянем на самые известные системы заземления для промышленного сектора:

1. Заземлен

Эта процедура включает нормальное заземление от сети к земле с использованием эффективного проводника, в этом случае для этой цели будет использоваться обычный медный провод.

Этот тип системы заземления отлично работает с электрооборудованием, работающим при нормальных нагрузках и в обычных условиях эксплуатации, т.е.расположенным на равнинах, то есть не на холмах, где электрическое оборудование восприимчиво к ударам молнии.

2. с эффективным заземлением

Для этого типа системы заземления требуются заземляющие соединения с удовлетворительным низким уровнем импеданса. Подходит для нагрузок, работающих примерно от 120 В до 240 В.

Необходимо следить за тем, чтобы допустимая токовая нагрузка заземляющего провода была достаточной для выдерживания нагрузки этого типа, чтобы предотвратить любые электрические опасности.

3. Заземленный провод

Эта процедура включает заземление шины заземления с помощью проводника заземляющего электрода, как показано на рисунке.

Этот тип заземления подходит как для электрических систем, так и для электрических цепей, работающих при средних нагрузках.

4. Прочно заземлен

Здесь процедура заземления такая же, как и выше, за исключением того, что сопротивление заземления отсутствует.

Также нет устройства импеданса. Это потому что; Заземляющее соединение в системе заземления этого типа является прочным и глубоко уложено в землю в месте, где удельное сопротивление земли для проведения электричества минимально.

5. Заземляющий провод

В этом случае и электрооборудование, и цепь заземления заземляются с помощью проводов.

Этот тип заземления необходим, когда существует высокий риск изменения разности потенциалов в рабочей электрической цепи.

6. Провод заземления оборудования

Этот тип заземления включает использование заземляющих электродов, которые подключаются к нетоковедущим клеммам (металлам) электрической системы, дорожкам качения и другим металлическим частям оборудования для эффективного прохождения переходных процессов напряжения через электроды для эффективной защиты.

Этот метод часто применяется для заземления дорогостоящего электрооборудования и отдельно выделенных электрических систем.

7. Эффективный путь тока замыкания на землю

Для реализации такого типа системы заземления необходимо построить электрически постоянный токопроводящий путь с низким уровнем импеданса, способный проводить ток в случае замыкания на землю.

Этот путь передает ток от точки замыкания на землю к источнику электропитания, предотвращая любые повреждения оборудования и персонала, работающего с ним.

8. Провод заземляющего электрода

В этом методе проводники электродов подключаются к заземляющему электроду оборудования и, в свою очередь, снова подключаются к системе заземления всей электрической системы. Это необходимо для гарантии того, что в случае выхода из строя одной системы заземления другая заменит ее.

Кроме того, это поможет большим перепадам напряжения в цепи проходить быстрее, чем в одноэлектродной системе. Как правило, этот метод используется для заземления электрических систем, работающих с более высокими нагрузками, которые подвержены большим скачкам напряжения.

9. Защита оборудования от замыканий на землю

Эта система заземления предназначена для обеспечения безопасности электрического оборудования от сильно повреждающих «токов замыкания на землю».

Эта система работает путем размыкания всех незаземленных проводов оборудования в цепи, в которой протекают токи короткого замыкания.

10. Прерыватель цепи замыкания на землю

Это специальное устройство, специально сконструированное для заземления электрических систем, работающих при критических нагрузках.Его основная цель — защитить персонал, работающий в помещениях с электрической системой, от нежелательных происшествий, таких как поражение электрическим током.

Хотя это дорогостоящий способ заземления электрической системы, крайне важно, чтобы промышленность использовала этот вид заземления в критических электрических соединениях, где присутствие персонала требуется регулярно.

Прерыватель цепи замыкания на землю обесточивает необходимые цепи или определенные ее части на заранее определенный период времени, когда переходное напряжение, проходящее в землю через заземленный электрод, превышает значение устройства класса A для безопасной работы, таким образом сохраняя люди, окружающие систему, защищены от поражения электрическим током.

Заключение

В заключение, правильное заземление электрических систем с учетом уязвимости оборудования предотвращает любые значительные повреждения электрического оборудования или людей, работающих с ним.

Эта процедура должна выполняться на начальных этапах самой установки электрической системы, если кто-то хочет свести к минимуму ущерб, нанесенный людям, а также оборудованию.

Что вы думаете об этой десятке лучших? У вас есть что добавить?

Что вам нужно знать — Провод заземления оборудования

Заземление оборудования в целях безопасности

Где бы мы были без электричества? С того момента, как мы встаем утром и до того, как ложимся спать, мы включаем и выключаем выключатели, не задумываясь об этом.Но электричество — один из самых опасных элементов, которые мы используем в повседневной жизни. Чтобы использовать его безопасно, нам нужно принять меры предосторожности.

Система заземления для создания безопасного пути

В целях безопасности персонала и оборудования все электрические системы должны быть заземлены. Мы заземляем электрические системы, чтобы ограничить дополнительное напряжение, наложенное на них молнией, скачками напряжения в сети, контактом с линиями высокого напряжения или замыканиями на землю. Система заземления помогает эффективно направлять электрические токи через электрические системы и стабилизировать уровни напряжения, чтобы цепи не перегружались и не взрывались.Используя низковольтную проводку и системы заземления, мы можем предотвратить дальнейшее возникновение проблем.

Избыточное или рассеянное электричество всегда имеет путь наименьшего сопротивления, и земля является идеальным проводником или приемником этого электричества. Согласно Национальному электротехническому кодексу, «земля» определяется как проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли.«Заземленное» оборудование подключается к земле или к какому-либо проводящему телу, которое служит вместо земли ».

Раздел 150-51 NEC гласит, что эффективный путь электрического заземления должен выполнять четыре задачи. Он должен быть постоянным и непрерывным, иметь способность безопасно проводить любые вероятные токи короткого замыкания, иметь достаточно низкий импеданс и иметь дополнительный заземляющий провод электрического оборудования, который выполняет ту же функцию, что и земля. Заземляющие проводники оборудования, проводники заземляющего электрода и заземленные проводники являются проводящими объектами, которые расширяют заземление.

Заземляющий провод оборудования выполняет три очень важные функции, когда речь идет о системе электробезопасности. Он создает путь для электричества, связывает оборудование вместе и контролирует аномальные электрические события. Электрический заземляющий проводник — это металлический провод, металлический стержень или аналогичный элемент, который выполняет роль проводника, соединяющего оборудование с землей через заземляющий электрод. Чтобы заземлить оборудование, соедините металлические части на каждой части, которая не проводит ток, вместе, а затем подключите их к заземленному проводу системы, проводу заземляющего электрода или к обоим.Токоведущий провод, по которому течет ток в нормальных условиях, обычно подключается к земле, поэтому электричество рассеивается в земле, эффективно заземляя оборудование.

Соединение для нулевого электрического потенциала

Помимо заземления, заземляющие провода оборудования также связывают оборудование. Соединение означает соединение двух проводящих частей, например двух частей электронного оборудования. Склеивание очень важно в системах передачи данных, телекоммуникаций или управления процессами.Шкафы для оборудования, корпуса и конструкционная сталь — все должно быть склеено. В противном случае разница в напряжении между ними может нарушить качество потока данных, и это может привести к полной остановке сети.

Соединение выполняется путем соединения всех металлических частей, которые не должны пропускать ток (при нормальных условиях эксплуатации) в двух соединяемых элементах. Этот процесс выравнивает их электрический потенциал, таким образом они работают на одной и то же электрическом основных опорном напряжение.Когда они соединены, между ними не будет протекать ток, поэтому разряда не произойдет. Уменьшение тока между двумя частями оборудования при разных потенциалах защищает как оборудование, так и людей.

Одна вещь, которую процесс соединения не выполняет, — это защита любого элемента от накопления электрической энергии. Этот тип защиты исходит от процесса заземления. Но если один из элементов был заземлен, так что у него нулевой электрический потенциал, элемент, к которому он подключен, также будет заземлен.

Склеивание электрического оборудования также помогает обеспечить безопасность и защиту сотрудников, которые могут работать с оборудованием или находиться рядом с ним. Например, если два элемента оборудования связаны и сотрудник одновременно касается кожухов оборудования обоих элементов, он не получит шока. Если эти два элемента не связаны, работник может стать путем выравнивания электричества и получить неприятный шок.

Еще одна причина, по которой соединение так важно, заключается в том, что оно помогает создать обратный путь с низким сопротивлением к источнику.Когда электричество находится на пути с низким сопротивлением, ток может течь свободно. Эти большие токи могут отключить автоматический выключатель и устранить неисправность.

Наилучшим способом соединения оборудования является прокладка заземляющего проводника по тому же маршруту, что и силовой и нейтральный проводники, от источника к машине.

Контроль аномальных событий

Основная цель заземления электрических систем — обеспечить защиту от электрических повреждений.Электрическая неисправность — это дефект в электрической системе, который отклоняет или прерывает нормальный поток электрического тока от предполагаемого пути. Если его не остановить, он может повредить электрическое оборудование.

Различные типы электрических неисправностей, такие как замыкание на землю, могут вызвать повреждение. Девяносто пять процентов неисправностей — это замыкания на землю. Замыкание на землю происходит, когда паразитные электрические токи проходят мимо проводки цепи и текут прямо на землю. Замыкания на землю часто вызваны ухудшением механической изоляции, которое может произойти во влажной, влажной и пыльной среде.Нерегулярное или дуговое замыкание на землю может вызвать повышение напряжения в электрической системе, ухудшение изоляции и создание напряжения, в шесть раз превышающего номинальное напряжение системы. Эффективная система заземления оборудования гарантирует, что все части останутся в рабочем состоянии при замыкании на землю.

Придерживаясь терминологии

Путаница часто возникает вокруг «нейтральных» проводов или проводников, «заземленных» проводов или проводников и «заземляющих» проводов или проводников.Заземленные провода или проводники на самом деле то же самое, что и нулевые провода или проводники. Заземляющие провода очень разные, но термины «заземляющий провод» и «заземляющий провод» часто используются как синонимы.

Заземляющий провод легко отличить от нейтрального по цвету. Национальный электрический кодекс (NFPA 70 NEC) требует, чтобы заземляющий провод был оголенным. Если это изолированный провод, он должен быть зеленого или зеленого цвета с желтой полосой изоляции. Нейтральные провода белого или серого цвета.Стандартные цвета помогают упростить монтаж электропроводки и повысить безопасность.

Нейтральный (заземленный) провод или проводник выполняет две важные функции. Он служит точкой отсчета нулевого напряжения в электрической цепи и обеспечивает обратный путь для тока, подаваемого через проводник под напряжением.

Подобно нейтральному проводу или проводнику, заземляющий провод или проводник также работает с нулевым напряжением. Однако его основная функция — обеспечить заземленное соединение всего оборудования.Нейтральный проводник несет все возвратные токи, но в нормальных условиях заземляющий провод не пропускает электрический ток. Однако, когда происходит короткое замыкание в линии (условия короткого замыкания или другие потенциально опасные ситуации), заземляющий провод или проводник служит альтернативным путем для безопасного протекания тока короткого замыкания обратно к источнику.

Что произойдет, если не использовать заземляющий провод? Неисправность не отключается, и оборудование может оказаться под напряжением, если к нему прикоснется токоведущий провод.Это означает, что любой, кто прикоснется к находящемуся под напряжением оборудованию, получит удар электрическим током.

Поскольку и заземляющий, и нейтральный проводники работают с нулевым напряжением, большинство устройств будут работать правильно, если провода поменять местами, однако работа будет нарушать электрические нормы.

Вы работаете в строительной отрасли? В таком случае наше программное обеспечение электрического котрактора может помочь оптимизировать ваши проекты и повысить эффективность с самого начала.Чтобы узнать больше о нашем программном обеспечении, загляните в наш блог или позвоните одному из наших профессионалов сегодня.

Часть 2 — Обучение нефриту

Заземление против связывания: Часть 2

Автор: Джерри Дарем | 28 августа 2018 г.

Если вы новичок в заземлении и подключении, или опытный электрик, заинтересованный в изучении всего, что доступно по этой теме, я призываю вас пойти со мной сейчас, и мы немного углубимся в эти темы. Мы также завершим электромонтаж, который мы начали в Части 1, и в процессе раскроем еще один сценарий заземления и соединения в реальном мире; Я уверен, что это пополнит ваш растущий арсенал знаний.

В разделе , часть 1: Заземление в сравнении с соединением , вы помните, что мы провели четкое различие между заземлением , , , которое должно обеспечить проводящий путь в виде заземляющего проводника оборудования (EGC) для прохождения тока (к отключение автоматического выключателя или предохранителя) в случае замыкания на землю. и соединение , , которое должно создать непрерывность между двумя или более металлическими электрическими компонентами с использованием проводника или металлического кабелепровода, но не обязательно обеспечивает токопроводящий путь для протекания тока (для отключения автоматического выключателя или предохранителя) в событие замыкания на землю .

В Части 1 критическое различие между соединением, которое мы выполнили для трех металлических коробок, и заземлением, которое мы не выполняли, заключалось в заземляющем проводе оборудования, который мы НЕ устанавливали для перекрытия промежутка между металлическими коробками и заземленным металлическим электрическим панель. Наши три металлических коробки были соединены друг с другом, но они были изолированы от электрической панели и не имели пути для протекания тока короткого замыкания. Они НЕ были ЗАЗЕМЛЕННЫМИ.

Два типа заземления

Прежде чем мы продолжим рассмотрение нашей установки из Части 1, необходимо прояснить, что в дополнение к практике соединения, на самом деле существует два разных типа заземления .NEC описывает оба метода как с заземлением , но на самом деле это две разные практики.

Давайте упростим:

(1) Заземление, например использование проводника заземляющего электрода (GEC) для подключения электрической панели к ведомому заземляющему стержню, выполняет две задачи:

Я . Он создает эквипотенциальную плоскость между служебным оборудованием в металлическом корпусе и землей, что снижает вероятность поражения электрическим током, если кто-то коснется земли и находящегося под напряжением металлического корпуса службы (замыкание на землю на служебном корпусе) на месте то же время.Это снижение потенциала поражения электрическим током происходит из-за уменьшения градиента напряжения . Однако градиент напряжения и эквипотенциальные плоскости — это отдельная тема, которая требует подробного обсуждения. Так что просто запомните этот простой факт о подключении металлического корпуса (например, распределительной коробки) от электросети к земле: в случае короткого замыкания (короткое замыкание на землю в ответвленной цепи) соединение с землей прервется. не перемещайте ток достаточно быстро, чтобы сработать автоматический выключатель или предохранитель.Да это правильно. Этот «заземляющий» путь, устанавливаемый путем присоединения проводника заземляющего электрода (GEC) от электрической панели в металлическом корпусе, где заканчивается оголенное и зеленое заземление оборудования, к земле из грунта и камня ниже, недостаточен для отключения выключателя или предохранителя во время состояния неисправности. . Земля имеет слишком большое сопротивление, и электрический ток просто не может течь достаточно быстро, чтобы превысить порог срабатывания OCPD, в большинстве случаев .

II . Он отводит удары молнии, поэтому они не попадают обратно в зону обслуживания и в трансформатор энергокомпании, вызывая повреждения.Вместо этого молния направляется на землю.

Мы должны помнить: именно соединение между заземляющими проводами оборудования в ответвленных цепях и нейтральным проводом энергокомпании (посредством основной перемычки заземления — MBJ) отключает автоматический выключатель при неисправности. Нейтраль обслуживания от энергокомпании — идеальная «земля». Он замыкается в «нулевой» точке трансформатора энергокомпании с нулевым сопротивлением, и это точка, в которую весь ток, протекающий в помещении, пытается вернуться.Эта «нулевая» точка, расположенная в оборудовании энергокомпании, намеренно подключена к земле, это единственная причина, по которой земля действует как заземление для горячего провода от энергокомпании.

(2) Заземление, например, когда металлический корпус или часть оборудования в металлическом корпусе подсоединяется к заземляющим наконечникам на электрической панели с помощью заземляющего проводника оборудования (EGC): Этот тип заземления не имеет ничего общего с землей. . Выполняя этот вид заземления, вы подключаете оборудование в металлическом корпусе внутри или снаружи здания к заземляющим наконечникам на панели.Эта заземляющая шина прикрепляется непосредственно к задней части металлической электрической панели, а затем панель подключается к нейтральному проводнику энергокомпании с помощью основной перемычки. Это ваш путь для протекания тока повреждения, и этот путь с низким импедансом является причиной срабатывания выключателя в случае повреждения. Без основной перемычки, соединяющей заземление оборудования с нейтралью энергокомпании, автоматические выключатели и предохранители обычно не срабатывают даже при сильном замыкании на землю.

Вернемся к нашей установке!

А теперь давайте продолжим с того места, где мы остановились: В конце части 1 у нас были три металлических четырехквадратных коробки, установленных на расстоянии 10 футов друг от друга на непроводящей деревянной стене. Эти три коробки соединены друг с другом с помощью 10-дюймовых трубок из ПВХ (пластика). Мы протянули зеленый изолированный провод между коробками и должным образом прикрепили провод к внутренней стороне каждой металлической коробки с помощью зеленого винта заземления с резьбой. Мы эффективно «скрепили» наши коробки вместе.

Теперь давайте проиллюстрируем, насколько опасной может быть эта установка — если мы не ЗАЗЕМЛИЕ ее!

Теперь мы подключим цепь на 120 вольт к нашим пустым металлическим ящикам. Во-первых, чтобы подключить 120-вольтовую цепь к нашим коробкам, мы должны проложить 30 футов неметаллического гибкого кабелепровода от нашей первой металлической коробки до нашей электрической панели. Помните, что это 30 футов НЕМЕТАЛЛИЧЕСКОЙ гибкой трубы. Теперь, когда установлен этот новый гибкий трубопровод, мы воспользуемся преимуществом пути, проложенного обратно к щитовой панели.Давайте теперь протолкнем один цветной провод № 12 и один белый провод № 12 от электрической панели ОБЕЗНАЧЕНИЕ через наш неметаллический гибкий кабелепровод и полностью в нашу первую металлическую коробку. Теперь мы покинем область панели и перейдем к нашему первому металлическому ящику, где теперь видны наши проводники. Отсюда мы можем пропустить цветные и белые проводники через ПВХ-канал во вторую и третью металлическую коробку. Теперь, когда , готов, давайте подключим наши цветные и белые проводники к розетке, по одной розетке на каждую коробку, вместе с соответствующей крышкой, которая подходит для нашей 4-квадратной коробки.Теперь, когда , что и готовы, давайте вернемся к нашей электрической панели и подключим наш цветной провод к новому автомату 20А, а наш белый провод — к нейтральной шине, которая находится внутри той же панели.

Давайте снова замкнем панель и включим главный выключатель, чтобы эта панель была под напряжением. Теперь мы включим этот новый автоматический выключатель на 20А, и у нас будет рабочая цепь. Наша схема включает в себя рабочие розетки на 120 вольт на каждой 4-квадратной коробке. Отлично!

(Здесь я упомяну, что наш сценарий предназначен только для информационных целей и никоим образом не представляет собой руководство по правильному способу построения электрической цепи или конфигурации розеток, соответствующих правилам.Фактически, наш пример намеренно нарушает Национальный электротехнический кодекс с целью демонстрации необходимости заземления.)

Теперь мы внесем электрическую неисправность в систему, которую мы только что построили, эта неисправность быстро выявит нарушение Национального электротехнического кодекса, о котором я только что говорил. «Неисправность» — это, как это звучит, электрическая «проблема» в электрическом компоненте или электрической системе. Но прежде чем мы решим эту проблему в нашей новой установке, я хочу, чтобы вы на мгновение рассмотрели то, что мы здесь создали.Подумайте о различных задействованных частях, о том, как они все связаны, и о том, чувствуете ли вы, что мы — в любой момент во время производства этой системы ЗАЗЕМЛИЛИ наши металлические коробки и розетки?

Вот как и обещал минуту назад — неисправность

Во время установки я хочу, чтобы вы представили, что вы случайно порезали изоляцию на цветном проводе, который питает первую розетку. При снятии этой изоляции обнаружилась голая медь под ней, и теперь эта медь плотно прилегает к голой металлической внутренней стороне первой 4-квадратной коробки.Это провод того же цвета, который в настоящее время подключается к выключателю, находящемуся под напряжением (горячему) на 120 В, обратно в электрическую панель. Итак, медь, находящаяся под напряжением от проводника, теперь упирается в проводящую металлическую коробку с четырьмя квадратами.

Найдите минутку и представьте себе, что здесь происходит. Как только вы почувствуете уверенность, что видите общую картину, продолжайте, и мы посмотрим, учли ли вы все, что происходит, и то, что может произойти!

Давайте теперь посмотрим, соответствует ли ваша мысленная картина событиям, происходящим на нашей электроустановке.

Первый : Три металлических коробки соединены или «скреплены» вместе зеленым изолированным проводом, который был протянут между коробками вначале. Таким образом, любая «неисправность», возникающая в первом металлическом ящике, по умолчанию должна происходить во втором и третьем металлическом ящике. Все они связаны.

Второй : 120-вольтный провод под напряжением (горячий) прямо сейчас прилегает к внутренней части металлического ящика, но все розетки все еще работают и без видимого прерывания!

Третий : Единственный проводящий материал, который касается наших металлических 4-квадратных коробок (кроме нашей новой электрической неисправности, вызванной зазубринами медного провода), — это оголенные концы зеленого изолированного проводника, который намеренно связывает эти три металлических короба вместе. .Следовательно, даже несмотря на то, что находящаяся под напряжением 120-вольтовая часть зазубренного проводника лежит прямо напротив металлической коробки, от самой коробки нет пути назад к чему-либо, что заземлено. Вот почему розетки все еще работают, и поэтому выключатель не сработал!

Четвертый : Поскольку наши три металлических коробки находятся в контакте с (и, следовательно, теперь являются проводящей частью) проводки на 120 вольт под напряжением, прикосновение человека к одной из этих металлических коробок эквивалентно прикосновению зачищенный конец 120-вольтового проводника под напряжением. ОЙ!

Наконец, : Поскольку мы понимаем, что эти металлические коробки теперь эквивалентны голому 120-вольтовому проводу под напряжением, давайте также осознаем, что если босоногий ребенок (или взрослый) случайно коснется этих металлических коробок голыми и незащищенными Если ноги установлены на проводящую землю , , (земля), , то потенциал напряжения, находящийся на этих находящихся под напряжением металлических коробках, теперь будет иметь заземленный путь, по которому он будет течь, проходя через этого человека и обратно на землю.

Это сценарий, который мы никогда не хотим испытывать в реальном мире.

Как вы думаете, что мы могли бы сделать, чтобы предотвратить эту аварию? Я дам вам подсказку, ЗАЗЕМЛЕНИЕ этой конфигурации обеспечит безопасность всех, даже во время той «неисправности», которую я описал.

Чтобы заземлить эту конфигурацию, мы возьмем зеленый или оголенный заземляющий провод оборудования (или металлический кабелепровод), а затем прикрепим его к одной из наших трех металлических коробок, а другой конец прикрепим к нашей электрической панели, которая должным образом заземлена.Это приведет к немедленному срабатыванию автоматического выключателя, когда этот оголенный медный провод под напряжением коснется оголенного металла нашей 4-квадратной коробки.

Когда электрическая система заземлена, ток короткого замыкания, производимый горячим проводником, соприкасающимся с оголенным металлом, имеет путь протекания. Этот беспрепятственный поток тока через заземляющий проводник оборудования (EGC) быстро превысит порог срабатывания любого автоматического выключателя, что приведет к его срабатыванию задолго до того, как кто-то пострадает.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *