Масса это минус или плюс на сварочном аппарате: Масса на сварочнике плюс или минус

Содержание

Масса на сварочнике плюс или минус

При выполнении сварочных работ основное внимание уделяется соединению стыкуемых деталей. Данный фактор во многом зависит от правильных настроек сварочной аппаратуры. Работая с полуавтоматами, следует настраивать не только силу тока, но и устанавливать нужную полярность при сварке инвертором. Настройки, установленные по умолчанию, не позволяют в полном объеме решать поставленные задачи, особенно, когда дело касается редких материалов или высоколегированных сталей. Тем не менее любой инвертор можно настроить в нужном режиме и получить качественный шов.

Как влияет на сварку прямая и обратная полярность

Само понятие полярности, применительно к сварочной аппаратуре, означает тот или иной вариант подключения, связанный с текущими процессами и необходимостью решения конкретной задачи. Для того чтобы изменить полярность, достаточно всего лишь поменять местами клеммы подключения. Ток изменит свое направление и физические процессы, а сама сварка в каждом случае будут протекать по-разному.

Существует два вида полярности, настраиваемые перед выполнением работы:

  • Прямая полярность. Устанавливается на аппаратуре перед началом соединения толстых заготовок с глубокими швами. В данном случае электрод подключается к минусу, а свариваемый металл – к плюсовой клемме. Благодаря прямой полярности, в процессе сварки возникают так называемые анодные и катодные пятна. Более горячее анодное пятно появляется со стороны заготовки. За счет этого основной металл расплавляется на большую глубину, позволяя сваривать чугунные, алюминиевые и другие заготовки из сложных металлов.
  • Обратная полярность. При таком подключении плюс соединяется с электродом, а минус – с металлической заготовкой. Анодное пятно с повышенной температурой возникает уже на противоположной стороне, то есть, на электроде. Металл остается относительно холодным, а электрод разогревается. Этот способ соединения позволяет сваривать тонкостенные заготовки.

В соответствии с конкретными задачами, сварщиком настраивается прямая и обратная полярность при сварке инвертором. Некоторые молодые специалисты не знают всех особенностей настройки, поэтому у них иногда возникают сложности с прогревом и проплавлением заготовок из разных материалов. Рекомендуется сначала изучать техническую документацию инверторной сварки и проверять теорию практическими действиями.

Технические условия для выбора полярности

Полярность соединения выбирается исходя из технических условий, необходимых для решения конкретной задачи. Путем изменения типа подключения можно получить концентрацию горячего анодного пятна или на самой заготовке, или на электроде. Непосредственный нагрев осуществляется за счет плюсовой клеммы, поэтому прямое подключение к ней приводит к разогреву данного участка.

Эта особенность подключения дает возможность выбирать рабочий режим с учетом следующих факторов.

Толщина металлической заготовки

При сваривании деталей со средней и большой толщиной следует воспользоваться прямым подключением. В этом случае тепловая энергия концентрируется на самом изделии, способствуя получению глубокого сварного шва. В этом же режиме возможна резка металлов, независимо от их толщины. Для сварки тонких листовых металлов рекомендуется использовать обратную полярность, когда основное тепло сосредоточено на электроде. За счет этого удается избежать перегрева заготовок, а плавление электрода будет происходить намного быстрее.

Типы свариваемых металлов

Возможность изменения места расположения анодного теплового пятна позволяет выбрать режим работы, максимально эффективный для конкретной детали. Например, при сварке чугуна или нержавеющей стали при сварке инвертором применяется обратная полярность, чтобы не перегреть сплав и сформировать надежное соединение. Алюминий, наоборот, нужно варить в режиме прямого подключения, чтобы как можно быстрее преодолеть окислительную пленку. Существуют рекомендации по настройке аппаратуры под конкретные сплавы, которые следует внимательно изучить и использовать на практике.

Тип сварочной проволоки или электрода

Данные компоненты также отличаются индивидуальными особенностями режимов температур, которые во многом зависят от используемых флюсов. Если сварка производится угольными электродами, то подключение в режиме обратной полярности не подходит, поскольку флюс подвергнется сильному перегреву и электрод станет непригоден для работы. В таких случаях выбор наиболее подходящих настроек полностью зависит от типа флюса и проволоки.

Иногда для металла и электродов требуются совершенно разные настройки, и сварщику приходится подбирать наиболее оптимальное совмещение рабочих циклов с силой тока. Кроме того, нужно обязательно учитывать рекомендации завода-изготовителя, отраженные в технической документации.

Особенности сварки с прямой и обратной полярностью

Прямая и обратная полярность инвертора обладают индивидуальными свойствами, которые нужно обязательно учитывать при выполнении сварочных работ.

Особенности сварки при подключении инвертора с прямой полярностью:

  • Электроды и присадочные материалы во время работы расплавляются и переносятся в сварочную ванну в виде крупных металлических капель. Это приводит к увеличенному разбрызгиванию металла и росту коэффициента проплавления.
  • Режим прямого подключения отличается нестабильностью электрической дуги.
  • С одной стороны заготовки глубина проваривания снижается, а с другой – снижается количество углерода, внедряемого в металлическую массу детали.
  • Металл нагревается правильно, его структура не нарушается и остается неизменной.
  • Сварочная проволока или электрод нагревается меньше, что дает возможность при необходимости увеличить силу тока.
  • Отдельные сварочные материалы отличаются увеличенным коэффициентом наплавки, особенно, когда в активных и инертных газах используются плавящиеся электроды. Такой же эффект получается при взаимодействии присадок с некоторыми типами флюсов.
  • Прямая полярность при сварке оказывает влияние на структуру материала, остающегося внутри шва между сваренными металлическими деталями. Получается состав с содержанием марганца и кремния при полном отсутствии углерода.

Обратная полярность при сварке инвертором обязательно используется, когда свариваются заготовки из тонких листовых металлов. Этот процесс требует внимания и осторожности, поскольку велика вероятность прожечь и испортить материал. Данный режим подключения дополняется другими методами, позволяющими избежать неосторожных повреждений.

Среди них можно выделить следующие:

  • Понижение силы тока, вызывающее уменьшение температуры на поверхности заготовки.
  • В процессе сварки рекомендуется использовать прерывистый шов. Вначале свариваются несколько участков в разных местах, после чего они соединяются между собой в единое целое. Данная схема может меняться, в зависимости от конкретных условий соединения металлов. Таким образом, удается предотвратить деформацию металлических заготовок, особенно, если их длина превышает 20 см. Большее количество отрезков делает каждый участок более коротким, и металл за счет этого намного меньше коробится.
  • Сварка слишком тонких заготовок осуществляется с периодически прерывающейся электрической дугой. Электрод быстро выходит из рабочей зоны и тут же возвращается на место и поджигается. Процесс выполняется практически непрерывно.
  • При соединении внахлест прижим заготовок друг к другу должен быть максимально плотным и герметичным. Наличие даже незначительного воздушного зазора может вызвать прожигание детали, расположенной сверху. Создать плотное прилегание можно каким-нибудь грузом или струбцинами.
  • Выполняя соединение встык, необходимо обеспечить минимальный зазор между свариваемыми изделиями. В идеальном варианте зазор должен вообще отсутствовать.
  • Если тонкие листовые заготовки имеют слишком неровные кромки, то в этом месте под сварочным стыком укладывается материал, компенсирующий избыточное тепло. Лучше всего для этих целей подходят медные или стальные пластины, толщину которых желательно выбирать как можно больше.

Новичкам, только начавшим осваивать данный вид соединения, рекомендуем проводить тренировочную сварку с обратной полярностью на испорченных металлических листах. Это даст возможность прочувствовать все особенности процесса и в дальнейшем избежать прожогов и других дефектов.

Источник: electric-220.ru

Масса на сварочнике плюс или минус

  • Главная
  • Форум
  • Мастерская
  • + или — на держаке инвертора?

Род тока и полярность устанавливают в зависимости от типа покрытия электрода, состава свариваемого металла и его толщины. При сварке постоянным током обратной полярности на электроде выделяется больше теплоты. Исходя из этого, обратная полярность применяется при сварке электродами с покрытием основного типа, а также при сварке тонких деталей с целью предотвращения прожога, алюминиевых сплавов для разрушення оксидной пленки и легированных сталей во избежание их перегрева. Род тока и полярность указаны в паспорте электрода.

При сварке на переменном токе безразлично, к ка­кому зажиму сварочного трансформатора присоедине­ны изделие и электрод. Сварку на постоянном токе выполняют при соединении «плюса» источника пита­ния с изделием (прямая полярность) или электродом (обратная полярность). Во время горения сварочной дуги при прямой полярности больше нагревается сва­риваемое изделие, при обратной полярности — элек­трод. При этом скорость плавления электродов из низ­коуглеродистой стали на 10–40% выше скорости их плавления при прямой полярности. Исходя из этого, выбирают прямую или обратную полярность в зави­симости от вида сварочных работ (прихватка или свар­ка), толщины свариваемых элементов (тонкие или тол­стые), электродов (углеродистая сталь, хромоникелевая) и др. При сварке тонких листовых деталей, а так­же некоторых специальных сталей, например корро­зионно-стойких и жаропрочных, применяют соедине­ние с обратной полярностью.

короче посмотри на пачке электродов какой режим для них правильнее

Источник: forum.4x4pk.ru

Особенности сварки током прямой полярности: отличия от обратной

Что такое сварка током прямой полярности — это подключение плюсового провода от оборудования к соединяемым деталям, а к минусу идёт провод от держателя, на котором закреплён электрод. При зеркальном отображении получаем на выходе полярность обратного типа. Различные подключения способствуют изменению температуры сварочного кратера.

Прямая полярность

У каждого сварочного аппарата имеются гнёзда, куда подключаются провода от держателя с электродом или зажима для заготовок, называемого на практике массой. К какому полюсу подключается масса на сварочном аппарате к плюсу или минусу — такая полярность получится на выходе. Для получения прямого подключения провод, идущий от массы, подсоединяется к положительной клемме, а провод от электрода — к минусовой.

При сварке род и полярность тока зависят от катодного или анодного пятна, в случае прямого подсоединения именно на деталях будет концентрироваться высокая температура.

Сварка постоянным током при аналогичном подключении отличается характерными нюансами:

  • большой глубиной и малой шириной шва;
  • такое подключение применяется для металлов с толщиной не менее 3 мм;
  • вольфрамовые электроды применяются для соединения изделий из цветного металла;
  • высокая стабильность горения дуги обеспечивает качественный шов;
  • токопроводящие стержни быстро плавятся;
  • большой расход электродов из-за разбрызгивания.

Обратного типа

Аналогичную полярность при сварке применяют в том случае, когда надо свести риск появления брака на деталях к минимуму, а также во время выполнения ответственных заданий, чтобы сварка проводилась с высокой точностью. При такой методике высокая температура концентрируется на проводящем ток стержне, а на соединяемой конструкции уровень тепла намного ниже.

Поэтому обратный тип полярности применяют для качественной сварки тонкого металла, чтобы исключить возможность коробления от излишнего нагревания, а также при соединении стальных деталей различной степени легирования, потому что такие заготовки особо чувствительны к возможному перегреву. Аналогичное подключение применяют для соединения металлов под защитой флюса или инертных газов, например, аргона.

Чтобы избежать ошибок при сварке, надо знать следующие отличия:

  • выбор обратной полярности при сварке постоянным током делает шовное соединение небольшим по глубине, но объёмным по ширине;
  • во время соединения толстых металлов снижается качество шва;
  • нельзя работать электродами, чувствительными к перегреванию;
  • при снижении силы тока образуются скачки дуги, что негативно отражается на прочности и качестве шва;
  • соединяя высоколегированные стали, надо строго выдерживать цикл работы и время остывания соединённых заготовок.

В случае подключения от сети переменного тока, сварка металлов с низким содержанием углерода проводится рутиловыми токопроводящими стержнями, у которых отсутствует зависимость от полярности, поэтому применяется любая методика — наиболее удобная для исполнителя.

Критерий выбора

Опытные сварщики самостоятельно решают, куда подсоединять провода к плюсу или минусу во время подключения массы на сварочный аппарат, чтобы концентрировать большую температуру на конструкции или плавящемся прутке с обмазкой. Выбирать полярность иногда приходится несколько раз — это напрямую зависит от сложности конструкции или толщины соединяемого металла, например, при средней или большой толщине выбирают вариант прямой полярности.

Сильный прогрев заготовки позволяет выполнить более глубокий шов, что намного повышает прочность и качество соединения, аналогичная полярность выбирается, когда надо отрезать какой-нибудь элемент от общей конструкции. Обратная полярность выбирается при работе с тонкостенными деталями, при этом детали не перегреваются, но электрод плавится быстрее.

Толщина металла

Специфика сварки толстого металла довольно простая: подключаем массу к плюсу на агрегате, а электрод — к минусу. Наличие высокой температуры на заготовке способствует большему прогреву металла, что усилит глубину проварки, а в результате шов получается более качественный и прочный.

При обработке сваркой тонкостенного металла применяется обратная полярность, т. к. анодное пятно перемещается на электрод и угроза пережога конструкции полностью ликвидируется.

Полярность во многом зависит и от типа металла, из которого состоит соединяемая конструкция или отдельные детали, приготовленные для сварки. Например, для прочного соединения изделий из нержавеющей стали или чугуна применяют обратную полярность, чтобы избежать перегревания заготовок и избавиться от появления тугоплавкого сварного соединения, которое требует особой обработки.

При сварке алюминия используется прямая методика подключения — прочная плёнка, покрывающая цветной металл, при сильном нагревании расплавляется и не препятствует образованию шовного соединения. Опытные сварщики знают, как и какими методами надо варить различные по химическому составу металлы, а начинающие исполнители — сверяются по справочнику или изучают сопроводительную документацию, где подробно описана методика сварки, а также какую полярность надо применить.

Влияние толщины соединяемых деталей на выбор подключения.

Коротко об электродах

Если используют для сварки инвертор, то при подключении прямого или обратного варианта обязательно учитывается тип используемого электрода, т. к. эти изделия имеют индивидуальные параметры, которые зависимы от изменения температуры.

Химический состав обмазки или напыления оказывает особое влияние на качество сварочного процесса, например, при использовании обратной полярности нельзя применять угольный электрод, потому что из-за влияния высокой температуры флюс перегревается и теряет необходимые свойства — изделие будет непригодно для дальнейшего использования.

Надо применять прямой вариант подключения, да и на каждом типе электродов нанесена маркировка, где указан режим использования, а на упаковке имеются аналогичные рекомендации производителя, т. ч. перепутать крайне трудно.

Работа на полуавтомате

Такой вид сварки характерен для производственных процессов, при этом надо правильно установить полярность данного полуавтомата, например, для соединения деталей из нержавеющего металла применяют защитный газ и выбирают обратное подключение, а когда используется порошковая присадочная проволока при сварке изделий из алюминия — прямое.

Как управлять процессом?

Главное для исполнителя — прогреть свариваемые детали до полного расплавления кромок, чтобы сформировался сварочный кратер. Перечислим негативные процессы, которые при этом могут появиться:

  • если установлен ток небольшой силы, то металл заготовок не успевает полностью прогреться, поэтому сварочная ванна двигается за электродом;
  • при излишней величине тока происходит сильное разогревание, дуга начинает проникать внутрь металла и оттеснять расплавленную субстанцию назад.

При нормальном использовании силы тока жидкий металл в кратере сильно не растекается, а внешние края — тонкие и сварщик полностью контролирует процесс.

При сварке деталей с большой толщиной металла надо повышать силу тока, чтобы полностью прогреть деталь, а тонкостенные конструкции нагреваются быстро, поэтому работать надо на малой силе тока. Во время сварочного процесса с использованием электродов с обмазкой или напылением надо учитывать и скорость проводки.

Внешнее состояние шовного соединения.

Превосходство и недостатки методик

Изменение подключения по-разному отражается на работе токопроводящего стержня, например, при обратной методике, наблюдаются такие процессы:

  • на конструкцию поступает больше тепловой энергии, чем на стержень с обмазкой;
  • хороший разогрев обеспечивает качественную и глубокую проплавку;
  • электрод плавится медленно, поэтому частая замена не нужна;
  • металл при сварке практически не разбрызгивается.

Прямая полярность при сварке характерна следующими нюансами:

  • нагревание заготовок минимальное;
  • плавление электрода происходит намного быстрее, поэтому требуется частая смена стержней;
  • жидкий металл сильно разбрызгивается.

Вывод прост — очевидных преимуществ больше у обратной методики, но не только плюсы определяют выбор, т. к. у большинства электродов рекомендации по выбору подключения прописаны производителем на этикетке.

Инверторное или полуавтоматическое сварочное оборудование отличается несложной эксплуатацией, поэтому часто применяются в домашней обстановке, например, на даче или при ремонте в частном домостроении, да и неопытным исполнителям легче соединять металлические конструкции, используя обычное подключение стандартной сети. Для получения соединений высокого качества, надо точно знать, как и когда применять обратную или прямую методику подключения.

Источник: svarka.guru

Изучаем прямую и обратную полярность при сварке

Направление движения электронов регулируется с помощью полярности путём переключения проводов на клемму «плюс» или «минус». То есть, при работе со сваркой постоянного тока возможны два варианта настройки:

  1. Прямая полярность. Минус подключён к электроду, плюс на клемме «земля». В этом случае ток движется от электрода к заготовке, и металл греется сильнее.
  2. Обратная полярность. К электроду подсоединяется плюс, на клемму «земля» — минус. Движение тока от минуса к плюсу (от заготовки к электроду) создаёт более сильный нагрев.

Прямая и обратная полярность подключения при сварке инвертором используется в зависимости от поставленных задач и качества материалов. При переменном токе тип подключения неважен, а при постоянном есть возможность менять полярность вручную.

Значение полярности для сварки

Постоянный ток создаёт термическое (анодное) пятно. Меняя полярность, можно его перемещать от электрода к заготовке. Основной нагрев создаётся на плюсовом гнезде, поэтому при прямой полярности сильнее нагревается заготовка, а при обратной – электрод. Таким образом формируются возможности инвертора в зависимости от характеристик металлов:

  • Толщина металла. При прямой полярности основной нагрев достаётся заготовке, поэтому ширина шва провара получается достаточно глубокой. Соответственно для тонких металлов правильнее использовать обратное подключение, при котором металл нагревается слабее электрода.
  • Тип металла. При сварке приходится работать с различными сплавами, обладающими определёнными свойствами. Например, алюминий относится к среднеплавким металлам, поэтому нужно обеспечить заготовке прямое подключение для нагрева. Нержавеющую сталь лучше не перегревать, выбрав обратную полярность. Настройки инвертора позволяют учитывать, какой сплав подвергается варке, поэтому предварительное изучение инструкции поможет эффективно справиться с задачей.
  • Тип электрода. Сварочные электроды имеют покрытие – флюс. При разогреве он сгорает, выполняя свою основную задачу: вытесняя воздух, предотвращает образование пор. Тип флюса определяет особенности использования электродов при разных температурных режимах. К примеру, угольные электроды не подходят для подключения с обратной полярностью. Рекомендации производителя позволят сделать правильный выбор. То же самое относится и к типам проволоки. К слову, инверторные полуавтоматы также имеют характеристики, которые стоит учитывать.


Если заготовка и электрод имеют характеристики, требующие противоречивых настроек, придётся найти компромиссный вариант, регулируя силу тока и время обработки шва. С опытом приходят и знания, позволяющие решать любые задачи.

Виды сварки

Ручная сварка дугой с помощью плавящегося электрода (ММА)

Здесь его роль играет особая плавящаяся проволока, покрытая шлаком. Способ очень популярен, но специалисты считают его не самым лучшим вариантом для получения качественных швов, если изделие по составу является сложным сплавом. Во время плавления проволока соединяет нужные детали, а её покрытие очищает от грязи и защищает от кислорода сварочную ванну. Способ подходит для сварки чугуна, чёрных металлов.

Сварка полуавтоматическая

Электродом является проволока, автоматически попадающая в зону сварки. Аппарат находится в режиме ручного передвижения, поэтому данный способ не подходит для обработки большой рабочей зоны, его используют для сварки тонких листов, цветных металлов, высоколегированной стали. Применяется как постоянный, так и импульсный ток. При использовании порошковой проволоки газ не нужен, в остальных случаях сварка током производится в среде активных или инертных защитных газов. Возможна сварка электродом без его плавки.

Сварка в среде защитных газов

Технологический процесс подразумевает использование газа аргона, который выжигает грязь и кислородные соединения. Электродом выступает неплавкий вольфрамовый либо графитовый стержень. Применение аргона очищает сварочную ванную от всех ненужных примесей и окислов. Образование шлака исключено, шов получается качественным и чистым, но сварка в среде защитных газов – довольно дорогая технология, требующая серьёзных навыков.

Разные типа сварки используются и в зависимости от условий работы сварки. Например, для ремонта кузовов автомобилей в сервисах используют дуговую сварку полуавтоматом с помощью среды защитного газа, что позволяет создавать качественную сварочную работу при её невысокой стоимости. Прямая и обратная полярность при сварке инвертором позволяет регулировать глубину плавления для любого типа сварочных работ.

Технология ручной сварки дугой

Дуговая сварка – самый распространённый тип сварки металла. Способ универсален, технологически прост и позволяет получать сварочные швы хорошего качества в непроизводственных условиях. Электроток сварочного источника образует дугу между изделием и электродом. На нём сгорает покрытие (флюс), выделяя газ, очищающий рабочую область от кислорода.

По форме и типам соединений сварочные швы разделяются на:

Разные углы наклона электрода позволяют создавать разные по типу швы. Самый удобный промежуток – между 45 и 90 градусами, при котором сварочная ванна полностью в зоне видимости. С опытом приходит и понимание, как именно нужно менять угол наклона.

Обычно сварочные аппараты комплектуются кабелем массы с держателем зажимного типа. С первого взгляда, это удобно, такое приспособление можно надежно закрепить к практически любой поверхности (листы, металлопрокат и прочие). Но бывают ситуации, когда нет возможности установить такую массу на заготовку или, еще чаще, она перегорает. Неплохой альтернативой станет магнитный контакт сварочного кабеля.

Главная задача для новичка – научиться «вести» сварочный шов. Основной металл прогревается до состояния расплавления, формируя сварочную ванну. В зависимости от ситуации сварщик меняет установки тока, ориентируясь на состояние ванны. Начинать нужно с настроек, рекомендованных производителями, а дальше постепенная практика поможет понять и правильно использовать все возможности инвертора.

Источник: electrod.biz

Полярность при сварке инвертором

При выполнении сварочных работ основное внимание уделяется соединению стыкуемых деталей. Данный фактор во многом зависит от правильных настроек сварочной аппаратуры. Работая с полуавтоматами, следует настраивать не только силу тока, но и устанавливать нужную полярность при сварке инвертором. Настройки, установленные по умолчанию, не позволяют в полном объеме решать поставленные задачи, особенно, когда дело касается редких материалов или высоколегированных сталей. Тем не менее любой инвертор можно настроить в нужном режиме и получить качественный шов.

Как влияет на сварку прямая и обратная полярность

Само понятие полярности, применительно к сварочной аппаратуре, означает тот или иной вариант подключения, связанный с текущими процессами и необходимостью решения конкретной задачи. Для того чтобы изменить полярность, достаточно всего лишь поменять местами клеммы подключения. Ток изменит свое направление и физические процессы, а сама сварка в каждом случае будут протекать по-разному.

Существует два вида полярности, настраиваемые перед выполнением работы:

  • Прямая полярность. Устанавливается на аппаратуре перед началом соединения толстых заготовок с глубокими швами. В данном случае электрод подключается к минусу, а свариваемый металл – к плюсовой клемме. Благодаря прямой полярности, в процессе сварки возникают так называемые анодные и катодные пятна. Более горячее анодное пятно появляется со стороны заготовки. За счет этого основной металл расплавляется на большую глубину, позволяя сваривать чугунные, алюминиевые и другие заготовки из сложных металлов.
  • Обратная полярность. При таком подключении плюс соединяется с электродом, а минус – с металлической заготовкой. Анодное пятно с повышенной температурой возникает уже на противоположной стороне, то есть, на электроде. Металл остается относительно холодным, а электрод разогревается. Этот способ соединения позволяет сваривать тонкостенные заготовки.

В соответствии с конкретными задачами, сварщиком настраивается прямая и обратная полярность при сварке инвертором. Некоторые молодые специалисты не знают всех особенностей настройки, поэтому у них иногда возникают сложности с прогревом и проплавлением заготовок из разных материалов. Рекомендуется сначала изучать техническую документацию инверторной сварки и проверять теорию практическими действиями.

Технические условия для выбора полярности

Полярность соединения выбирается исходя из технических условий, необходимых для решения конкретной задачи. Путем изменения типа подключения можно получить концентрацию горячего анодного пятна или на самой заготовке, или на электроде. Непосредственный нагрев осуществляется за счет плюсовой клеммы, поэтому прямое подключение к ней приводит к разогреву данного участка.

Эта особенность подключения дает возможность выбирать рабочий режим с учетом следующих факторов.

Толщина металлической заготовки

При сваривании деталей со средней и большой толщиной следует воспользоваться прямым подключением. В этом случае тепловая энергия концентрируется на самом изделии, способствуя получению глубокого сварного шва. В этом же режиме возможна резка металлов, независимо от их толщины. Для сварки тонких листовых металлов рекомендуется использовать обратную полярность, когда основное тепло сосредоточено на электроде. За счет этого удается избежать перегрева заготовок, а плавление электрода будет происходить намного быстрее.

Типы свариваемых металлов

Возможность изменения места расположения анодного теплового пятна позволяет выбрать режим работы, максимально эффективный для конкретной детали. Например, при сварке чугуна или нержавеющей стали при сварке инвертором применяется обратная полярность, чтобы не перегреть сплав и сформировать надежное соединение. Алюминий, наоборот, нужно варить в режиме прямого подключения, чтобы как можно быстрее преодолеть окислительную пленку. Существуют рекомендации по настройке аппаратуры под конкретные сплавы, которые следует внимательно изучить и использовать на практике.

Тип сварочной проволоки или электрода

Данные компоненты также отличаются индивидуальными особенностями режимов температур, которые во многом зависят от используемых флюсов. Если сварка производится угольными электродами, то подключение в режиме обратной полярности не подходит, поскольку флюс подвергнется сильному перегреву и электрод станет непригоден для работы. В таких случаях выбор наиболее подходящих настроек полностью зависит от типа флюса и проволоки.

Иногда для металла и электродов требуются совершенно разные настройки, и сварщику приходится подбирать наиболее оптимальное совмещение рабочих циклов с силой тока. Кроме того, нужно обязательно учитывать рекомендации завода-изготовителя, отраженные в технической документации.

Особенности сварки с прямой и обратной полярностью

Прямая и обратная полярность инвертора обладают индивидуальными свойствами, которые нужно обязательно учитывать при выполнении сварочных работ.

Особенности сварки при подключении инвертора с прямой полярностью:

  • Электроды и присадочные материалы во время работы расплавляются и переносятся в сварочную ванну в виде крупных металлических капель. Это приводит к увеличенному разбрызгиванию металла и росту коэффициента проплавления.
  • Режим прямого подключения отличается нестабильностью электрической дуги.
  • С одной стороны заготовки глубина проваривания снижается, а с другой – снижается количество углерода, внедряемого в металлическую массу детали.
  • Металл нагревается правильно, его структура не нарушается и остается неизменной.
  • Сварочная проволока или электрод нагревается меньше, что дает возможность при необходимости увеличить силу тока.
  • Отдельные сварочные материалы отличаются увеличенным коэффициентом наплавки, особенно, когда в активных и инертных газах используются плавящиеся электроды. Такой же эффект получается при взаимодействии присадок с некоторыми типами флюсов.
  • Прямая полярность при сварке оказывает влияние на структуру материала, остающегося внутри шва между сваренными металлическими деталями. Получается состав с содержанием марганца и кремния при полном отсутствии углерода.

Обратная полярность при сварке инвертором обязательно используется, когда свариваются заготовки из тонких листовых металлов. Этот процесс требует внимания и осторожности, поскольку велика вероятность прожечь и испортить материал. Данный режим подключения дополняется другими методами, позволяющими избежать неосторожных повреждений.

Среди них можно выделить следующие:

  • Понижение силы тока, вызывающее уменьшение температуры на поверхности заготовки.
  • В процессе сварки рекомендуется использовать прерывистый шов. Вначале свариваются несколько участков в разных местах, после чего они соединяются между собой в единое целое. Данная схема может меняться, в зависимости от конкретных условий соединения металлов. Таким образом, удается предотвратить деформацию металлических заготовок, особенно, если их длина превышает 20 см. Большее количество отрезков делает каждый участок более коротким, и металл за счет этого намного меньше коробится.
  • Сварка слишком тонких заготовок осуществляется с периодически прерывающейся электрической дугой. Электрод быстро выходит из рабочей зоны и тут же возвращается на место и поджигается. Процесс выполняется практически непрерывно.
  • При соединении внахлест прижим заготовок друг к другу должен быть максимально плотным и герметичным. Наличие даже незначительного воздушного зазора может вызвать прожигание детали, расположенной сверху. Создать плотное прилегание можно каким-нибудь грузом или струбцинами.
  • Выполняя соединение встык, необходимо обеспечить минимальный зазор между свариваемыми изделиями. В идеальном варианте зазор должен вообще отсутствовать.
  • Если тонкие листовые заготовки имеют слишком неровные кромки, то в этом месте под сварочным стыком укладывается материал, компенсирующий избыточное тепло. Лучше всего для этих целей подходят медные или стальные пластины, толщину которых желательно выбирать как можно больше.

Новичкам, только начавшим осваивать данный вид соединения, рекомендуем проводить тренировочную сварку с обратной полярностью на испорченных металлических листах. Это даст возможность прочувствовать все особенности процесса и в дальнейшем избежать прожогов и других дефектов.

Источник: electric-220.ru

Ручная дуговая сварка — Сварка MMA штучными электродами — Статьи о сварке

Ручная дуговая сварка MMA – сварка покрытыми штучными плавящимися электродами.

Сварка ММА (Manual Metal Arc) – это электродуговая сварка, которая была открыта русским ученым Н.Н. Бернандосом в 1882 году. Он впервые использовал электрический ток для соединения заготовок стали с помощью угольного электрода. В то время сварка осуществлялась непокрытыми электродами, то есть стальной проволокой. В 1904 году швед Оскар Челльберг (основатель концерна «ESAB») изобрел покрытый обмазкой сварочный электрод. Ручная дуговая сварка MMA – это сварка покрытыми штучными электродами, которая заключается в том, что источник сварочного тока, подключенный к сети, имеет два кабеля с разной полярностью, при помощи которых сварочный ток подается к свариваемым деталям. Один кабель, с зажимом на конце, именуется массой (клемма заземления) и крепится к стальной заготовке. Второй кабель имеет держатель для сварочного электрода, при помощи которого происходит сварка металла. При данном типе сварки тепловая энергия вызывает плавление металла и образование сварочной ванны, при остановке теплового воздействия электрического тока металл остывает и кристаллизуется – так образуется сварочный шов. Металл сварочного электрода переходит в сварочную ванну. Благодаря различным химическим составам обмазки сварочного электрода меняется химический состав и свойства металла сварного шва, а также образуются газообразные соединения, защищающие сварочную ванну от воздействия окружающей среды.

Основы ручной дуговой сварки.

Электродуговая сварка может проходить на переменном (AC) и постоянном (DC) токе. При сварке на переменном токе сварочная дуга слабоустойчива, необходимы профессиональные навыки сварки  в сравнении с постоянным током. Сварка на постоянном токе является единственным способом электросварки некоторых металлов и сплавов. При ручной дуговой сварке особую роль играет выбор полярности подключения сварочного аппарата.

  • Прямая полярность – это когда «минус» подключен к электроду, а «плюс» на клемме заземления или на массе. При это способе подключения ток поступает от электрода к заготовке металла, которая нагревается, а электрод остается при этом холодным. В основном сварка MMA при прямой полярности применяется для сварки листового металла, имеет узкую сферу применения.
  • Обратная полярность – это когда «плюс» подключен к электроду, а «минус» на клемме массы или заземления. В таком случае сварочный ток подается от металла на электрод, происходит нагрев и плавление сварочного электрода. Сварка на обратной полярности наиболее распространена.

Следующий шаг – это выбор сварочного тока в зависимости от толщины свариваемого металла. За основу можно взять правило: около 40 А тока на 1 мм металлической заготовки. То есть при сварке металла толщиной 3 мм  используется сварочный ток в 100 – 140 А. Немаловажным понятием является значение ПВ% сварочного аппарата, не забывайте про него при выставлении нужного Вам значения сварочного тока на сварочном аппарате.

Розжиг дуги. Сварочная дуга разжигается двумя способами: касание кончика электрода и заготовки металла и резкий отрыв электрода; несколько чиркающих прикосновений сварочного электрода к заготовке свариваемого металла. При соблюдении одинакового расстояния между электродом и свариваемым металлом при сварке обеспечивается стабильная не затухающая дуга. При слишком маленьком расстоянии между заготовкой и электродом, сварочный электрод попросту прилипнет к металлу; при слишком большом расстоянии — сварочная дуга потухнет (погаснет). Для стабильной и качественной ручной дуговой сварки необходимы практические навыки сварочного дела, качественные и правильно выбранные сварочные материалы и сварочное оборудование.

Зачем менять Полярность при сварке Электродами

Чтобы ответить на вопрос зачем менять полярность при сварке электродами, для начала нужно разобраться какие виды полярности бывают, как и в каких случаях их использовать.

Сварка электрической дугой может осуществляться на оборудовании которое вырабатывает или постоянный, или переменный ток.

При работе на переменном токе не имеет значения куда подключать «плюс», «минус», так как при сварке на постоянном токе подключение имеет большое значение. Можно сказать, что полярность при сварке – это основа качества сварки. Полярность обеспечивает качество сварки материала. При сварке постоянным током, сварочная дуга бывает прямой или обратной полярности.

При прямой полярности «плюс» подключается к соединяемым заготовкам (массе), соответственно «минус» подключается на держатель электрода; при обратной полярности «плюс» подключается на электрод, «минус» подключается на деталь. Менять полярность нужно в зависимости от того какую задачу сварки нужно выполнить. На «плюсе» тепла выделяется больше, чем на «минусе».

Прямая полярность используется при сварке цветных металлов (медь, латунь, алюминий), так как они имеют большую теплопроводность, в итоге получаем большую температуру в месте нагрева, что позволяет превысить температуру плавления цветного метала, особенно это важно для алюминия, так как сначала надо одолеть оксидную пленку. У нее температура плавления существенно выше в сравнении с самим металлом.

На прямой полярности так же лучше работать с большими, массивными деталями. При прямой полярности получается более сконцентрированная и узкая электрическая дуга, следовательно металл проплавляется глубже, шов получается более качественный, что происходит благодаря тому, что направление движение электронов постоянное и при сварке не происходит большого разбрызгивания расплавленного металла. Также при использовании прямой полярности можно производить резку металла независимо какой тип электрода используется.

Обратная полярность используется при сварке высоколегированых сталей, тонколистовых металлов, нержавейки, так как температура для их сварки нужна небольшая. Недостатком подключения обратной полярности есть то, что электрическая дуга «гуляет», соответственно шов получается менее герметичным и красивым, но при таком подключении почти полностью исключается возможность прожечь свариваемый материал.

Следовательно менять полярность нужно в зависимости от того, какую задачу сварки необходимо выполнить и верно выбранный вид полярности подключения электродов способствует тому, что качество шва будет выше, а процесс сварки станет намного проще.


Прямая и обратная полярность при сварке

В литературе по методам сварки и инструкциях к сварочным аппаратам нередко встречаются выражения «прямая и обратная полярность». От выбора полярности зависит процесс сварки, качество шва, расход электрода, глубина проплавления. Начинающим сварщикам важно знать, что означает прямая и обратная полярность, чтобы правильно подбирать режимы сварки в конкретных ситуациях.

В этой статье:


Дуговая сварка — режимы полярности

Для горения электрической дуги, которой осуществляется сварка, требуется источник тока и замыкание полюсов с небольшим воздушным зазором 3-5 мм. Источником тока может быть сварочный инвертор, преобразователь, выпрямитель, генератор. Понятие полярности возможно только у источников постоянного тока, поскольку у трансформаторов, вырабатывающих переменный ток, направление движения электронов меняется до 100 раз в секунду.

Соответственно, заряд тоже меняется с положительного на отрицательный многократно за секунды. При такой «скачке» с хаотичным движением, постоянной полярности быть не может. На постоянном токе отрицательно заряженные электроны движутся от минуса к плюсу. Их направление постоянное, что дает определенные свойства:

  • ток более стабильный;
  • сварочная дуга горит ровно;
  • меньше разбрызгивается металл;
  • легче контролировать сварочную ванну.
  • У сварочного аппарата постоянного тока есть два гнезда для подключения кабелей держателя и массы. В держатель вставляется электрод и сварщик манипулирует им, ведя шов. Кабель массы через зажим «крокодил» крепится к изделию.

    Если держатель установить в разъем «-«, а кабель массы подключить к «+», получится прямая полярность. При подключении наоборот (держатель к «+», а массу к «-«) полярность будет обратная.

    Отличия режимов сварки

    Рассмотрим, чем отличается прямая и обратная полярность при сварке. По законам физики постоянный ток течет в одном направлении от минуса к плюсу (движение электронов с отрицательным зарядом). При этом тепло всегда концентрируется на плюсе. Соответственно, где «+», там температура будет выше.

    При сварке на прямой полярности «+» на изделии. Это обеспечивает больший нагрев поверхности и, в то же время, не перегревает электрод. На его кончике пятно тепла будет анодным. Работа дугой с обратной полярностью означает «плюс» на кончике электрода и образование катодного теплового пятна. За счет этого расходник нагревается больше, а изделие меньше. Разница в температуре составляет около 1000º С.

    Влияние полярности на сварку

    Теперь обсудим, как полярность, а именно локализация нагрева, сказываются на процессе сварки.

    Достоинства и недостатки прямой полярности

    Концентрация теплового пучка на изделии дает следующие результаты:

  • при воздушно-дуговой резке процесс выполняется быстрее;
  • можно увеличивать силу тока на аппарате без перегрева расходников;
  • достигается более глубокое проплавление корня, а сам шов при этом остается узким;
  • сварочная дуга горит особенно стабильно, легче манипулировать для накладки шва.
  • Сварка TIG цветных металлов, например меди, ведется на прямой полярности. Лучше всего применять такой режим при работах с металлами сечением от 4 мм и выше. Но тонкие листовые заготовки на прямой полярности будут прожигаться. Еще стороны может сильно «повести» при сварке и потребуется рихтовка деталей. Не получится использовать электроды для переменного тока при сварке постоянным с «плюсом» на держателе. Разбрызгивание металла при таком режиме тоже повышается.


    Достоинства и недостатки обратной полярности

    Использование обратной полярности дает следующие особенности при сварке:

  • меньше нагревается изделие;
  • меньше выгорают легирующие элементы;
  • снижается вероятность температурных деформаций;
  • присадочный металл с кончика стержня отделяется крупными каплями;
  • возможна сварка листовых металлов сечением 1-3 мм без прожогов;
  • шов широкий, но не глубокий;
  • уменьшается бурление углерода в сварочной ванне.
  • Обратную полярность лучше использовать при сварке тонких металлов, чтобы электрод не прилипал, но при этом не было прожогов. В случае ведения прерывистой дугой коротких швов тепловложение уменьшается еще больше.

    Соединение толстых заготовок 6-10 мм происходит гораздо хуже, поскольку нет нужной глубины проплавления. При «минусе» на держателе легче добиться качественного шва на нержавейке, алюминии, высокоуглеродистой стали или чугуне. Если требуется наплавить присадочный металл под последующую проточку, то на обратной полярности отделение капли происходит гораздо быстрее.

    Источник видео: Территория сварки R

    Но кончик электрода от повышенного нагрева укорачивается тоже быстро, поэтому будет перерасход по материалам. Если обмазка электрода чувствительна к перегреву, то от удержания длительной непрерывной дуги покрытие может осыпаться, и голый стержень станет не пригодным для сварки. При снижении силы тока до минимального, дуга начинает «скакать» и управлять сварочной ванной становится сложнее, поэтому при сварке тонколистовой стали пригодятся дополнительные функции в инверторе, о которых упомянем ниже.

    Сварка полуавтоматом

    При сварке полуавтоматом тоже меняют полярность в зависимости от толщины металла и видах свариваемых материалов. Чаще всего изначально установлено прямое подключение с «минусом» на горелке. Это необходимо для сварки омедненной или нержавеющей проволокой. Поскольку ее сечение маленькое (0.6-1.2 мм), тепло требуется концентрировать на изделии, иначе расходник будет быстро гореть, разбрызгивая металл во все стороны.

    Если предстоит варить самозащитной порошковой проволокой без газа, то потребуется обратная полярность. В отличие от инвертора, у которого достаточно поменять местами разъемы кабеля держателя и массы, у полуавтомата горелка крепится к рукаву. В нем проложен канал для проволоки, силовой провод, шланг подачи защитного газа и провода управления. Просто в разъем с массой горелку не вставить — не подойдет по форме.

    Для смены полярности полуавтомата есть несколько способов, в зависимости от конфигурации оборудования. У одних моделей нужно поменять местами разъемы в нижней части (силовой кабель горелки имеет отдельный выход с гнездом, как у массы). У других — открыть боковую крышку и переподключить кабеля к клеммам (обычно они разных цветов). Потребуется рожковый ключ.

    Сварка инвертором

    Сварка инвертором ММА проводится на прямой полярности «классическим» способом, поскольку режим применяется для соединения толстостенных заготовок 4 мм и выше:

  • Касанием кончика электрода о поверхность изделия возбуждается электрическая дуга.
  • Электрод наклоняют на себя под углом 40-60º.
  • На плотно сведенных сторонах ведут ровный шов без колебательных движений. В случае разделки кромок корневой шов прокладывают аналогично, а последующие слои с поперечно-колебательными движениями в виде полумесяцев, спирали, восьмерок.
  • Сварка ведется неотрывной дугой с зазором 3-5 мм. Чем быстрее проводить электрод над одним местом стыка, тем меньше глубина проплавления. При замедлении глубина провара увеличивается. Если предстоит подряд сваривать стыки с разной толщиной сторон, можно выставить силу тока на аппарате для самого большого сечения в конструкции, а глубину провара регулировать скоростью ведения электрода. Только дугу при этом всегда держат на более толстом металле, кратковременно перенося на тонкий, чтобы избежать прожогов.

    Сварка на обратной полярности чаще всего применяется для соединения тонких листовых материалов сечением 1-3 мм. Но даже концентрирование теплового пучка на кончике электрода не всегда спасает от прожогов. Чтобы предупредить дефекты шва, используют прерывистую дугу. Ее поджигают касанием об изделие и накладывают короткие швы без отступов. Отрыв кончика электрода от изделия на высоту 2 см приводит к затуханию дуги. Затем кончик снова подносят и он загорается без постукивания. Такие паузы дают дополнительное время для остывания шва и исключают прожоги.

    Электрододержатель

    При работе инвертором с прямым подключением на высоких токах 200-300 А держатель может сильно перегреваться. Такое происходит и при силе тока 140 А, если установлена обратная полярность. Ведь на электроде возрастает нагрев до 1000 градусов. Чтобы не испытывать дискомфорт в руке, важно выбирать держак инвертора с хорошей изоляцией рукоятки. Тогда получится дольше варить без вынужденных перерывов на остывание.

    Сварочные электроды

    Если Вы новичок и не знаете, на какой полярности будете варить (а может предстоит работать с тонкими и толстыми металлами сразу), выбирайте универсальные электроды. Они рассчитаны на переменный и постоянный ток любой полярности. Среди проверенных универсальных электродов — Lincoln Electric Omnia 46, СпецЭлектрод АНО-21, ESAB ОЗС-12. Для работы с обратной полярностью есть узкоспециализированные электроды ESAB ОК 46.00.

    Выбор инвертора и его эксплуатация

    Чтобы быстро переключать полярность при работе с тонкими и толстыми металлами, у инвертора должны быть надежные разъемы силовых кабелей. Хлипкие тонкие штырьки в разъеме и невысокий бортик для фиксации быстро износятся от частых перестановок. Тогда возникнет люфт, в гнездах кабеля будут болтаться, образуется повышенное сопротивление и перегрев. Сила сварочного тока будет падать, а между разъемом и гнездом даже возможно образование электрической дуги.

    Подбирайте надежные инверторы ММА с прочными гнездами, чтобы при смене полярности ничего не изнашивалось и не болталось. Если у Вас уже есть инвертор и его разъемы изношены, их можно заменить на более крепкие, выбрав из каталога соединительных кабельных разъемов.

    Сварка тонкого металла 1.0-1.5 мм покрытым электродом — это сложная задача для новичка. Справиться с ней без прожогов помогут инверторы РДС с функцией «Антиприлипание». Когда кончик электрода погружается в сварочную ванну, аппарат «чувствует» это и выключает сварочный ток. В результате нет удерживающей силы, Вам не требуется наклонять держатель влево-вправо, чтобы оторвать электрод от поверхности. Обмазка расходника не осыпается при этом.

    Функция «Форсаж дуги» тоже помогает при сварке тонкого металла на обратной полярности. Когда электрод вот-вот прилипнет, инвертор автоматически повышает силу тока на 10 А, сохраняя электрическую дугу. Как только Вы восстановили воздушный зазор, аппарат сам понижает силу тока до прежнего значения, исключая прожоги.


    Ответы на вопросы: особенности прямой и обратной полярности при сварке При какой полярности шов более красивый внешне? СкрытьПодробнее

    При обратной. Тепло на кончике электрода выше, быстрее отделение капли, шов получается более чешуйчатым и без наплывов. Такой режим применим для лицевых сторон изделия, если толщину металла можно проплавить на обратной полярности.

    На каком режиме снижается разбрызгивание металла при работе полуавтоматом? СкрытьПодробнее

    На обратной полярности брызг меньше. Если сварка ведется на лицевой стороне изделия и потом предстоит зачистка всех прилипших капель, лучше переключите полуавтомат на обратную полярность.

    Как уменьшить ширину шва при обратной полярности? СкрытьПодробнее

    Чтобы шов был более узким при режиме обратной полярности, требуется быстрее вести электрод.

    Электрод при резке становится красным, что делать? СкрытьПодробнее

    Скорее всего, у Вас подключена обратная полярность. Поменяйте силовые кабеля в гнездах местами. Работа при прямом подключении («+» на изделии), экономит расход электрода на 20-40% и снижает его нагрев.

    На какой полярности варить алюминий полуавтоматом? СкрытьПодробнее

    На обратной. Алюминий имеет низкую температуру плавления и при перегреве потечет. Поэтому тепловой пучек концентрируют на электроде. Но для разрушения оксидной пленки нужен полуавтомат с импульсом (Pulse), иначе глубокого провара не получится.

    Остались вопросы

    Оставьте Ваши контактные данные и мы свяжемся с Вами в ближайшее время

    Обратная связь


    Сварочные кабели для сварочных аппаратов, какие для массы и держака, можно ли делать удлинитель, почему важен медный, на какие типы подразделяются

    Сварочный кабель является важным дополнительным элементом сварочного оснащения. Он выступает в качестве проводника значительных величин тока. Без провода любое оборудование не работает и соответственно, бесполезно.

    От правильного выбора сечения кабеля зависит качество сварки, функционирование оснащения, безопасность исполнителя. Если провод будет иметь слишком маленькое сечение, то ток по жилам шнура не пойдет и агрегат отключится. Большее, чем необходимо, сечение провода может привести к ненужным затратам на его покупку и таскать его сварщику будет тяжелее.

    На нашем сайте представлен целый ряд статей, посвященных сварочным кабелям, проанализированы наиболее важные нюансы. Далее мы рассмотрим основные аспекты, касающиеся данной темы. Для получения более подробной информации, рекомендуем переходить по активным ссылкам.

    Для какого аппарата ручной дуговой сварки какое нужно сечение

    Расчет сечения кабеля по величине тока является наиболее понятным, простым и быстрым способом, так как эти два показателя напрямую связаны.

    Домашние мастера для выполнения сварочных работ применяют аппараты инверторного типа, профессионалы для реализации производственных и промышленных задач останавливают свое внимание на трансформаторах и генераторах. Каждый агрегат способен выдавать различные величины тока. О том, какой проводник следует выбирать для разных видов оборудования можно узнать в статье “Сечение сварочных кабелей”.

    Какой нужен для массы

    Кабель для зажима массы (клеммы заземления) и его сечение необходимо выбирать точно таким же образом, как и проводник для сварочного оборудования любого типа.

    Достаточно часто как опытные, так и начинающие сварщики сталкиваются с проблемой недостаточной длины провода. Некоторые исполнители соединяют два комплектных проводника в один для зажима массы, а для электрододержателя докупают дополнительный кабель нужной длины. В подобных и других похожих случаях следует знать, как правильно произвести соединение шнуров.

    Для этого существует несколько способов: “скрутка”, сварка, пайка, опрессовка, с помощью соединительных муфт. Каждый из перечисленных методов обладает своими преимуществами и недостатками. О плюсах и минусах, а также о технике выполнения соединения в статье “Соединение, подключение и удлинение сварочного кабеля”.

    Как сделать удлинитель

    Удлинение кабелей производится практически теме же способами, что и соединение: сварка, пайка, опрессовка. В случае, когда использование одного из этих методов по каким-либо причинам невозможно, следует обратить внимание на дополнительные расходные материалы.

    Кабельные разъемы применяются для быстрого и простого удлинения проводов, а также для легкого подключения шнура к источнику питания. Выбор соединителей осуществляется в зависимости от сечения кабеля. Сварщикам предлагаются два вида штекеров: штыревые и в виде гнезда. Более подробная информация представлена в статье “Разъем для сварочного кабеля”.

    1х35, 25 мм2, 16 мм2: что значат эти цифры?

    Маркировка сварочных кабелей включает в себя, кроме буквенных, еще и числовые обозначения, например, 1Х35 или 16 мм2.
    Рассмотрим подробнее первый пример. В маркировке подобного вида цифра “1” обозначает количество токопроводящих жил, а “35” – сечение проводника, которые измеряется в мм2. Следовательно, становится понятно, что 16 мм2 – это также обозначение сечения шнура.
    Подобным образом можно определить количество жил и их сечение в любом проводнике.
    [ads-pc-3][ads-mob-3]

    Медный или алюминиевый

    На рынке кабельной продукции представлены медные и алюминиевые проводники. Многие исполнители задаются вопросом: какой кабель лучше и дольше прослужит?

    Провода с медными жилами имеют несколько преимуществ перед алюминиевыми:

    • медь является лучшим проводником тока, нежели алюминий;
    • сварочные кабели должны обладать высокой гибкостью, поэтому в данном случае, также предпочтительнее применение проводов с медными жилами;
    • медные шнуры способны выдерживать многократные сматывания и разматывания, при этом повреждения на проводах не появляются.

    Однако, стоит отметить, что востребованные у исполнителей аппараты Ресанта оснащены алюминиевым кабелем. Поэтому, при выборе, кроме общих рекомендаций, следует ориентироваться на собственные ощущения от сварки.

    Типы

    Некоторые исполнители считают, что под типами кабелей, подразумевается деление по количеству жил и сечение провода. Однако, это не совсем верная точка зрения. В большинстве случаев речь идет о том, что проводники бывают гибкие (КГ) и особо гибкие (КОГ).

    Каждый тип имеет несколько разновидностей, которые предназначены для применения в различных климатических условиях: ХЛ – холодостойкий; Т – тропический; н – негорючая изоляция. Данные обозначения присутствуют в маркировке проводников, поэтому любому исполнителю будет легко определить конкретный тип. КГ и КОГ имеют конструктивные особенности, представленные в статье “Марки сварочных кабелей”.

    Силовой для инвертора

    Силовой кабель представляет собой несколько изолированных проводов в герметичной оболочке, используется для подсоединения сварочных аппаратов к электрическим сетям в 220 В или в 380 В. Наиболее распространенные марки данного вида проводников представлены в статье “Длина и соединение сварочных кабелей”.

    Кроме этого, рекомендуем ознакомиться со статьей “Сварочный кабель для инвертора”, где представлены основные типы проводов для данного типа оснащения, проанализированы важные аспекты по выбору сечения шнура, перечислены правила подключения провода к оборудованию.

    Где купить

    После изучения представленной информации и определения оптимального варианта необходимого проводника, рекомендуем ознакомиться с поставщиками данной продукции. Компании реализуют качественные, надежные, соответствующие общим требованиям и российским стандартам кабели. Клиентам предоставляется возможность приобрести комплекты проводов и купить кабель нужной длины.

    Обратная и прямая полярность при сварке инвертором

    Электродуговой способ сварки, в отличие от традиционной газовой, отличается некоторыми особенностями. Одной из самых главных является температура нагрева дуги, которая может достигать 5000С, что значительно превышает температуру плавления какого-либо из существующих металлов. Отчасти этим объясняется большое разнообразие технологий и способов этого вида сварки, позволяющих решить при ее помощи самые различные задачи.

    Виды сварки

    Сварочные аппараты имеют блок выпрямительных диодов. Что создает постоянный ток, это обязательное условие для сварочных полуавтоматических аппаратов, для которых материалом является проволока. Если для аппарата требуются электроды, то это обозначает возможность использования во время работы всех их моделей. А полярность во время сварки – это залог ее качества.

    Используя полуавтомат, надо соблюдать полярность подсоединения. Сварка под газовой защитой омедненной проволокой происходит с помощью полярности прямого тока. Фактически это значит:

    • на деталь идет плюс;
    • на держак идет минус.

    Сила тока подается на деталь от проволоки, и она нагревается, в отличие от сварочной проволоки, сильнее. В итоге повышается площадь свариваемого участка. Ему необходим значительный нагрев для образования варочной ванны. Проволока, имеющая меньшее сечение, быстрей плавится и попадает на необходимый участок уже жидкой каплей. Током, который проходит от разных полярностей, увлекается расплавленный материал, получается подходящая ванна для сварки.

    Используя полуавтомат без защитной газовой среды, нужно использовать специальную порошковую или флюсовую проволоку. В этом случае изменяется полярность соединения держака и «массы». На «массе» находится минус, а на держаке находится плюс. Температура плавления флюсовой проволоки имеет примерно такое же значение, как и температура плавления металла. Чтобы достичь качественного шва, необходимо, чтобы сгорел флюс. Затем ожидают два таких процесса:

    • Появление газообразного облака;
    • В среде этого облака и происходит сварка.

    Сила тока переходит от минуса к плюсу, и падение жидкой капли металла становится более низким. Именно это обуславливает меньший нагрев металла для сварки. Так как его охлаждение не происходит под защитной газа. Поэтому образование ванны для сварки практически не отличается от сварки в газовой среде. Работа переменным током имеет определенные преимущества. Она не расходится с дугой относительно изначальной оси. А на качество соединения воздействует именно отклонение дуги.

    Делая сварку генератором с переменным током, легко заметить: его полярность изменяется циклически. Циклы имеют частоту 50 Герц. Она, повысившись до плюсового напряжения, может снизиться до нуля или упасть до отрицательного уровня. Напряжение меняется с плюса на минус и, наоборот.

    Сварка нержавейки и цветных металлов

    Во время сварки цветных металлов, в том числе и алюминий, используют специальный вольфрамовый электрод. Причем используют во время инверторной сварки прямую полярность, на электроде находится минус. Этот вид подключения позволяет иметь необходимую температуру в участке нагрева. Это немаловажно для алюминия, потому как сперва нужно преодолеть оксидную пленку, у которой температура плавления значительно больше, в отличие от самого металла.

    Полярность при сварке напрямую способствует образованию:

    • более качественного шва;
    • более лучшего проплавления металла, в том числе и из нержавеющей стали;
    • более концентрированной узкой электрической дуги.

    У процесса также существует и немаловажная экономическая часть. Используя дорогой вольфрамовый электрод меньшего диаметра, попутно добиваются уменьшения газовых затрат. Если же подключить вольфрамовый электрод при сварке в другой полярности, а именно, на держателе – с плюсом, то шов будет не таким глубоким. У данного способа есть свои преимущества. Работая с тонкими пластинами, можно не переживать, что вы прожжете насквозь изделие из нержавейки и цветного металла.

    Значительным недостатком является эффект электромагнитного дутья. Образующаяся дуга выходит блуждающей, а шов – не сильно привлекательным и герметичным. Используя переменный ток, необходимо использовать электроды для переменки. Опытные сварщики обычно выбирают постоянный ток. Благодаря ему сварка создает однонаправленный проход электронов. Полярность влияет на качество сварочных работ, в том числе материала из нержавеющей стали.

    Сварка прямой полярности

    Сварка прямой полярности инвертором получается, если с деталью подключается «плюс» источника тока. Когда подсоединяют электрод, то в этом случае получается обратная полярность. Используя сварочный инвертор, можно самостоятельно установить на нем полярность. Полярность определяет направление передвижения потока электронов. То есть, определяется подсоединением проводов к положительной и отрицательной клеммам. При работе со сваркой обратная полярность обозначает:
    • на электроде – плюс;
    • на «земле» – минус.

    Ток переходит от отрицательного контакта к положительному. Именно поэтому электроны переходят на электрод от металла. В результате сильно нагревается окончание электрода. Для классической сварки эффективно используют плюс – на электроде, а минус – на клемме. При прямой полярности сварки предполагается минус – на электроде, плюс – на «земле». Ток перемещается от электрода к изделию. Электрод – холодный, а изделие – горячее. Эта особенность широко используется в особых электродах, которые предназначены для быстрой сварки листов нержавеющей стали.

    Важность полярности при сварочных работах

    Естественно, что инверторная сварка на переменном токе не зависит, какой установлен зажим трансформатора для соединения изделия и электрода. Но вот постоянным током по сложившейся традиции сваривают несколькими способами. Электрод, подсоединенный к отрицательному полюсу, с прямой полярностью является катодом.

    В анод, подсоединенное к положительному полюсу, преобразуется изделие. Обратная полярность обозначает, что электрод после подсоединения к положительному полюсу становится анодом. Катод в этом положении – это изделие, подсоединенное к отрицательному полюсу.

    Материал изготовления электрода задает параметр дуги между неплавящимися электродами из вольфрама и плавящимися металлическими электродами. Сварочная дуга имеет ряд физических и технологических свойств. От этого практически полностью будет зависеть результат работы дуги. К физическим свойствам относятся:

    • кинетические;
    • электромагнитные и температурные;
    • электрические и световые.

    Основные технологические свойства имеют три вида:

    • мощность дуги;
    • пространственную стойкость;
    • саморегулирование.

    Для поддержания горения дуги требуется создать обратные электрически заряженные части в пространстве между находящимися электродами. Данные частицы – это электроны, а также положительные и отрицательные ионы. Их преобразование называется ионизацией. Газ, имеющий электроны и ионы, называется ионизированным.

    Промежуток дуги ионизируется во время зажигания дуги, и все время поддерживается при ее горении. В промежутке дуги, как правило, выделяют следующие области:

    • область разряда дуги;
    • анодную;
    • катодную.

    В области анодов происходит значительное снижение напряжения, вызванное скоплением около электродов заряженных частиц. На поверхности анода и катода начинается появление электродных пятен, которые представляют некий фундамент дугового столба. Через них и прокладывается маршрут тока к сварке.

    У сварки есть общий размер дуги, он состоит из суммарных длин 3-х областей. Общее напряжение дуги – это сумма снижений напряжения в каждой части дуги. Зависимость напряжения от размера дуги – это сумма снижения напряжения в прикатодном и прианодном участках. Удельное снижение в дуге напряжения имеет один миллиметр от столба дуги. А основной характеристикой дуги является тепловая мощность нагревательного источника.

    Ее эффективность рассчитывается с учетом количества теплоты, вводимой в металл за единицу времен. Тепловая мощность – это часть общей дуговой тепловой мощности, из которой определенная доля тепла уходит непроизводительно:

    • на теплоотвод в изделии;
    • излучение;
    • на прогрев разбрызгивающихся капель.

    Технология сварочных работ дугой

    Преимущество сварочных работ дугой явны. Сварка отличается по признакам:
    • по среде, где находится дуговой разряд;
    • по типу тока;
    • по типу электродов.

    Для ремонта кузовов автомобилей широко используется дуговая сварка полуавтоматом в защитной среде газа. Для частного пользования наиболее доступной является дуговая ручная сварка. Она делается плавящимися электродами на переменном или постоянном токах. Это хороший шанс сварить в не заводской обстановке большую часть видов металлов.

    Размер между поверхностью основного изделия и дном кратера является глубиной провара или проплавления. Глубина зависит:

    • величины сварочного тока;
    • от скорости передвижения дуги.

    Если размер дуги сварки не больше, чем размер стержня электрода, то эта дуга называется нормальной или короткой. Она гарантирует великолепное качество шва. Дугу, которая имеет большую длину, считают длинной. Очень большое наращивание размера дуги приводит к ухудшению качества сварки. Влияние магнитного поля создает отклонение дуги от заданного направления. Это называется электромагнитным дутьем.

    Электрод во время процесса передвигается вдоль и поперек сварочного шва в направлении оси, дабы сохранить заданный размер дуги. Ускоренное перемещение электрода приводит к образованию узкого, неровного и неплотного шва. При медленном передвижении есть опасность пережога материала.

    Сварочные швы по форме бывают:

    • тавровыми;
    • нахлесточными;
    • стыковыми;
    • угловыми.

    По длине швы разделяются на сплошные и прерывистые. По пространственному расположению имеют такие разновидности:

    • вертикальные;
    • потолочные;
    • нижние;
    • горизонтальные.

    Источники питания: трансформатор для сварки, выпрямитель, генератор – при внешнем показателе имеют связь величины нагрузочного тока с напряжением на зажимах выхода. Вольтамперный показатель дуги – это соотношение между напряжением в статическом режиме и током дуги. Внешние показатели сварочных генераторов считаются падающими.

    На размеры и форму шва также влияют вид электротока и его полярность. То есть, постоянный ток обратной полярности обеспечивает гораздо большую глубину плавления, чем постоянный ток с прямой полярностью, это объясняется разными количествами тепла, появляющимися на аноде с катодом. От повышения скорости процесса сварки глубина и ширина шва провара снижаются.

    Оцените статью: Поделитесь с друзьями!

    Пояснения по сварочному кабелю и удлинителям.

    Пояснения по сварочному кабелю и удлинителям.

    Уважаемые покупатели, в этой статье мы расскажем вам какой длины можно использовать удлинитель для подключения сварочного аппарата, какой это должен быть удлинитель и дадим практические советы на эту тему.

    Сопротивление отрезка провода:

    R – Сопротивление.

    L – Длина в метрах.

    S – Сечение провода в мм².

    P – Удельное сопротивление меди (равное 0.017 Ом умноженное на мм² и разделенное на метры)

    Формула выглядит так:

    R = P x (L/S)

    Пример:

    Вы берете удлинитель 30 метров. Сечение кабеля 1,5 мм². Сварочный кабель подключенный к вашему аппарату 7 метров и сечение 25 мм² .

    Получается R =0.0017 x (30×2/1,5) – 0,68 Ом.

    Идем дальше.

    U = 0,68 Ом умножаем на 45 (45 это максимальный потребляемый ток, за пример взят аппарат Сварог ARC 250 R112) и получается 30,6 В.

    Таким образом мы видим, что если вы используете 30 метровый удлинитель с сечением 1, 5 мм² , то к вашему аппарату доходит не 220 В от розетки, а 189,4 В. (220-30,6).

    Если вы возьмете удлинитель с более толстым сечением, например 25 мм² , то потеря будет меньше и составит 18,4 В. А это значит, что к аппарату от вашей розетки дойдет 201,6 В. (220-18,4).

    Не нужно требовать от аппарата невозможного, если вы подключаете очень длинный удлинитель, вы должны понимать, что будут потери в мощности аппарата. Если включить чайник в розетку в Москве, а сам чайник будет стоять в Санкт-Петербурге, то он никогда не закипит.

    Давайте рассмотрим еще один пример. В стандартной комплектации практически все производители используют трехметровые сварочные кабели. Люди часто подключают очень длинные сварочные кабели к аппаратам.

    Формула:

    R = 0,017 x (7×2/25) = 0,00952 Ом.

    Мы берем кабель сварочный длиной 7  метров и умножаем на 2 (ток идет туда и обратно, по этому нужно 7 метров умножать на 2) затем делим на сечение , пусть сечение будет 25 мм². Получаем 0,00952 Ом.

    А теперь вторая формула.

    Возьмем сварочный ток 210 А² и умножим на 0,00952 Ом. Получаем 420 Вт. Таким образом ваш аппарат потеряет в мощности 420 Вт. Чем толще сечение сварочного кабеля, тем меньше потери. Например взяв 35 мм² сварочный кабель, вы потеряете 300 Вт от мощности.

    Важно!

    Если вы используете удлинитель, всегда его полностью разматывайте. Если удлинитель собран в бобину, то ухудшаются условия охлаждения, что может привести к возгоранию проводов или их расплавлению, так как потребляемый ток сварочного аппарата выше допустимого тока удлинителя, как правило.

    Итоги:

    Чем больше удлинитель – тем больше потери.

    Чтобы избежать серьезных потерь – используйте удлинитель с толстым сечением кабеля.

    Чтобы избежать дополнительных потерь при удлинении сварочного кабеля – используйте кабель с как можно более толстым сечением.

    Еще один часто задаваемый вопрос от наших покупателей. Сколько же будут потери в Амперах, если использовать длинный сварочный кабель. Это очень трудно рассчитать, поскольку свойства сварочного источника определяются в ВАХ (вольт амперная характеристика). Для этого необходимо подключать сварочный аппарат к балластному реостату и замерять Амперы при той или иной длине кабеля. Но на словах можно сказать, что при использовании хорошего сварочного кабеля с правильно подобрать сечением – потери в Амперах будут незаметны. Например кабель до 10 метров с сечением кабеля 25 мм² — вы не ощутите потерь. 

    Существует два вида типовых ВАХ источников: штыковая и пологая ВАХ. На разных аппаратх и у разных производтелях она своя. Мы попробуем провести опыты с разными аппаратами и сообщим вам о результатах.

    Баллонные редукторы и регуляторы расхода газа. →← Демонстрация сварочного оборудования Сварог и Ergomax

    Урок 2 — Общие процессы электродуговой сварки

    Урок 2 — Общие процессы электродуговой сварки © АВТОРСКИЕ ПРАВА 1998 УРОК ГРУППЫ ЭСАБ, ИНК. II ПРИЛОЖЕНИЕ УРОК II — ГЛОССАРИЙ УСЛОВИЯ Arc Удар — Отклонение направления сварочной дуги, вызванной магнитными полями в заготовка при сварке прямым Текущий. Прямой Полярность — Условия сварки при электрод подключен к отрицательный терминал и работа связана с положительным клемма источника сварочного тока.Задний ход Полярность — Условия сварки при электрод подключен к положительный терминал и работа связана с отрицательным клемма источника сварочного тока. Шлак — хрупкая масса, которая образуется на сварном шве на сварных швах с покрытием электроды, порошковые электроды, сварка под флюсом и производство другого шлака сварочные процессы. Сварные швы, выполненные газовой дугой и процессы газовой вольфрамовой дуговой сварки не содержат шлаков.Руководство по эксплуатации Дуговая сварка — Сварка с покрытием электрод, на котором рука оператора регулирует скорость движения и скорость подачи электрода в дугу. Полуавтоматический Сварка — Сварка непрерывным сплошная проволока или электрод с флюсовым сердечником, где подача проволоки скорость, расход защитного газа и напряжение задаются на оборудовании, и оператор ведет руку держали сварочный пистолет вдоль свариваемого стыка. Шлак Включение — Дефект сварного шва, где шлак захватывается металлом сварного шва, прежде чем он сможет всплыть в поверхность.Корень Пройти начальный проход в многопроходном сварном шве, обычно требующий 100% проплавления.

    Общие сведения о сварочном токе и полярности

    TWS — отличный вариант обучения для всех

    Узнайте больше о том, как мы можем подготовить вас к продвижению по карьерной лестнице.

    Сварка — это практическая работа, но сварщики должны обладать достаточными техническими знаниями. Один из терминов, который вы часто слышите в классе и в магазине, — это «сварочный ток». Вы увидите, что сварочные аппараты и электроды помечены как AC или DC, которые описывают полярность тока сварочного аппарата. Почему при сварке важны электрические токи и полярность? Давайте посмотрим поближе.

    Какая полярность при сварке?

    Электрическая цепь, которая создается при включении сварочного аппарата, имеет отрицательный и положительный полюс — это свойство называется полярностью.Полярность имеет большое значение при сварке, потому что выбор правильной полярности влияет на прочность и качество сварного шва. Использование неправильной полярности приведет к сильному разбрызгиванию, плохому провару и потере контроля сварочной дуги. 1

    Что такое прямая и обратная полярность при сварке?

    «Прямая» и «обратная» полярность являются общими терминами для полярности «электрод-отрицательный» и «электрод-положительный». Сварочные токи с положительной (обратной) полярностью электрода приводят к более глубокому проплавлению, в то время как отрицательная (прямая) полярность обеспечивает более быстрое плавление и более высокую скорость осаждения.Различные защитные газы также могут повлиять на сварку. 2

    Что означают переменный и постоянный ток?

    AC означает «переменный ток», а DC — «постоянный ток». Первый изменяет направление своего потока, в то время как последний течет только в одном направлении. Следовательно, сварочные аппараты и электроды с маркировкой «DC» имеют постоянную полярность, тогда как электроды с маркировкой «AC» меняют полярность 120 раз в секунду при токе 60 Гц.

    Чем отличаются токи переменного и постоянного тока при сварке?

    При дуговой сварке защищенным металлом (SMAW) постоянный ток широко используется из-за его многочисленных преимуществ.Сварка на постоянном токе создает более плавные и стабильные дуги, вы можете легче зажигать дугу, меньше отказов дуги и меньше разбрызгивания, а вертикальная сварка вверх и над головой также менее сложна. Однако переменный ток может быть предпочтительным выбором для новичков, таких как студенты, обучающиеся сварке, поскольку он часто используется с недорогими сварочными аппаратами начального уровня. Переменный ток также распространен при сварке в судостроении или в любых условиях, когда дуга может дуть из стороны в сторону. 3

    Заполните форму, чтобы получить информационный пакет без обязательств.

    Что такое положительная и отрицательная полярность постоянного тока при сварке?

    Кроме того, сварка различается не только по сварочному току, но и по тому, имеет ли ток положительную или отрицательную полярность. Положительная полярность постоянного тока обеспечивает высокий уровень проникновения в сталь, в то время как отрицательная полярность постоянного тока означает меньшее проникновение, но более высокую скорость наплавки (например, используется на тонком листовом металле). Поскольку переменный ток наполовину положительный, а наполовину отрицательный, его сварочные свойства находятся прямо посередине между положительной и отрицательной полярностью постоянного тока.Некоторые сварщики выбирают переменный ток, если хотят избежать глубокого провара, например, при ремонте ржавых металлов.

    Понимание сварочного тока и полярности важно для правильного выполнения сварочных работ. При выборе переменного или постоянного тока и положительной или отрицательной полярности электрода необходимо учитывать тип металла, условия сварки, уровни проплавления и скорость наплавки. Знание того, как эти факторы влияют на сварной шов, облегчит вашу работу.

    Вам тоже может понравиться…

    Дополнительные источники

    1 — http://redwingsteelworks.com/articles/whats-difference-reverse-straight-polarity/
    2 — http://www.lincolnelectric.com/en-us/support/process-and- теория / Pages /standing-polarity-detail.aspx
    3 — http://weldingproductivity.com/article/ac-vs-dc/

    Сварочный словарь | MillerWelds

    MTE = Miller Technology Exclusive

    Выберите первую букву искомого термина: A C D E F G H I K L M O P R S T V W

    А

    Accu-Pulse ® (MTE) : Процесс сварки MIG, который обеспечивает точное управление дугой даже при прихватках и в узких углах.Обеспечивает оптимальный и точный контроль образования луж.

    Accu-Rated ™ Power (MTE) : Стандарт для измерения мощности генератора с приводом от двигателя. Гарантии сдачи всей обещанной мощности.

    Active Arc Stabilizer ™ (MTE) : Улучшает зажигание дуги и обеспечивает более мягкую дугу во всех диапазонах, с меньшей турбулентностью лужи и меньшим разбрызгиванием.

    Adaptive Hot Start ™ (MTE) : Автоматически увеличивает выходную силу тока в начале сварного шва, если этого требует запуск.Помогает исключить прилипание электрода при зажигании дуги.

    Advanced Active Field Control Technology ™ (MTE) : Простой и надежный запатентованный способ точного управления мощностью сварочного шва генератора привода двигателя.

    Воздушно-угольная дуговая резка (CAC-A) : Процесс резки, при котором металлы плавятся под действием тепла дуги с использованием угольного электрода. Расплавленный металл отталкивается от разреза струей нагнетаемого воздуха.

    Переменный ток (AC) : Электрический ток, который меняет свое направление через равные промежутки времени, например 60 циклов переменного тока (AC) или 60 герц.

    Aluminium Pulse Hot Start ™ (MTE) : Автоматически обеспечивает большую мощность дуги для Millermatic® 350P, чтобы исключить «холодный запуск», свойственный алюминиевым запускам.

    Сила тока : Измерение количества электричества, проходящего через заданную точку в проводнике в секунду. Ток — это еще одно название силы тока.

    Дуга : Физический зазор между концом электрода и основным металлом.Физический зазор вызывает нагревание из-за сопротивления току и дуговым лучам.

    Arc-Drive (MTE) : Автоматически улучшает сварку палкой, особенно труб, фокусируя дугу и предотвращая выход электрода.

    Auto-Crater ™ (MTE) : Позволяет дуге TIG на аппаратах серии Trailblazer® исчезнуть кратер, что дает время для добавления наполнителя без потери защитного газа. Устраняет необходимость в дистанционном управлении на конце дуги.

    Auto-Line ™ (MTE) : Позволяет использовать любое первичное входное напряжение в диапазоне, одно- или трехфазное, 50 или 60 Гц. Также регулирует скачки напряжения во всем диапазоне.

    Auto-Link® (MTE) : Схема внутреннего источника питания инвертора, которая автоматически подключает источник питания к приложенному первичному напряжению (230 В или 460 В), без необходимости вручную связывать клеммы первичного напряжения.

    Автоматический запуск на холостом ходу (MTE) : Двигатель сразу же заглушает двигатель при запуске, продлевая срок его службы и снижая расход топлива и уровень шума.

    Автоматическая сварка : Использует сварочное оборудование без постоянной регулировки органов управления сварщиком или оператором. Оборудование контролирует выравнивание суставов с помощью автоматического датчика.

    Auto-Refire ™ (MTE) : Автоматически управляет вспомогательной дугой при резке развернутого металла или нескольких металлических частей без повторного запуска вручную.

    Auto Remote Sense ™ (MTE) : Автоматически переключает машину с панели на дистанционное управление при подключенном дистанционном управлении.Доступно для Dimension ™ NT 450, XMT® 350, Trailblazer® Series и PRO 300. Устраняет путаницу и необходимость в переключателе панели / дистанционного управления.

    Auto-Stop ™ (MTE) : Позволяет останавливать дугу TIG без потери защитного газа на серии Trailblazer®.

    Axcess ™ File Management (MTE) : Программное обеспечение, которое превращает стандартный КПК Palm в карту данных и удаленный брелок для всех систем Axcess. Позволяет отправлять по электронной почте, хранить и передавать программы сварки.

    К

    Сварочный аппарат с постоянным током (CC) : Эти сварочные аппараты имеют ограниченный максимальный ток короткого замыкания. У них отрицательная кривая вольт-амперной характеристики, и их часто называют «спадающими».

    Устройство подачи проволоки с постоянной скоростью: Устройство подачи работает от 240 или 120 В переменного тока от источника сварочного тока.

    Сварочный аппарат с постоянным напряжением (CV) и постоянным потенциалом (CP): Этот тип выходного сигнала сварочного аппарата поддерживает относительно стабильное постоянное напряжение независимо от выходной силы тока.Это приводит к относительно ровной кривой вольт-амперной характеристики.

    Cool-On-Demand ™ (MTE) : Встроенный охладитель работает только при необходимости на Syncrowave® 250 DX и 350 LX.

    Ток: Другое название силы тока. Количество электричества, проходящего через точку в проводнике каждую секунду.

    Д

    Дефект: Одно или несколько разрывов, которые вызывают сбой при испытании сварного шва.

    Dig: Также называется Arc Control.Предоставляет источнику питания переменную дополнительную силу тока в условиях низкого напряжения (короткая длина дуги) во время сварки. Помогает избежать «залипания» стержневых электродов при короткой длине дуги.

    Постоянный ток (DC): Протекает в одном направлении и не меняет его направление на противоположное, как переменный ток.

    Отрицательный электрод постоянного тока (DCEN): Направление тока, протекающего через сварочную цепь, когда вывод электрода подсоединен к отрицательной клемме, а рабочий провод подсоединен к положительной клемме сварочного аппарата постоянного тока.Также называется постоянным током прямой полярности (DCSP).

    Положительный электрод постоянного тока (DCEP): Направление тока, протекающего через сварочную цепь, когда вывод электрода подключен к положительной клемме, а рабочий провод подключен к отрицательной клемме сварочного аппарата постоянного тока. Также называется постоянным током обратной полярности (DCRP).

    Dual Power Option ™ (MTE) : Дает возможность приводу двигателя PipePro® 304 использовать входную одно- или трехфазную электрическую мощность 230 В, что исключает износ двигателя, шум и выбросы, а также затраты на топливо. .

    Рабочий цикл: Количество минут из 10-минутного периода времени, в течение которого аппарат дуговой сварки может работать с максимальной номинальной мощностью. Примером может служить 60-процентный рабочий цикл при 300 ампер. Это означает, что при 300 А сварочный аппарат можно использовать в течение шести минут, а затем дать ему остыть при работающем двигателе вентилятора в течение четырех минут.

    E

    Engine Save Start ™ (MTE): Двигатель работает на холостом ходу через три — четыре секунды после запуска на Trailblazer® 275 DC и 302.Увеличивает срок службы двигателя и снижает расход топлива.

    Ф.

    Fan-On-Demand ™ (MTE) : Внутренняя система охлаждения источника питания, которая работает только при необходимости, сохраняя внутренние компоненты в чистоте.

    Контактный наконечник FasTip ™ (MTE) : Запатентованный однооборотный наконечник для быстрой замены — никаких инструментов!

    Стационарная автоматизация: Автоматическая сварочная система с электронным управлением для простых, прямых или круглых швов.

    Гибкая автоматизация: Автоматизированная роботизированная сварочная система для сложных форм и применений, где сварочные пути требуют изменения угла наклона горелки.

    Дуговая сварка порошковой проволокой (FCAW): Процесс дуговой сварки, при котором плавятся и соединяются металлы путем нагрева их дугой между непрерывной плавящейся электродной проволокой и изделием. Экранирование обеспечивается флюсом, содержащимся в сердечнике электрода. Дополнительная защита может быть обеспечена или не обеспечена от поступающего извне газа или газовой смеси.

    г

    Газовая дуговая сварка металла (GMAW): См. Сварка MIG.

    Газовая дуговая сварка вольфрамом (GTAW): См. Сварка TIG.

    Заземление: Безопасное соединение рамы сварочного аппарата с землей. См. Раздел «Подключение детали», чтобы узнать о разнице между рабочим соединением и заземлением.

    Провод заземления: При подключении сварочного аппарата к объекту см. Предпочтительный термин «Вывод заготовки».

    Gun-On-Demand ™ (MTE) : Позволяет использовать либо стандартный пистолет, либо пистолет Spoolmatic® на Millermatic® 210, 251 и 350 без переключения переключателя. Автомат определяет, какой пистолет вы используете, когда вы нажимаете на спусковой крючок.

    H

    Герц: Герц часто называют «циклами в секунду». В Соединенных Штатах частота или направление изменения переменного тока обычно составляет 60 герц.

    Высокая частота: Охватывает весь частотный спектр выше 50 000 Гц.Используется при сварке TIG для зажигания и стабилизации дуги.

    Hot Start ™ (MTE) : Используется на некоторых станках с ручным приводом (SMAW), чтобы упростить запуск электродов, которые трудно запускать. Используется только для зажигания дуги.

    Я

    Инвертор: Источник питания, который увеличивает частоту поступающей первичной мощности, тем самым обеспечивая меньший размер машины и улучшенные электрические характеристики для сварки, такие как более быстрое время отклика и больший контроль при импульсной сварке.

    К

    кВА (киловольт-ампер): киловольт-ампер. Сумма вольт, умноженная на ампер, деленная на 1000, потребляемая источником сварочного тока от первичной мощности, предоставляемой энергокомпанией.

    кВт (киловатт): Первичная кВт — это фактическая мощность, используемая источником питания при его номинальной выходной мощности. Вторичный кВт — это фактическая выходная мощность источника сварочного тока. Киловатты находятся путем деления вольт на ампер на 1000 и учета любого коэффициента мощности.

    л

    Lift-Arc ™ (MTE) : Эта функция позволяет зажигать дугу TIG без высокой частоты. Зажигает дугу при любой силе тока, не загрязняя сварной шов вольфрамом.

    Low OCV Stick ™ (MTE) : Снижает OCV на некоторых моделях Maxstar® и Dynasty®, когда источник питания не используется, устраняя необходимость в дополнительных редукторах напряжения.

    LVC ™ (компенсация линейного напряжения) (MTE): Сохраняет выходную мощность источника питания постоянной, несмотря на незначительные колебания входной мощности.

    М

    Микропроцессор: Одна или несколько интегральных схем, которые можно запрограммировать с помощью сохраненных инструкций для выполнения множества функций.

    Сварка MIG (GMAW или газовая дуговая сварка металла): Также называется сваркой сплошной проволокой. Процесс дуговой сварки, при котором металлы соединяются путем их нагрева дугой. Дуга возникает между непрерывно подаваемым присадочным (расходуемым) электродом и заготовкой. Подача газа или газовых смесей из внешнего источника обеспечивает защиту.

    Существует четыре основных режима переноса металла:

    Перенос короткого замыкания: Получил свое название от сварочной проволоки, фактически «замыкающей» (касаясь) основного металла много раз в секунду. При этом образуются брызги, но перенос можно использовать во всех положениях сварки и на металле любой толщины.

    Globular Transfer: Названо в честь «шариков» сварочного металла, перемещающихся по дуге под действием силы тяжести. Капли на дуге обычно больше диаметра электрода.Это не дает очень гладкого внешнего вида сварного шва, и могут возникать брызги. Обычно ограничивается плоскими и горизонтальными положениями сварки и не используется для тонких металлов.

    Распыление: Названо в честь «распыления» крошечных капель расплава поперек дуги, обычно меньше диаметра проволоки. Использует относительно высокие значения напряжения и силы тока, и дуга постоянно горит после того, как дуга образовалась. Очень мало брызг, если они вообще есть. Обычно используется для сварки толстых металлов в плоских или горизонтальных положениях сварки.

    Импульсный перенос распылением: Для этого варианта распыления сварочный аппарат «пульсирует» выходной сигнал между высокими пиковыми токами и низкими фоновыми токами. Сварочная ванна немного остывает во время фонового цикла, что немного отличается от режима распылительного переноса. Это позволяет выполнять сварку во всех положениях как на тонких, так и на толстых металлах.

    Дополнительную информацию о сварке MIG см. В разделе «Технические советы MIG».

    MVP ™ (многовольтная вилка) (MTE) : Позволяет подключать Millermatic® DVI ™ или Passport ™ к розеткам на 115 или 230 В без инструментов — просто выберите вилку, которая подходит к розетке.

    О

    Напряжение холостого хода (OCV): Как следует из названия, в цепи нет тока, потому что она разомкнута. Однако на цепь воздействует напряжение, так что, когда цепь замыкается, ток сразу же течет.

    п.

    Совместимость с ОС Palm ™: Заменяет необходимость в картах данных и подвесках дистанционного управления на моделях Axcess.

    Плазменно-дуговая резка: Процесс электродуговой резки, при котором металл разрезается за счет использования суженной дуги для расплавления небольшого участка детали.Этот процесс может разрезать все металлы, проводящие электричество. Дополнительные сведения о плазменной резке см. В разделе «Советы по плазменной резке».

    фунтов на квадратный дюйм (psi): Измерение, равное массе или весу, приложенному к одному квадратному дюйму площади поверхности.

    Энергоэффективность: Насколько хорошо электрическая машина использует поступающую электроэнергию.

    Коррекция коэффициента мощности: Обычно используется в однофазных источниках питания постоянного тока для снижения величины первичного тока, требуемого энергокомпанией во время сварки.

    Первичная мощность: Часто называется входным линейным напряжением и силой тока, доступными для сварочного аппарата от основной линии электропередачи в цехе. Первичная входная мощность, которую часто выражают в ваттах или киловаттах (кВт), — это переменный ток, который может быть однофазным или трехфазным.

    Импульсная сварка MIG (MIG-P): Модифицированный процесс переноса распылением без разбрызгивания, поскольку проволока не касается сварочной ванны. Области применения, наиболее подходящие для импульсной сварки MIG, — это те области, которые в настоящее время используют метод передачи короткого замыкания для сварки стали калибра 14 (1.8 мм) и выше.

    Импульсная сварка TIG (TIG-P): Модифицированный процесс TIG, подходящий для сварки более тонких материалов.

    Импульсный: Последовательность и управление величиной тока, частотой и продолжительностью сварочной дуги.

    R

    Номинальная нагрузка: Сила тока и напряжение, на которые рассчитан источник питания в течение определенного периода рабочего цикла. Например, 300 ампер, 32 вольта нагрузки, при рабочем цикле 60 процентов.

    Регулируемое осаждение металла (RMD®) (MTE) : Точно управляемая технология передачи короткого замыкания, доступная в качестве опции для моделей Axcess®. Для уменьшения разбрызгивания, снижения тепловложения до 20 процентов или заполнения зазоров.

    Контактная точечная сварка (RSW): Процесс, при котором два куска металла соединяются путем пропускания тока между электродами, расположенными на противоположных сторонах свариваемых деталей. В этом процессе нет дуги. Для получения дополнительной информации о контактной точечной сварке см. Технические советы по контактной точечной сварке.

    RMS (среднеквадратическое значение): «Действующие» значения измеренного переменного напряжения или силы тока. Среднеквадратичное значение равно 0,707 максимального или пикового значения.

    S

    Сварочный полуавтомат: Оборудование контролирует только подачу электродной проволоки. Движение сварочной горелки контролируется вручную.

    SharpArc® (MTE) : Оптимизирует размер и форму дугового конуса, ширину и внешний вид валика, а также текучесть лужи. Доступно для Millermatic® 350 / 350P.

    Дуговая сварка экранированного металла: См. Сварка палкой.

    Защитный газ: Защитный газ, используемый для предотвращения атмосферного загрязнения сварочной ванны.

    Однофазная цепь: Электрическая цепь, производящая только один переменный цикл в течение 360 градусов.

    Умный топливный бак (MTE) : Конструкция бака сводит к минимуму вероятность обратного потока топлива.

    Брызги: Частицы металла, унесенные сварочной дугой.Эти частицы не становятся частью готового сварного шва.

    Точечная сварка: Обычно выполняется на материалах с некоторым типом конструкции стыков внахлест. Может относиться к точечной сварке сопротивлением, MIG или TIG. Точечная сварка сопротивлением выполняется электродами с обеих сторон стыка, а точечная сварка сваркой в ​​условиях сварки и MIG выполняется только с одной стороны.

    Squarewave ™: Выход переменного тока источника питания с возможностью быстрого переключения между положительным и отрицательным полупериодами переменного тока.

    Сварка палкой (SMAW или дуговая сварка защищенного металла): Процесс дуговой сварки, при котором металлы плавятся и соединяются путем нагревания их дугой между покрытым металлическим электродом и изделием. Защитный газ получают из внешнего покрытия электрода, часто называемого флюсом. Присадочный металл в основном получают из сердечника электрода. Для получения дополнительной информации о сварке штангой см. Технические советы по Stick.

    Дуговая сварка под флюсом (SAW): Процесс, при котором металлы соединяются дугой или дугами между неизолированным металлическим электродом или электродами и изделием.Экранирование обеспечивается гранулированным легкоплавким материалом, который обычно подается на работу из бункера для флюса.

    Sun Vision ™ (MTE): Позволяет легко считывать показания цифровых счетчиков при прямом солнечном свете или в тени на Trailblazer® 275 DC и 302.

    SureStart ™ (MTE): Обеспечивает постоянное зажигание дуги Axcess® за счет точного управления уровнями мощности для определенных комбинаций проволоки и газа.

    Syncro Start ™ (MTE) : Позволяет выбрать индивидуальный запуск дуги на Syncrowave® 200, 250 DX и 350 LX

    т

    Трехфазная цепь: Электрическая цепь, дающая три цикла в пределах временного интервала 360 градусов, при этом циклы разнесены на 120 электрических градусов.

    Сварка TIG (GTAW или газовая вольфрамовая дуга): Этот процесс сварки, часто называемый сваркой TIG (вольфрамовый инертный газ), соединяет металлы путем их нагрева вольфрамовым электродом, который не должен становиться частью завершенного сварного шва. Иногда используется присадочный металл, а для защиты используются инертный газ аргон или смеси инертных газов. Для получения дополнительной информации о сварке TIG см. Технические советы по TIG.

    Tip Saver Short Circuit Protection ™ (MTE) : Отключает выход, когда контактный наконечник MIG замыкается на рабочий элемент на Millermatic® 135 и 175.Увеличивает срок службы контактного наконечника и защищает машину.

    Сброс триггера: Обеспечивает быстрый сброс на пистолете, а не на станке.

    Горелка: Устройство, используемое в процессе TIG (GTAW) для управления положением электрода, передачи тока на дугу и направления потока защитного газа.

    Torch Detection ™ (MTE) : Syncrowave® 250 DX и 350 LX определяют, имеет ли горелка TIG водяное или воздушное охлаждение.

    Touch Start: Процедура зажигания дуги низкого напряжения и малой силы тока для сварки TIG (GTAW).Вольфрам касается заготовки; когда вольфрам поднимается из заготовки, возникает дуга.

    Технология Tri-Cor ™ (MTE) : Конструкция стабилизатора Bobcat ™ 250, которая обеспечивает более гладкие сварные швы и снижает разбрызгивание с электродами E7018 без снижения производительности с электродами E6010.

    Вольфрам: Редкий металлический элемент с чрезвычайно высокой температурой плавления (3410 ° Цельсия). Используется при производстве электродов TIG.

    В

    Напряжение: Давление или сила, толкающая электроны через проводник.Напряжение не течет, но вызывает протекание силы тока или силы тока. Напряжение иногда называют электродвижущей силой (ЭДС) или разностью потенциалов.

    Устройство подачи проволоки с датчиком напряжения: Устройство подачи работает от напряжения дуги, генерируемого источником сварочного тока.

    Кривая вольт-ампер: График, показывающий выходные характеристики источника сварочного тока. Показывает напряжение и силу тока конкретной машины.

    Вт

    Управление файлами WaveWriter ™ (MTE) : Включает все функции управления файлами Axcess ™, а также простую графическую программу формирования сигналов для наиболее требовательных приложений импульсной сварки MIG.

    Сварка на холостом ходу (MTE) : Позволяет PipePro ™ 304 автоматически выполнять сварку при более тихой и низкой скорости вращения при меньшем расходе топлива. Когда требуется большая мощность, станок переходит на высокую скорость без изменения дуги.

    Металл сварного шва: Электрод и основной металл, расплавленный во время сварки. Это формирует сварной валик.

    Перенос сварного шва: Метод, при котором металл переносится из проволоки в расплавленную лужу.

    Wet-Stacking: Несгоревшее топливо и моторное масло собираются в выхлопной трубе дизельного двигателя, причем выхлопная труба покрыта черным липким маслянистым веществом.Это состояние вызвано тем, что двигатель работает со слишком малой нагрузкой в ​​течение продолжительных периодов времени. При раннем обнаружении это не вызывает непоправимого ущерба и может быть уменьшено, если приложить дополнительную нагрузку. В случае игнорирования возможно необратимое повреждение стенок цилиндров и поршневых колец. Благодаря более строгим нормам выбросов и более качественному топливу двигатели в последние годы менее подвержены складированию в мокром состоянии.

    Wind Tunnel Technology ™ (MTE) : Внутренний воздушный поток на многих инверторах Miller, который защищает электрические компоненты и печатные платы от загрязнения, значительно повышая надежность.

    Скорость подачи проволоки: Выражается в дюймах / мин или мм / с и относится к скорости и количеству присадочного металла, подаваемого в сварной шов. Как правило, чем выше скорость подачи проволоки, тем выше сила тока.

    Присоединение заготовки: Средство для крепления рабочего кабеля (рабочего кабеля) к заготовке (металл, на который нужно приваривать). Кроме того, точка, в которой установлено это соединение. Один тип рабочего соединения осуществляется с помощью регулируемого зажима.

    Свинец заготовки: Проводящий кабель или электрический проводник между аппаратом для дуговой сварки и изделием.

    Основные термины сварки


    Ниже приведены мои нетехнические определения некоторых основные сварочные условия. Они хороши для любителей дома и тех, кто только собирается в сварочное поле. Большинство людей не хотят садиться и учиться сварке словарный запас, и я их не виню, я тоже. Но если вы выучите это, вы будете на голову выше большинства новичков.


    Нажмите здесь, чтобы просмотреть наши сварочные печи и на номер
    узнайте о преимуществах правильного хранения сварочных материалов!


    Arc Blow — дуга ходить везде, куда вы НЕ ХОТИТЕ.Это происходит только в округе Колумбия, бывает много завитков в угол и, как полагают, каким-то образом вызвано магнетизмом. Иногда помогает переместить рабочий зажим в другое положение на стали.

    Дуга Резка — может выполняться стержнем 6010 или 6011 на станке до «warp 10». (очень горячие) Можно использовать и другие стержни, но эти два самый лучший. Здесь вы прорезаете сталь силой дуги. Это не сделает самый красивый разрез, но подойдет в крайнем случае, когда у вас нет фонарика.

    Дуга Строжка — это когда сталь или металл разрезают дугой из углерода. электрод. Электрод представляет собой твердый углеродный слой, обернутый медью для обеспечения проводимости. В Stinger имеет сжатый воздух, и когда кнопка нажата, он выпускает воздух в расплавленный разрезаемый металл. Машина повернута на «деформацию 10», что означает, что вы используют ОЧЕНЬ много ампер (тепло).

    Примером может служить то, что мы зашли в работа, где 5 резервуаров из нержавеющей стали высотой около 10 этажей имели почти все сварные швы провалить рентгеновское обследование.Мы выдолбили сварной шов снаружи, а затем снова сварили. Мы затем выдолбил сварные швы изнутри и снова приварил к нашему предыдущему сварному шву.

    толстый нержавеющую сталь нельзя резать горелкой, и даже если бы это было возможно, из-за тепла она деформация. Дуговая строжка обеспечивает концентрацию тепла в месте пропила.

    Сплав — это элемент, добавленный к металлу. Примером может служить низкоуглеродистая сталь с добавлением хрома (резист ржавчина) и никель (делает его менее восприимчивым к окислению, которым является ржавчина), который делает форму из нержавеющей стали.(наиболее распространенная нержавеющая сталь 304)

    Чередование Current — меняет направление с положительного на отрицательное по синусоиде. волна. Это создает неустойчивую дугу при большинстве сварочных процессов, поэтому постоянный ток является предпочтительным.

    Сила тока — измеряет ток электричества и то же самое, что и ток, который является вашим теплом.

    Arc — что между конец электрода и основной металл. Сопротивление вызывает тепло.

    Автомат Сварка — это сварка, выполняемая таким оборудованием, как роботы.

    Резервное копирование Полоса — это полоса или отрезок стали, стыкующийся до открытого зазора между два куска стали. Сварочные стержни 6010 можно использовать для открытой стыковой сварки, но 7018 не может и требует опорной полосы для обеспечения поверхности для электрода. чтобы приварить. Некоторые резервные планки обрезаются, а некоторые остаются на месте.

    Бусина — наплавленный присадочный металл на и в рабочей поверхности, когда проволока или электрод плавится и вплавляется в сталь.Бусина стрингера — это узкая бусина с тянущее движение или легкие колебания, в то время как бусинка плетения шире и больше колебание.

    Bevel — угловая срезка или шлифовка на краю заготовки чтобы обеспечить большее проплавление для более прочного сварного шва.

    Взорванный — что вы будет, если сварить или порезать емкости с испарениями. НИКОГДА не сваривайте и не резайте какие-либо контейнер, если он не новый или вы не знаете, что он был очищен и сертифицирован по безопасности! Контейнеры могут быть токсичными, легковоспламеняющимися или взрывоопасными.

    Щетка — сталь ручная щетка с проволочной щетиной, дисковая щетка для ручной шлифовальной машины, чашечная щетка для ручной шлифовальной машины, или колесная щетка для настольной шлифовальной машины. Они используются для очистки прокатной окалины, окисления, грязь, масло и т. д. со стальных поверхностей. Чистота имеет первостепенное значение на заготовку, чтобы убедиться в отсутствии дефектов сварного шва. Важно использовать нержавеющую стальная щетка и щетка из мягкой стали.

    Строительный шов — строительный вверх по поверхности стальной детали, такой как зубья звездочки, поверхность промежуточное колесо (удерживает гусеницу на гусеничном ходу, например, бульдозеры) или краны), или ковш на фронтальном погрузчике.В большинстве случаев это намного дешевле Сварщик собирает компонент, а не заменяет его. Построить сварные швы обычно выполняются электродами с твердой поверхностью.
    Это тоже хороший способ для нового студента-сварщика, чтобы научиться правильному повторному запуску и врезке.

    Разоренный Аут — невыполнение испытания сварного шва из-за дефектов сварных швов. «Он разорился на своих испытательных пластинах и не был принят на работу ».

    Butt Joint — просто то, что это такое … две части столкнулись друг с другом.Только верх и нижняя поверхность может быть сварной. Без хорошего проплавления этот сварной шов не имеет прочность многопроходного углового шва или соединения со скосом.

    Заглушка — последний валик шва с разделкой кромок, его можно сделать плетеным движением вперед и назад, или с бусинками стрингера, связанными друг с другом.

    Также то, что вам нужно надеть на голове при сварке Mig в вертикальном положении или во время любого другого процесса над головой, чтобы не допустить образования горячих искр с твоей головы. (см. Кассинг.) Шляпы сварщика имеют маленький счет и такие высокие им нужна сигнальная лампа, чтобы самолеты не врезались в них. Это так их можно повернуть и натянуть на ухо при сварке трубы и головы наклонен. Вы ДАЖЕ не хотите, чтобы капля расплавленного металла попала вам в ухо! Ты Вы можете буквально услышать его шипение, когда страдаете от ожога. Сварочные шапки могли выиграть любой конкурс уродливых шляп со всеми безумными точками в горошек, узорами пейсли и прочими безумными конструкции.

    Cardinal Sin of Welding — см. Поднутрение.

    Коалесценция — ах, это когда металл или сталь сплавлены (стыкованы) кузнечиком.

    с покрытием Электрод — это флюс на присадочном металле сварочного стержня. Они использовали использовать неизолированные стержни только в горизонтальном положении. Кто-то заметил, что ржавый стержень работал лучше, чем новый, поэтому они начали экспериментировать с разными покрытия на разные стержни. Они обнаружили, что некоторые покрытия создают экранирование. газ, защищавший сварочную ванну от загрязнений в атмосфере.Загрязняющие вещества вызвать пористость и продольное растрескивание. Сварочная ванна защищает сварной шов был гладким и прочным и мог использоваться в разных положениях, а не просто плоский. Я могу только представить, сколько раз эти голые стержни застревали!

    Вогнутость — Это когда валик углового сварного шва провисает внутрь от корневой грани к корню.
    Расходные материалы Вставка — это место, где присадочная проволока или пруток находится в зазоре, и вы привариваете их к отверстию. основной металл вместе с проволокой или прутком.Он становится единым целым с кузнечиком сварного шва.
    Выпуклость — это когда валик углового сварного шва выступает наружу из корня. к лицу.

    Угловое соединение — Одно из пяти основных сварных соединений. Это это когда края двух пластин стыкуются друг с другом под углом 90 градусов. Это обычно имеет канавку для заполнения, обеспечивающую хорошее проникновение.

    Защитное стекло или Защитная пластина — Прозрачная стеклянная или пластиковая линза в бленде или очках для резки защищает линзу № 5 (для резки) или № 10, 11, 12 (для сварки) от попадания брызги на них.Жалко меня, черт возьми, когда студент забывает положить его когда меняют линзу. Затем они сваривают его, и брызги портят # стекло, которое недешево! Вы должны часто менять накладки, так как они ограничивают ваш вид, когда они забрызганы или поцарапаны.

    Трещина — Где сварной шов трескается или разваливается. Хорошим примером может служить сварка чугуна. Если он не был предварительно нагрет и не подогрет должным образом, или если используется неправильный электрод, это взломает БОЛЬШОЕ ВРЕМЯ.Иногда трещина будет проходить прямо перед сварным швом. бассейны во время сварки.

    Вы должны предварительно нагреть, пост-нагревать и спустить чугунную катанку, который содержит никель. Уловка, чтобы предотвратить распространение трещины, — это просверлить отверстие до и после трещины, которую вы собираетесь сваривать. Выполните сварку, а затем заполнить дыры. Отверстия не дают трещине распространяться.

    Кратер — В конце сварного шва вы прожигаете сталь, не оставляя присадки. металл, оставляющий углубление в основном металле.При перезапуске вы хотите чтобы начать в конце трещины, приварите обратно к месту остановки сварного шва, а затем продолжайте движение в направлении сварки. Это предварительно нагревает и обеспечивает хорошее соединение. в бусинку, которую вы только что положили.

    Критическая температура — Это когда основной металл переходит из состояния солидуса в состояние ликвидуса по мере его нагрева во время сварочный процесс. Это как раз в тот момент, когда оно перестает быть твердой массой, таять и становиться жидкостью.Это отличный термин для обсуждения за коктейлем вечеринка, чтобы заставить вас казаться умным, ОСОБЕННО, если ваша аудитория мало знает о сварка!

    Ток — В электрической цепи ток является потоком электричества. То, на что вы свариваете, сопротивляется потоку, и в результате образуется тепло. AMPS являются мерой вашего тока. Чтобы получить немного более технический, ток отрицательно заряженные электроны проходят через проводник, который обычно представляет собой проволоку.

    цилиндр r — В чем мы храним кислород и ацетилен для резки, и ЗАЩИТНЫЙ ГАЗ для Сварочные процессы MIG и TIG.Они бывают разных размеров, и вам нужно изучить перед покупкой. Если у вас будет слишком мало одного, вы действительно устанете заправлять это все время.

    Дефект — Что-то не так со сварным швом. Основные дефекты: продольные трещины, пористость, шлаковые включения и «кардинальный» Грех «сварки… Подрезка.

    Глубина плавления — Насколько глубока ваша присадочный металл проникает в металл с поверхности.

    Постоянный ток — Сварка постоянным током — это самая плавная сварка с наименьшим количеством брызг.В ток течет в одном направлении, от отрицательного к положительному. (От катода к аноду)
    It это похоже на то, когда вы включаете водяной шланг и вода вытекает. С DC ток ВСЕГДА течет в одном направлении. Однако вы можете изменить сварку приводит к изменению полярности.

    Отрицательный электрод постоянного тока — Электричество ВЫХОД ИЗ сварочного стержня или проволоки рассеивается в заготовке, поэтому дает меньшее проникновение. Около 1/3 тепла приходится на конец стержня и 2/3 тепла. на заготовке.Это то, что вы хотите использовать для тонких металлов.

    Прямой Положительный токовый электрод — Электричество течет НА сварочный стержень или проволоку и, следовательно, больше нагревают стержень или конец проволоки. Это дает вам 2/3 тепла на стержне и 1/3 на заготовке, что дает большее проникновение для толстых металлы, потому что сила дуги проникает в сталь перед нанесением присадочного металла.

    Пластичность — Металл изгибается и остается изогнутым, не ломаясь.

    Рабочий цикл — Это сколько времени машина может проработать за десять минут до того, как он перегревается.

    10% = 1 минута из каждых 10.
    20% = 2 минуты из каждых 10.
    Включено до 100%, при котором будет работать все время без остановки.

    Для машина на заводе или строительной площадке, вам нужен 100% рабочий цикл.
    Для ваша мастерская по хобби вы можете обойтись с 20 или 30%.

    Даже в самом загруженном фабрика через десять минут выйдет из строя.Если вы свариваете клещами, вы можете пробежать чуть больше минуты. Тогда ты собираешься поднять капюшон, проверить из того, что делают все остальные, подумай о том, что ты собираешься делать той ночью, Отколите шлак, почистите сварной шов, проверьте, сколько сейчас времени, замените стержни и НАКОНЕЦ возвращаемся к сварке.

    Edge Joint — Внешний край двух пластин встали на 90 градусов параллельно друг другу.

    Подготовка кромки — До при сварке кромки плиты или трубы следует позаботиться о том, чтобы сварной шов был качественным.Это могут быть вырезаны резаком или скошены, обработаны шлифовальным станком, напильником или все три.

    Электрод — Электроды либо покрыты флюсом, либо просто оголены. В области электрод называется стержнем при сварке штангой, а электрод — проволокой. Дуговая сварка Mig и порошковой проволокой.

    Существует МНОГО разных типов электродов.

    В Использовались голые стержни времен Второй мировой войны, которые можно было использовать только в горизонтальном положении. Это было ОЧЕНЬ легко воткнуть эти стержни, и я могу только представить, как это должно быть неприятно. были использовать их.Однажды парень заметил, что подобранный им ржавый стержень приварен лучше, чем новенькие.

    Эксперименты с разными типами покрытий как кремний и калий, было установлено, что флюс на стержне не только помогает он горит лучше, но производит защитный газ, защищающий сварочную ванну от атмосфера.

    Держатель электрода — ручной зажим, удерживающий сварку стержень и проводит электричество из стержня в ОТРИЦАТЕЛЬНОМ ЭЛЕКТРОДЕ ПРЯМОГО ТОКА, или в стержень в ПОЛОЖИТЕЛЬНОМ ЭЛЕКТРОДЕ ПРЯМОГО ТОКА.

    Лицевая — На пластине или сварка труб: ROOT PASS, HOT PASS, FILLER PASS и CAP. Корень проникает через заднюю часть пластины, колпачок находится на поверхности, которую вы сварка, то есть лицо.

    Вентилятор : Сварочные аппараты имеют вентилятор для охлаждения машины и предотвращения ее перегрева. (см. ОБЯЗАТЕЛЬНЫЙ ЦИКЛ) Некоторые фанаты работают постоянно, в то время как другие запускаются «по запросу», что означает, что он включается при необходимости и отключается, когда не требуется.

    (Хорошая идея взорвать отключать сварочный аппарат сжатым воздухом не реже одного раза в месяц. Это сохраняет пыль от накопления и возможного нарушения внутренней электрической работы. На всех машинах есть вентиляционные прорези, и каждый из них должен быть продуван.)

    Железо Металл — Железо получают из руды, добываемой на Земле. Смотри как Сталь сделана. Черный означает, что металл — это железо или железо со сплавами.

    Наполнитель Металл — металл, добавляемый в сварочную ванну.Сварной шов можно выполнять с присадочный металл. Тонкий металл иногда сваривают путем плавления двух основных металлов. вместе.

    Flash Burn — Это ожог от радиации. от УЛЬТРАФИОЛЕТОВЫХ лучей сварочной дуги. Он может обжечь кожу аналогично к солнечным ожогам и даже волдырям на роговице. Вы не понимаете этого до нескольких часов спустя когда кажется, что кто-то втирает тебе горячий песок в глаза.

    Два моих студенты сваривали слишком близко друг к другу, и я сказал им двигаться, но они сказал, что они в порядке.Да, что я знаю? Я делал это только 30 долбаных лет по сравнению с их тремя или четырьмя месяцами!

    Уэлп, в ту ночь они были в отделении неотложной помощи получают мазь для глаз и красивое отделение неотложной помощи за 300 долларов законопроект.

    Вы никогда не должны находиться там, где можно увидеть свет сварочной дуги без защитные линзы, даже если они не сбоку от глаз. В моем магазине громко объявляем «СМОТРИТЕ В ГЛАЗА!» прежде чем зажигать дугу, чтобы предупредить чтобы закрыть глаза.

    Угловой шов — Король сварных швов, потому что он используется во многих приложениях, в основном на тройниковых соединениях. . (См. СОЕДИНЕНИЯ.)

    Два куски металла стыкуются вместе под углом 90 градусов, бусинка проходит на полпути в каждый кусок. В зависимости от толщины может понадобиться одна бусинка или несколько бусинок. ПРИВЯЗАНЫ друг к другу.

    Поверхность углового сварного шва — Поверхность или верх сварной шов.

    Стойка углового шва — От пересечения стыка до конец сварного шва.На каждую тарелку будет по ножке.

    Угловой шов Носок — это конец сварного шва на конце ножки. Опять будет один за каждую тарелку.

    Корень углового сварного шва — Место начала сварного шва на пересечении стыкованных пластин.

    Горловина углового шва — Расстояние от корень к лицу.

    Для приведенных выше определений FILLET WELD см. Miller’s Tig. Страница сварки для хорошей иллюстрации…
    http: // www.millerwelds.com/education/TIGhandbook/pdf/TIGBook_Chpt7.pdf

    Поток Измеритель — Давление в баллоне ЗАЩИТНОГО ГАЗА может достигать 2400 фунтов. на дюйм. Расходомер снижает его до рабочего давления, обычно от 20 до 25 кубических футов в час.

    Флюс :
    Очищает поверхность и при ожогах создает ЗАЩИТНЫЙ ГАЗ, который защищает БАССЕЙН или ЛУЗУ от атмосферных воздействий. загрязняющие вещества, вызывающие ДЕФЕКТЫ.

    Дуговая сварка порошковой проволокой (FCAW) — Длинную тонкую плоскую полоску пропускают через серию штампов, пока она не начнет скручиваться. По сторонам.Затем добавляется FLUX, и он проходит через штампы до тех пор, пока не будет свернутый в трубчатую проволоку.

    Подобно ТВЕРДОЙ СТАЛЬНОЙ ПРОВОЛОКЕ, он катится и используется аналогично MIG, обычно устанавливается на ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРОД ПРЯМОГО ТОКА. Когда проволока расплавляется и превращается в НАПОЛНИТЕЛЬНЫЙ МЕТАЛЛ, ПОТОК горит и образует ЗАЩИТНЫЙ ГАЗ.

    Следовательно, не требуется ЗАЩИТНЫЙ ГАЗ, поэтому его можно использовать на сквозняках или даже на ветру, в отличии от его двоюродного брата МИГа.

    Испытание на свободный изгиб — Также называется управляемым изгибом тест, это разрушительный тест.Из испытательной пластины вырезается купон, сварной шов шлифованный, затем купон (обычно 1 ½ дюйма в ширину и 7 дюймов в длину) сгибается. в JIG. Затем он ВИЗУАЛЬНО ПРОВЕРЯЕТСЯ на предмет трещин и дефектов.


    Это это один из способов демонстрации КВАЛИФИКАЦИИ для получения сертификата. Сварка — это одно из самых требовательных профессий, потому что сварщик всегда должен доказывать свою квалификацию.
    У меня 30-летний опыт работы в цехе, профсоюзе металлургов и образования, но если бы я пошел работать, скажем, в электростанцию, со сварщиком, поля всего пару лет, я бы еще сдать тест с ними!

    Критически для выполнения сложных работ требуется квалификация РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ, которая является неразрушающей, но показывает все!

    Дым — Если вы опытный ДЖУРНИК или НОВИЧК, при резке и сварке всегда следует остерегаться испарений.

    От GALVANIZED пары цинка, вызывающие тошноту, к более опасному газу фосгену, который может выделяться от УЛЬТРАФИОЛЕТОВЫХ ЛУЧЕЙ вокруг некоторых чистящих средств ДЫМ может быть опасен!

    Всегда убедитесь, что у вас есть надлежащая вентиляция, особенно в закрытых помещениях!

    Предохранитель — Если вы покупаете сварочный аппарат для дома, убедитесь, что у вас есть подходящие предохранитель, чтобы вы не взорвали все. В старых домах убедитесь, что проводка были обновлены, иначе вы можете вызвать пожар при их перегреве.

    Fusion — Как сказано в COALESCENCE, слияние — это плавление и слияние с основой. металл или РОДИТЕЛЬСКИЙ МЕТАЛЛ вы свариваете кузнечика.

    Это тоже слово за то, что доктор хочет сделать с моей лодыжкой, которую я сломал, когда упал три истории. Хочет взять кусок моей бедренной кости и прикрепить его к лодыжке. Беда То есть, для заживления бедра потребуется больше времени, чем для заживления лодыжки! Итак … этот маленький операции не будет.Черт возьми, мне все равно больно, когда я не сплю!

    Оцинковка — Электрохимический процесс, при котором низкоуглеродистую сталь погружают в жидкий цинк для сделать его антикоррозийным. Я был удивлен, узнав, что это делается уже 150 лет!
    Когда при сварке оцинкованной стали сначала нужно прожечь цинковое покрытие и он производит ДЫМ, который может вызвать у вас тошноту, как будто вас ударили в кишка.
    Питье молока до, во время и после сварки должно помочь, но правильная вентиляция и вообще не дышать ею — лучше всего.

    Газовая металлическая дуга Сварка (GMAW) — см. «МИГ»

    Газовая дуговая сварка вольфрамом — см. «TIG»

    Сварной шов с разделкой кромкой — Когда требуется очень прочный сварной шов, например, когда две колонны соединены вместе на высотном здании, важно чтобы получить максимальное проникновение и сплавление. Это делается путем обрезки ФАСКИ, чтобы что вы можете приварить твердое тело от КОРНЯ к ЛИЦУ РОДИТЕЛЬСКОГО МЕТАЛЛА.

    Тепло Затронутая зона — кое-что, что многие сварщики не принимают во внимание, но должны.Любое время при сварке металла или стали вы нагреваете область рядом со сварным швом. После этого нагревается, охлаждается с разной скоростью в зависимости от температуры в магазине или поле.
    На строительных объектах зимой это может происходить очень быстро. И нагрев, и охлаждение могут влиять на свойства в зависимости от того, какая основа металл, на котором вы свариваете.
    Зона термического влияния на низкоуглеродистую сталь обычно ничего страшного. Однако, если вы свариваете чугун, например, без должной предварительный нагрев и последующий нагрев, он треснет прямо у вас на глазах.

    Инвертор — Относительно новые, впервые услышал о них лет 13 назад. Источник питания для сварочные аппараты, которые намного эффективнее обычных трансформаторов. машины используют и, следовательно, гораздо меньшие единицы.

    Когда я впервые начал сварку тридцать лет назад в магазине черного железа я использовал сварщика, который выглядел как большой атомная бомба с ящиком наверху. Он был не менее четырех футов в ширину, два фута глубокий и высотой около трех футов.

    Сегодня у них есть машины, которые могут все что можно, плюс еще несколько, и они размером с небольшой чемодан, а это много удобнее для магазина и поля.

    Iron Workers — Есть здесь пара значений. Первый — это союз, к которому я принадлежу, Интернационал Ассоциация рабочих мостов, строительного, декоративного и арматурного железа. В качестве название подсказывает, мы работаем над конструкциями, начиная от высотных офисных башен, к плотинам, электростанциям и т. д.После трехлетнего обучения я стал структурным сварщик. Есть и другие банды (бригады), такие как Raising Gang, Plumb Gang, Bolt-up Банды и Разные Банды. Хотя я работал над ними всеми, я потратил большую часть Я провела время в различных сварочных бригадах, так как сварка — моя настоящая любовь!

    Это также термин для машины, как ОГРОМНОЙ, так и достаточно маленькой, чтобы быть портативной. по вакансиям. Он может резать металл, резать углы и пробивать отверстия. Ты собираешься инвестировать минимум около пары тысяч за меньшую модель.Даже не хочу подумать, сколько стоят большие.

    Прерывистая сварка: Очень распространенный ошибка в сварке это сварка слишком много! Многие сварщики, особенно новичок в торговле: «чем больше шов, тем лучше он будет держаться». Ну, это НЕ правда! Часто один или два дюйма сварного шва каждые пару дюймов держится так же хорошо, как и сплошной сварной шов.

    На большинстве работ, будь то в магазин или поле, сварные швы будут на чертеже, чтобы вы знали, что именно делать.Инженеры определяют, какой вид сварного шва лучше всего подходит для данного соединения.

    Есть два типа прерывистых сварных швов. Приведу пример из завод по производству черного чугуна, на котором я когда-то работал:

    1) «Цепь» на Луч двадцать футов, мы найдем центр, скажем, в десяти футах. Отметим два дюймов, по одному дюйму с каждой стороны от центра. Затем из центра этого сварного шва мы сделаем отметку на расстоянии двенадцати дюймов. На этой отметке мы бы измерили один дюйм на каждом боковая сторона.Таким образом, мы измеряли расстояние от центра до центра каждого сварного шва. В большинстве конструкций почти все измеряется от центра.

    По ту сторону луч, мы бы отразили следы первой стороны.

    Очевидно, что концы луч не выходил правильно по порядку, поэтому было важно, чтобы мы и поставьте по два дюйма на каждый конец, даже если он был рядом с двумя другими отметки, которые мы сделали.

    2) «Staggard» После нанесения отметок на одном сторону балки, мы поместим другую сторону между отметками на первом боковая сторона.

    Эти сварные швы достаточно прочные, чтобы их удерживать, и сваривать их — излишне. эти стыки прочные. Когда сварщики переусердствуют, они лажают. несколькими способами…

    1. Нагревают основной металл, который может измениться его свойства неблагоприятно.
    2. Они тратят ненужное время. В магазине и поле «Время — ДЕНЬГИ!»
    3. Они тратят материалы впустую, используя стержни, которые с каждым годом стоят все больше и больше.

    Приспособление — Приспособление удерживайте металл или сталь, над которыми вы работаете, на месте во время изготовления.Они может быть стальным зажимом с помощью тисков или С-образного хомута, болтов, приваренных прихваточным швом к столу, или очень сложные кадры. Позиционеры в крупных фабриках удерживают заготовку, вращают, вращать или вращать, чтобы можно было сваривать в плоском или горизонтальном положении.

    Шарнир — Пересечение, где встречаются два разных раздела PARENT METAL. Быть в списке под СВАРНЫЕ СОЕДИНЕНИЯ. На электростанции спрашивали, сколько стыков мы сварили каждый день.

    Было много разных типов, таких как балка к балке, балка к колонне, х подтяжки и т. д.Хотя это не был точный отчет, он дал бригадиру представление о том, что делалось.

    Отличная глава о JOINTS принадлежит Миллеру Tighandbook …
    http://www.millerwelds.com/education/TIGhandbook/pdf/TIGBook_Chpt7.pdf

    Замочная скважина — При сварке открытого стыка или сварного шва с открытыми канавками с помощью STICK, MIG или TIG, откроется «замочная скважина». Когда стороны тарелки выгорят на каждой На стороне СВАРОЧНОГО БАССЕЙНА образовано отверстие, обеспечивающее хорошее ЗАВЯЗКУ и ПРОНИКНОВЕНИЕ.

    Замочная скважина не должна становиться слишком большой, иначе сварочный бассейн будет водопад из задней части сустава.

    Если замочная скважина становится слишком большой, остановитесь Немедленно сварку, дайте пластине остыть и произведите надлежащую регулировку, чтобы исправить эта проблема. (Слишком много тепла, неправильный угол стержня или слишком долгое пребывание в луже может быть причиной.)

    Профсоюзы — Хороший сайт со списком профсоюзов http://www.trcp.org/unions.aspx.
    В мой опыт работы с железом, я бы сказал, что у вас больше всего шансов на сварку в следующем…

    Boilermakers

    Iron Рабочие

    Трубопроводчики

    Трубопроводчики

    Листовой металл Рабочие

    Отводы — Это линии от станка до того, что вы проводите сварку по току. Это множество медных проводов, вплетенных в один для проведения электричества, затем покрытый непроводящей резиной или пластиком сворачивать.

    Важно убедиться в отсутствии разрывов или разрывов на выводах. обнажая оголенный провод, который может вызвать дугу на заземленной поверхности. Помимо шока или пожароопасность, особенно плохо, если бы он вступил в контакт с находящимся под давлением газовый баллон!

    Liquidis — Слово, которое заставляет вас казаться умным, когда вы означают самую низкую температуру, при которой сталь или металл находятся в жидком состоянии. Угадайте, что такое «твердое» называется? (См. SMART TALK)

    Сварочный аппарат — Оборудование выполняет сварочный шов, пока человек смотрит, чтобы убедиться, что он работает правильно.Они также будут визуально осмотрите выполненный сварной шов. Будь то робототехника или машинная сварка, большинство компаний предпочитают тех, кто действительно занимался сваркой в ​​полевых условиях, потому что они «почувствовать» это.

    Сварщики-подмастерье действительно чувствуют приварить TIE-IN к стали. Когда я ПРИКЛЮЧАЮ СВАРКУ с 7018, я буквально чувствую стержень слегка поддается, так как сливается со сталью.

    Руководство Сварка — Сварку выполняет человек.В SMAW (палке) держат ЖАЛОЙ и манипулируя СВАРОЧНЫМ ЭЛЕКТРОДОМ, чтобы управлять СВАРОЧНЫМ БАССЕЙНОМ. В МИГ они используют проволоку для подачи пистолета МИГ, чтобы сделать то же самое. В TIG они используют горелкой и ручной подачей присадочного прутка.

    Скорость плавления — Сколько стержня (электрода), проволоки или стержня TIG плавится за определенное время.

    Точка плавления — Аааа, кузнечик, вот куда идет металл от SOLIDUS к LIQUIDUS.См. УМНЫЙ РАЗГОВОР.

    MIG (GMAW или газовый металл Дуговая сварка) — Технически это может называться GMAW, но в магазине и на местах все, что я когда-либо слышал, было Миг.

    При сварке МИГ используется сплошная скрученная стальная проволока. на катушке и подается через сварочный провод с вкладышем в нем. Водители толкают, тянут или оба, чтобы пропустить проволоку через провод к СВАРКУ.

    Использует несколько разные смеси, но чаще всего я использовал либо плотный углекислый газ, либо или смесь инертного газа аргона и CO2 (обычно 75/25.75% аргона, 25% CO2) для защиты ЛУЧИ сварного шва от атмосферы.

    Стр. 2 — Основные термины сварки


    Это Список условий сварки представлен вам компанией Keen Ovens, лидером в области сварочного хранения. Духовки.

    Глоссарий по сварке | HobartWelders

    Выберите первую букву искомого термина: A C D F G H I K L M O P R S T V W

    А

    Воздушно-угольная дуговая резка (CAC-A) : Процесс резки, при котором металлы плавятся под действием тепла дуги с использованием угольного электрода.Расплавленный металл отталкивается от разреза струей нагнетаемого воздуха. Чтобы удалить большое количество металла, ищите сварщика, который может использовать уголь диаметром не менее 3/8 дюйма. Расходные материалы: угольные электроды, подача сжатого воздуха.

    Переменный ток (AC) : Электрический ток, который меняет свое направление через равные промежутки времени, например 60 циклов переменного тока (AC) или 60 герц.

    Сила тока : Измерение количества электричества, проходящего через заданную точку в проводнике в секунду.Ток — это еще одно название силы тока.

    Дуга : Физический зазор между концом электрода и основным металлом. Физический зазор вызывает нагревание из-за сопротивления току и дуговым лучам.

    Arc Force: Также называется Dig and Arc Control. Предоставляет источнику питания переменную дополнительную силу тока в условиях низкого напряжения (короткая длина дуги) во время сварки. Помогает избежать «залипания» стержневых электродов при короткой длине дуги.

    Auto-Link ® : Схема внутреннего источника питания инвертора, которая автоматически связывает источник питания с подаваемым первичным напряжением без необходимости вручную связывать клеммы первичного напряжения.

    Автоматическая сварка : Использует сварочное оборудование без постоянной регулировки органов управления сварщиком или оператором. Оборудование контролирует выравнивание суставов с помощью автоматического датчика.

    К

    Сварочный аппарат с постоянным током (CC) : Эти сварочные аппараты имеют ограниченный максимальный ток короткого замыкания. У них отрицательная кривая вольт-амперной характеристики, и их часто называют «падающими». Напряжение будет изменяться при разной длине дуги, при этом лишь незначительно изменяя силу тока, отсюда и название постоянного тока или переменного напряжения.

    Устройство подачи проволоки с постоянной скоростью: Устройство подачи работает от 240 или 120 В переменного тока от источника сварочного тока.

    Сварочный аппарат с постоянным напряжением (CV) и постоянным потенциалом (CP): «Потенциал» и «напряжение» в основном одинаковы по значению. Сварочный аппарат этого типа поддерживает относительно стабильное постоянное напряжение независимо от выходной силы тока. Это приводит к относительно плоской кривой вольт-ампер, в отличие от падающей кривой вольт-ампер типичного сварочного аппарата Stick (SMAW).

    Ток: Другое название силы тока. Количество электричества, проходящего через точку в проводнике каждую секунду.

    Д

    Дефект: Одно или несколько разрывов, которые вызывают сбой при испытании сварного шва.

    Dig: Также называется Arc Control. Предоставляет источнику питания переменную дополнительную силу тока в условиях низкого напряжения (короткая длина дуги) во время сварки. Помогает избежать «залипания» стержневых электродов при короткой длине дуги.

    Постоянный ток (DC): Протекает в одном направлении и не меняет его направление на противоположное, как переменный ток.

    Отрицательный электрод постоянного тока (DCEN): Направление тока, протекающего через сварочную цепь, когда вывод электрода подсоединен к отрицательной клемме, а рабочий провод подсоединен к положительной клемме сварочного аппарата постоянного тока. Также называется постоянным током прямой полярности (DCSP).

    Положительный электрод постоянного тока (DCEP): Направление тока, протекающего через сварочную цепь, когда вывод электрода подключен к положительной клемме, а рабочий провод подключен к отрицательной клемме сварочного аппарата постоянного тока.Также называется постоянным током обратной полярности (DCRP).

    Рабочий цикл: Количество минут из 10-минутного периода времени, в течение которого аппарат дуговой сварки может работать с максимальной номинальной мощностью. Например, рабочий цикл 60% при 300 ампер. Это означает, что при 300 А сварочный аппарат можно использовать в течение 6 минут, а затем дать ему остыть при работающем двигателе вентилятора в течение 4 минут. (Некоторые производители оценивают машины по 5-минутному циклу).

    Ф.

    Fan-On-Demand ™: Внутренняя система охлаждения источника питания, которая работает только при необходимости, сохраняя внутренние компоненты в чистоте.

    Стационарная автоматизация: Автоматическая сварочная система с электронным управлением для простых, прямых или круглых швов.

    Гибкая автоматизация: Автоматизированная роботизированная сварочная система для сложных форм и применений, где сварочные пути требуют изменения угла наклона горелки.

    Дуговая сварка порошковой проволокой (FCAW): Процесс дуговой сварки, при котором плавятся и соединяются металлы путем их нагрева дугой между непрерывной плавящейся электродной проволокой и изделием.Экранирование обеспечивается флюсом, содержащимся в сердечнике электрода. В зависимости от типа порошковой проволоки дополнительная защита может обеспечиваться или не обеспечиваться от поступающего извне газа или газовой смеси. Расходные материалы: контактные наконечники, порошковая проволока, защитный газ (при необходимости зависит от типа проволоки).

    г

    Газовая дуговая сварка металла (GMAW): См. Сварка MIG.

    Газовая дуговая сварка вольфрамом (GTAW): См. Сварка TIG.

    Заземление: Безопасное соединение рамы сварочного аппарата с землей.Часто используется для заземления сварочного аппарата с приводом от двигателя, когда кабель подсоединяется от шпильки заземления сварочного аппарата к металлическому стержню, помещенному в землю. См. Раздел «Подключение детали», чтобы узнать о разнице между рабочим соединением и заземлением.

    Провод заземления: При подключении сварочного аппарата к объекту см. Предпочтительный термин «Вывод заготовки».

    H

    Герц: Герц часто называют «циклами в секунду».«В Соединенных Штатах частота или направление изменения переменного тока обычно составляет 60 герц.

    Высокая частота: Охватывает весь частотный спектр выше 50 000 Гц. Используется при сварке TIG для зажигания и стабилизации дуги.

    Hot Start ™ : Используется на некоторых станках Stick (SMAW), чтобы облегчить запуск электродов, которые трудно запускать. Используется только для зажигания дуги.

    Я

    Инвертор: Источник питания, который увеличивает частоту поступающей первичной мощности, тем самым обеспечивая меньший размер машины и улучшенные электрические характеристики для сварки, такие как более быстрое время отклика и больший контроль при импульсной сварке.

    К

    кВА (киловольт-ампер): киловольт-ампер. Сумма вольт, умноженная на ампер, деленная на 1000, потребляемая источником сварочного тока от первичной мощности, предоставляемой энергокомпанией.

    кВт (киловатт): Первичная кВт — это фактическая мощность, используемая источником питания при его номинальной выходной мощности. Вторичный кВт — это фактическая выходная мощность источника сварочного тока. Киловатты находятся путем деления вольт на ампер на 1000 и учета любого коэффициента мощности.

    л

    Lift-Arc ™: Эта функция позволяет зажигать дугу TIG без высокой частоты. Зажигает дугу при любой силе тока, не загрязняя сварной шов вольфрамом.

    М

    Микропроцессор: Одна или несколько интегральных схем, которые можно запрограммировать с помощью сохраненных инструкций для выполнения множества функций.

    Сварка MIG (GMAW или газовая дуговая сварка металла): Также называется сваркой сплошной проволокой.Процесс дуговой сварки, при котором металлы соединяются путем их нагрева дугой. Дуга возникает между непрерывно подаваемым присадочным (расходуемым) электродом и заготовкой. Подача газа или газовых смесей из внешнего источника обеспечивает защиту.

    Существует четыре основных режима переноса металла:

    Перенос короткого замыкания: Получил свое название от сварочной проволоки, фактически «замыкающей» (касаясь) основного металла много раз в секунду. При этом образуются брызги, но перенос можно использовать во всех положениях сварки и на металле любой толщины.

    Globular Transfer: Названо в честь «шариков» сварочного металла, перемещающихся по дуге под действием силы тяжести. Капли на дуге обычно больше диаметра электрода. Это не дает очень гладкого внешнего вида сварного шва, и могут возникать брызги. Обычно ограничивается плоскими и горизонтальными положениями сварки и не используется для тонких металлов.

    Распыление: Названо в честь «распыления» крошечных капель расплава поперек дуги, обычно меньше диаметра проволоки.Использует относительно высокие значения напряжения и силы тока, и дуга постоянно горит после того, как дуга образовалась. Очень мало брызг, если они вообще есть. Обычно используется для сварки толстых металлов в плоских или горизонтальных положениях сварки.

    Импульсный перенос распылением: Для этого варианта распыления сварочный аппарат «пульсирует» выходной сигнал между высокими пиковыми токами и низкими фоновыми токами. Сварочная ванна немного остывает во время фонового цикла, что немного отличается от режима распылительного переноса.Это позволяет выполнять сварку во всех положениях как на тонких, так и на толстых металлах.

    Дополнительные сведения о сварке MIG см. В разделе «Советы по сварке MIG».

    О

    Напряжение холостого хода (OCV): Как следует из названия, в цепи нет тока, потому что она разомкнута. Однако на цепь воздействует напряжение, так что, когда цепь замыкается, ток сразу же течет. Например, сварочный аппарат, который включен, но в данный момент не используется для сварки, будет иметь напряжение холостого хода, приложенное к кабелям, присоединенным к выходным клеммам сварочного аппарата.

    п.

    Плазменно-дуговая резка: Процесс дуговой резки, при котором металл разрезается за счет использования суженной дуги для плавления небольшого участка детали. Этот процесс может разрезать все металлы, проводящие электричество. Резаки Hobart AirForce представляют собой полные пакеты, которые содержат все необходимое оборудование и расходные материалы для резаков. Расходные материалы: расходные материалы для горелок, подача газа или сжатого воздуха.

    фунтов на квадратный дюйм (psi): Измерение, равное массе или весу, приложенному к одному квадратному дюйму площади поверхности.

    Энергоэффективность: Насколько хорошо электрическая машина использует поступающую электроэнергию.

    Коррекция коэффициента мощности: Обычно используется в однофазных источниках питания постоянного тока для снижения величины первичного тока, требуемого энергокомпанией во время сварки.

    Первичная мощность: Часто называется входным линейным напряжением и силой тока, доступными для сварочного аппарата от основной линии электропередачи в цехе. Первичная входная мощность, которую часто выражают в ваттах или киловаттах (кВт), — это переменный ток, который может быть однофазным или трехфазным.Сварочные аппараты, способные принимать более одного первичного входного напряжения и силы тока, должны быть правильно подключены для используемой входящей первичной мощности.

    Импульсная сварка MIG (MIG-P): Модифицированный процесс переноса распылением, при котором не образуются брызги, поскольку проволока не касается сварочной ванны. Для импульсной сварки MIG лучше всего подходят области, в которых в настоящее время используется метод передачи короткого замыкания для сварки стали, калибра 14 (1,8 мм) и выше. Расходные материалы: контактные наконечники, защитный газ, сварочная проволока.

    Импульсная сварка TIG (TIG-P): Модифицированный процесс TIG, подходящий для сварки более тонких материалов. Расходные материалы: вольфрамовый электрод, присадочный материал, защитный газ.

    Импульсный: Последовательность и управление величиной тока, частотой и продолжительностью сварочной дуги.

    R

    Номинальная нагрузка: Сила тока и напряжение, на которые рассчитан источник питания в течение определенного периода рабочего цикла. Например, 300 ампер, 32 вольта нагрузки, при рабочем цикле 60 процентов.

    Контактная точечная сварка (RSW): Процесс, при котором два куска металла соединяются путем пропускания тока между электродами, расположенными на противоположных сторонах свариваемых деталей. В этом процессе нет дуги, и именно сопротивление металла току вызывает плавление. Для точечной сварки требуется следующее оборудование: точечный сварочный аппарат с воздушным или водяным охлаждением, набор из 2 клещей и набор из 2 наконечников. Для точечной сварки расходные материалы не требуются.

    RMS (среднеквадратическое значение): «Действующие» значения измеренного переменного напряжения или силы тока.Среднеквадратичное значение равно 0,707 максимального или пикового значения.

    S

    Сварочный полуавтомат: Оборудование контролирует только подачу электродной проволоки. Движение сварочной горелки контролируется вручную.

    Дуговая сварка экранированного металла: См. Сварка палкой.

    Защитный газ: Защитный газ, используемый для предотвращения атмосферного загрязнения сварочной ванны.

    Однофазная цепь: Электрическая цепь, производящая только один переменный цикл в течение 360 градусов.

    Брызги: Частицы металла, унесенные сварочной дугой. Эти частицы не становятся частью готового сварного шва.

    Точечная сварка: Обычно выполняется на материалах с некоторым типом конструкции стыков внахлест. Может относиться к точечной сварке сопротивлением, MIG или TIG. Точечная сварка сопротивлением выполняется электродами с обеих сторон стыка, а точечная сварка сваркой в ​​условиях сварки и MIG выполняется только с одной стороны.

    Сварка палкой (SMAW или дуговая сварка защищенного металла): Процесс дуговой сварки, при котором плавятся и соединяются металлы путем их нагрева дугой между покрытым металлическим электродом и изделием.Защитный газ получают из внешнего покрытия электрода, часто называемого флюсом. Присадочный металл в основном получают из сердечника электрода. Для Stick рекомендуется сварочный аппарат переменного / постоянного тока. Для большинства применений сварка с обратной полярностью постоянным током имеет преимущества по сравнению с переменным током, в том числе более легкий запуск и сварку в нерабочем положении, более плавную дугу и меньшее количество отключений и залипаний дуги. Расходные материалы: электроды стержневые.

    Дуговая сварка под флюсом (SAW): Процесс, при котором металлы соединяются дугой или дугами между неизолированным металлическим электродом или электродами и изделием.Экранирование обеспечивается гранулированным легкоплавким материалом, который обычно подается на работу из бункера для флюса. Присадочный металл поступает из электрода, а иногда и из второго присадочного стержня.

    т

    Трехфазная цепь: Электрическая цепь, дающая три цикла в пределах временного интервала 360 градусов, при этом циклы разнесены на 120 электрических градусов.

    Сварка TIG (GTAW или газовая вольфрамовая дуга): Этот процесс, часто называемый сваркой TIG (вольфрамовый инертный газ), соединяет металлы путем их нагрева с помощью вольфрамового электрода, который не должен становиться частью завершенного сварного шва.Иногда используется присадочный металл, а для защиты используются инертный газ аргон или смеси инертных газов. Расходные материалы: вольфрамовый электрод, присадочный металл, защитный газ.

    Горелка: Устройство, используемое в процессе TIG (GTAW) для управления положением электрода, передачи тока на дугу и направления потока защитного газа.

    Touch Start: Процедура зажигания дуги низкого напряжения и малой силы тока для сварки TIG (GTAW). Вольфрам касается заготовки; когда вольфрам поднимается из заготовки, возникает дуга.

    Вольфрам: Редкий металлический элемент с чрезвычайно высокой температурой плавления (3410 ° Цельсия). Используется при производстве электродов TIG.

    В

    Напряжение: Давление или сила, толкающая электроны через проводник. Напряжение не течет, но вызывает протекание силы тока или силы тока. Напряжение иногда называют электродвижущей силой (ЭДС) или разностью потенциалов.

    Устройство подачи проволоки с датчиком напряжения: Устройство подачи работает от напряжения дуги, генерируемого источником сварочного тока.

    Кривая вольт-ампер: График, показывающий выходные характеристики источника сварочного тока. Показывает напряжение и силу тока конкретной машины.

    Вт

    Металл сварного шва: Электрод и основной металл, расплавленный во время сварки. Это формирует сварной валик.

    Перенос сварного шва: Метод, при котором металл переносится из проволоки в расплавленную лужу. В MIG используется несколько методов; они включают: перенос короткого замыкания, перенос дуги распылением, глобулярный перенос, перенос скрытой дуги и импульсный перенос дуги.

    Wet-Stacking: Несгоревшее топливо и моторное масло собираются в выхлопной трубе дизельного двигателя, причем выхлопная труба покрыта черным липким маслянистым веществом. Это состояние вызвано тем, что двигатель работает со слишком малой нагрузкой в ​​течение продолжительных периодов времени. При раннем обнаружении это не вызывает непоправимого ущерба и может быть уменьшено, если приложить дополнительную нагрузку. В случае игнорирования возможно необратимое повреждение стенок цилиндров и поршневых колец. Благодаря более строгим нормам выбросов и более качественному топливу двигатели в последние годы менее подвержены складированию в мокром состоянии.

    Скорость подачи проволоки: Выражается в дюймах / мин или мм / с и относится к скорости и количеству присадочного металла, подаваемого в сварной шов. Как правило, чем выше скорость подачи проволоки, тем выше сила тока.

    Присоединение заготовки: Средство для крепления рабочего кабеля (рабочего кабеля) к заготовке (металл, на который нужно приваривать). Кроме того, точка, в которой установлено это соединение. Один тип рабочего соединения осуществляется с помощью регулируемого зажима.

    Свинец детали: Проводник или электрический проводник между аппаратом для дуговой сварки и изделием.

    Традиционная сварка по сравнению с лазерной сваркой

    Лазерная и традиционная сварка все еще конкурируют с

    Вы можете подумать, что лазерная сварка быстро захватит сферу применения благодаря гораздо более высокой скорости обработки и более высокому качеству. Но традиционная сварка сохраняется. И в зависимости от того, кого вы спросите и какие приложения вы рассматриваете, он может никогда не исчезнуть. Итак, каковы плюсы и минусы каждого метода, которые продолжают приводить к смешанному рынку?

    Линия Fusion Line от Trumpf оснащена лазером с проволокой для придания большей массы сварному шву, перекрывая зазоры шириной до 1 мм.

    Традиционные методы сварки остаются популярными. Вообще говоря, в промышленности используются три типа традиционной сварки: MIG (металлический инертный газ), TIG (вольфрамовый инертный газ) и точечная сварка. При контактной точечной сварке два электрода прижимают детали, которые необходимо соединить между собой, через это пятно пропускается большой ток, а электрическое сопротивление материала детали генерирует тепло, которое сваривает детали вместе. По словам Эрика Миллера, менеджера по развитию лазерной группы Miller Electric Mfg LLC в Аплтоне, штат Висконсин, это быстрый метод., это основной метод, используемый в автомобилестроении, особенно для кузовов. Но, добавил он, самый большой рынок для лазерной сварки — это замена точечной контактной сварки. И наоборот, Миллер не видел «какой-либо лавины» в использовании лазеров, заменяющих TIG или MIG. И даже в группе автоматизации компании около 90 процентов проектов выполняются в MIG.

    Большой на MIG

    Чем объясняется непреходящая популярность MIG? «Расходный материал — это проволока с непрерывной подачей», — сказал Миллер. «Таким образом, он добавляет материал и усиливает сварной шов, что делает его идеальным для углового шва [в котором детали перпендикулярны].«Автогенный лазер объединяет два основных материала вместе. По словам Миллера, лазер может выполнять угловой шов, но точность деталей и всего остального должна быть на порядок выше.

    «При сварке MIG на угловом соединении допуск составляет не менее плюс-минус половина диаметра проволоки, а в целом даже больше», — сказал он. Точно так же технологическое окно MIG для других типов сварных швов намного больше, чем у лазера. Другими словами, детали не должны быть такими точными, а приспособления не должны обеспечивать почти идеальную посадку, как в случае с аутогенным лазером.

    Темная область под сварным швом слева показывает глубокое проплавление и полное сплавление хорошего сварного шва MIG. На изображении справа показан лазерный сварной шов с полным сплавлением, но с очень неглубоким проплавлением, что уменьшает смешивание наполнителя и основы. Сварку

    MIG также проще автоматизировать. По словам Миллера, единственными факторами, которые вам нужно контролировать, являются скорость движения, напряжение, сила тока, угол резака и рабочий угол, и «если вы сделаете пять из десяти вещей правильно, вы все равно получите хороший сварной шов». Для автоматизации лазерной сварки требуется робот с превосходной точностью траектории и повторяемостью, а в процессе сварки нужно контролировать больше факторов.В этом отношении TIG аналогичен.

    Нельзя сказать, что автоматизировать сварку MIG настолько просто, что это может сделать каждый. По-прежнему требуется эксперт для программирования и диагностики проблем. Эд Хансен, директор по глобальному управлению продуктами и гибкой автоматизации ESAB Welding & Cutting Products, Дентон, Техас, сказал, что это еще один плюс для MIG.

    «После многих лет эмпирических и научных данных традиционная сварка стала хорошо изучена. Мы знаем, что нужно для того, чтобы получить предсказуемый результат, обеспечивающий соединение, требуемое для конструкции.И даже несмотря на то, что мы говорим о нехватке квалифицированной рабочей силы, что является реальной проблемой для отрасли, все еще существует большой пул опытных сварщиков, техников и инженеров, которые все знакомы с управлением этими традиционными процессами ». Для большинства продуктов это простое и недорогое решение, обеспечивающее приемлемые результаты.

    Темная область под сварным швом слева показывает глубокое проплавление и полное сплавление хорошего сварного шва MIG. На изображении справа показан лазерный сварной шов с полным сплавлением, но с очень неглубоким проплавлением, что уменьшает смешивание наполнителя и основы.

    Дело в том, что первоначальная стоимость системы MIG или TIG меньше, чем стоимость лазерной системы. Однако стоимость лазеров снижается и будет продолжать снижаться. «Стоимость лазера составляет от трети до половины стоимости системы лазерной сварки, — сказал Хансен, — а стоимость в зависимости от возможностей сварки снижается на 10-15 процентов в год».

    Миллер также отметил, что «лазерная технологическая головка дороже, чем традиционные головки, волокно доставки дороже, и защита лазерной ячейки также дороже.«Например, лазерная ячейка должна быть« светонепроницаемой »со стенками толщиной 4 дюйма (101,6 мм), чтобы выдерживать прямое попадание в течение 10 минут без прожига. (Лазер не будет в фокусе более 4 дюймов [101,6 мм]. ] на большую глубину.) Системы TIG и MIG могут быть экранированы недорогим листовым металлом, который оставляет зазоры.

    С другой стороны, если учесть разницу в производительности и стоимости детали, лазер, как мы увидим, часто выигрывает. Это особенно верно для TIG, который является очень медленным процессом, требующим высокой квалификации, что делает его дорогостоящим в использовании.По этой причине Миллер сказал, что TIG в основном ограничивается производством промышленного пищевого оборудования и бытовой техники, а также некоторыми прецизионными компонентами. «Люди выбирают TIG для пищевого оборудования, потому что сварной шов не имеет пористой поверхности — он очень гладкий», — сказал он. Но если эти детали необходимо производить в больших объемах, рентабельность инвестиций в лазерную систему «взорвет двери» TIG, поэтому, естественно, в таких случаях она берет верх.

    Масуд Харуни, менеджер по продукции по лазерной сварке компании Trumpf Inc., Хоффман Эстейтс, Иллинойс, сказал, что даже TIG не может обеспечить полностью удовлетворительную поверхность для пищевой промышленности и других приложений, где внешний вид имеет решающее значение.«Это не так плохо, как MIG, но поверхность TIG определенно требует шлифовки после обработки, в которой нет необходимости при использовании лазера», — сказал Харуни. «Кроме того, скорость лазерной сварки видимых швов в два-три раза выше, чем у TIG. Если вы видите хороший радиус на холодильнике или аналогичной детали, значит, он был отшлифован или сварен лазером ».

    Последний голос за традиционную сварку: за исключением нескольких специализированных случаев, лазерная сварка должна быть автоматизирована из соображений безопасности. И это оставляет много работы сварщикам, как объяснил Хансен.«Робот не может взбираться на леса или залезать в трюм корабля. Мы можем мечтать о таких супер-роботах, но с практической точки зрения в ближайшем будущем их здесь не будет ».

    Тенденции принятия лазерных решений

    По мнению Миллера, производство в США обычно консервативно, и «если нет проблемы, которую нужно решить, будет выбрано самое дешевое, самое надежное и проверенное решение. Таким образом, люди начинают смотреть в сторону лазера только тогда, когда сварка MIG не работает или сварка TIG идет слишком медленно.”

    Объемная сварка TIG либо уже перемещена за границу, либо заменена лазером, так где же лазер может бросить вызов MIG?

    Одной из основных проблем является повреждение — металлургическое или конструкционное — потенциально вызванное относительно длительной и широко распространенной передачей тепла MIG в деталь с последующим длительным циклом охлаждения. И наоборот, лазер передает тепловую энергию очень маленьким лучом, плавя только локализованную область. Общее количество подводимого тепла намного меньше, чем при сварке MIG, и деталь остывает очень быстро, сводя к минимуму деформацию и металлургические эффекты.

    Харуни предложил полезную аналогию: «Представьте себе бутылку воды на песчаном пляже в сравнении с иглой. Если вы положите на бутылку пятифунтовую гирю, она не пробьет песок. Но если вы нанесете на иглу всего несколько унций, это произойдет. Думайте о весе, которое вы прикладываете, как о нагреве, о бутылке как о MIG, а об игле как о лазере ».

    Хансен из

    ESAB сказал, что лазер снижает тепловложение примерно на 85 процентов по сравнению с MIG, а «остаточное напряжение в сварном шве прямо пропорционально тепловложению.Чем больше тепла вы поместите в него, тем больше остаточного напряжения вы создадите. А это означает коробление, деформацию, усадку и все эти вещи, которые вызывают кошмар, когда вы берете эту деталь и делаете из нее сборку или вставляете ее в конструкцию или транспортное средство ».

    Чем больше деталь, тем больше мелких индивидуальных остаточных напряжений становятся макро-прогибами, которые очень дорого исправить, и их трудно исправить позже, добавил он. И это главное соображение для клиентов, которые пытаются «облегчить» свои продукты.Более того, по его словам, «некоторые сплавы расслаиваются или изменяют свойства при нагревании, или структура зерен растет нежелательным образом. У многих из этих материалов зернистая структура и микроструктура будут отличаться, если сварной шов расплавить, а затем охладить ».

    С расположенным на расстоянии источником тепла и высококонцентрированной областью расплава внизу лазерная сварка кажется волшебством, как показано здесь в системе Miller Electric.

    Миллер из Miller Electric отметил, что последнее поколение высокопрочных сталей «приобретает большую прочность благодаря сложным процессам термообработки.Когда вы расплавляете и затвердеваете при низкой скорости охлаждения (как при сварке MIG), все эти сильные стороны исчезают. Лазер может помочь сохранить исходную прочность материала ».

    В другом примере Миллер сказал, что сварка титана методом MIG затруднена из-за «проблемы с плавающим катодом». Дуга нестабильна. Так что лазер — идеальный выбор ». Проблема с алюминием серии 6000 — образование горячих трещин. «Горячее растрескивание — это функция силицида магния, мигрирующего к границе зерен. Поэтому, если вы можете нагреть материал, расплавить его и охладить до того, как силицид магния переместится, тогда вы сможете создать сварной шов без трещин », — сказал он.«Лазер может сделать это, используя новейшие методы сканирования, при которых мы перемещаем луч вперед и назад с помощью зеркала».

    Laser: превосходная пропускная способность

    С точки зрения Миллера, большинство применений лазера связано с трудносвариваемыми материалами. С точки зрения Харуни, лазер настолько быстрее, что даже проекты из листового металла переходят на лазер. Насколько быстрее? Харуни из Trumpf сказал, что сварка MIG обычно происходит со скоростью 20-30 дюймов (508-762 мм) в минуту — максимум 40 дюймов (1016 мм) в минуту.Лазер, по словам Харуни, может сваривать со скоростью почти 200 дюймов (508 см) в минуту, поэтому сам процесс соединения уже намного быстрее. Второе преимущество — сокращение постобработки. Харуни заметил, что если внешний вид сварного шва ухудшится. Важно, что после сварки MIG потребуется длительный цикл шлифовки, в котором нет необходимости после лазерной сварки.

    «Вот почему, — добавил он, — обычно случается, что деталь, изготовленная с помощью сварки MIG по цене 25 долларов, будет стоить всего 15 долларов за лазерную сварку, даже с учетом более высоких первоначальных вложений в лазерную сварку.Например, Харуни рассказал о недавнем проекте, в котором Трампф сократил время цикла сварки большой двери с десяти часов до 35 минут. Другой заказчик столкнулся с трудностями при сварке MIG алюминиевого электрического корпуса. Сушилки были частой проблемой, и общее время цикла составляло четыре часа. Харуни сказал, что Trumpf сократил это время до 18 минут с помощью лазерной сварки.

    Хансен добавил, что способность лазера глубоко проникать в материал многократно увеличивает его преимущество перед традиционной сваркой. Поскольку лазер не только в три-десять раз быстрее, чем MIG (и даже быстрее по сравнению с TIG), он может сваривать относительно толстые швы, которые потребуют нескольких проходов с помощью MIG или TIG.

    «Традиционные методы также требуют очистки и шлифования между проходами, что еще больше увеличивает общее время цикла», — пояснил Хансен. «Лазер может выполнять однопроходную сварку на глубину примерно полдюйма по сравнению с примерно пятью проходами для сварки MIG, в зависимости от используемого вами процессора. Более полудюйма для лазерной сварки потребовалось бы заранее вырезать или отшлифовать скос до кромки, но это гораздо меньший скос, чем фаски всего соединения, необходимые для сварки MIG ».

    Таким образом, для материала толщиной в полдюйма лазерная сварка будет в 15-50 раз быстрее, чем MIG, только по скорости сварки — и даже быстрее, если учесть дополнительную постобработку, необходимую для MIG.

    Сравнение методов: несварное соединение внизу, сварка MAG чуть выше, сварка Trumpf Fusion Line (которая сочетает в себе проволоку и лазер) выше, и вверху автогенная лазерная сварка после перепроектирования соединения для этого процесса.

    Конечно, при такой высокой производительности вам потребуется много сварочных работ, чтобы питать лазерную систему и максимизировать рентабельность инвестиций. По словам Хансена, «обычно с помощью лазера можно произвести от трех до пяти систем дуговой сварки, например, при сварке листов. Чтобы запитать пять систем дополнительной дуги, потребуется много работы.”

    Новые технологии в сочетании со старыми

    Поскольку для автогенной лазерной сварки требуется плотная посадка между соединяемыми деталями, во многих случаях лучше всего изменить расположение стыков, чтобы представить лазеру перекрывающиеся поверхности (чтобы использовать его прокалывающую способность). Все больше производителей готовы вкладывать средства в более совершенные процессы и инструменты для разведки и добычи, чтобы воспользоваться преимуществами более высокой производительности лазера.

    Но для тех, кто сопротивляется таким изменениям или в ситуациях, когда промежутки неизбежны, существуют гибридные системы, сочетающие в себе технологию лазера и подачи проволоки, а также другие новые разработки, расширяющие область применения лазера.Одна простая концепция (упомянутая ранее в связи с решением проблемы горячего растрескивания) — это раскачивание лазерного пятна. Миллер сказал, что это старая концепция, которая в последнее время стала намного более экономичной. Он предложил пример перемещения пятна диаметром 1,2 мм вперед и назад по площади 3 мм с высокой скоростью, эффективно захватывая большую площадь и при этом обеспечивая хороший сварной шов.

    Хансен сказал, что гибридные системы сочетают в себе процесс MIG и лазерный луч. «Мы действительно используем лазер для проникновения.Обычно, если вы хотите повлиять на проплавление сварного шва MIG, вам нужно увеличить силу тока. Используя лазер для проплавления, мы можем уменьшить силу тока на MIG и использовать сварной шов наименьшего диаметра, который позволяет наша конструкция для инженерных целей. Таким образом, лазер позволяет нам оптимизировать MIG ». Также существует синергия между процессами благодаря стабилизации дуги лазерным лучом. «Мы можем путешествовать по дуге намного быстрее, чем если бы у нас не было лазерного луча. Вот почему мы можем так быстро реализовать гибридный процесс », — сказал он.

    Комплект больших шестиосных лазерных порталов ESAB для сварки пассажирских вагонов. Линия Fusion Line

    Trumpf, которую Харуни описал как «технологический лазер с добавлением проволоки для увеличения массы зазоров», может перекрывать зазоры шириной до 1 мм.

    Со своей стороны, ЭСАБ разработал адаптивную технологию сварки, которая определяет состояние деталей и изменяет параметры процесса в соответствии с ними. В системе используется камера, которая «рисует лазерную полосу на детали, а затем смотрит на нее под углом параллакса, чтобы увидеть форму сустава, примерно на 20-40 мм впереди процесса», — сказал Хансен.Лазерная когерентная визуализация используется для измерения замочной скважины, прорезанной лазером в металле. «Мы можем измерить глубину проникновения и форму замочной скважины и использовать эту информацию либо в качестве меры качества, либо в замкнутом контуре для управления процессом», — сказал он.

    Система автоматически регулирует проникновение лазера, мощность лазера, параметры газовой металлической дуги, скорость подачи проволоки, напряжение, поток газа и скорость перемещения по мере того, как сварочная головка обрабатывает деталь. Гол, которым руководил У.Требования S. Navy заключаются в том, чтобы обеспечить преимущества лазерной сварки с низким тепловложением для «деталей, приготовленных традиционным способом» (то есть деталей, которые не были обработаны с жесткими допусками для стандартной лазерной сварки). Хансен сообщил, что это расширяет технологическое окно для гибридной сварки в пять раз по сравнению с тем, что было бы возможно при установившемся контроле.

    Лазерная сварка остается относительно новой для многих пользователей, и Харуни подчеркнул приверженность Trumpf обучению и поддержке с самого начала, а также преимущества автономного программирования их систем после установки.

    Trumpf также предлагает TeachLine, новую сенсорную систему на основе камеры, которая определяет местоположение свариваемого шва. «Заказчики не хотят прерывать производство, чтобы запрограммировать новую деталь или вносить изменения в свое программирование, поэтому они могут использовать это автономное программирование и загрузить деталь, запрограммировать ее и доставить в ячейку. С TeachLine им не нужно настраивать его. TeachLine увидит деталь и откорректирует созданную вами программу в автономном режиме. Комбинация автономного программирования и TeachLine помогает нашим клиентам быстро вносить изменения в производство.”

    ESAB также внедряет новый пакет «цифровых решений», который объединяет огромное количество информации, охватывающей весь процесс сварки, включая присадочный материал, основной материал и газ, чтобы упростить использование систем. Как сказал Хансен: «Сложную систему легко создать. Очень сложно сделать сложную систему простой. И вот к чему мы идем с нашими цифровыми решениями. Мы используем наши знания о процессе, чтобы принимать разумные решения по управлению процессом, чтобы оператору не нужно было быть таким же опытным или знающим, как в прошлом.”

    ЭСАБ также работает над тем, чтобы сделать свое оборудование способным оценивать качество производимого сварного шва и, в идеале, предотвратить возникновение дефектов или разрывов.

    Наконец, традиционная сварка также претерпела улучшения, такие как усовершенствованные формы волны и концепция ActiveWire Miller Electric, которая непрерывно подает проволоку MIG вперед и назад, чтобы уменьшить разбрызгивание и тепловложение. Такой подход расширяет возможности автоматизации сварки MIG и делает MIG жизнеспособным решением даже для сварки некоторых сверхтонких материалов.

    Aufhauser — Техническое руководство — Процедуры сварки меди

    Введение

    Медь и медные сплавы являются важными инженерными материалами из-за их хорошей электрической и теплопроводности, коррозионной стойкости, износостойкости металла по металлу и отличительного эстетического внешнего вида.

    Медь и большинство медных сплавов можно соединять сваркой, пайкой и пайкой. В этом разделе мы поговорим о различных медных сплавах и дадим некоторые рекомендации о том, как соединить эти металлы без ухудшения их коррозионных или механических свойств и без появления дефектов сварных швов.

    Основные группы медных сплавов

    Чистая медь: 99.Минимальное содержание меди 3%.
    Медь обычно поставляется в одной из трех форм:

    1. Бескислородная медь
    2. Кислородсодержащая медь (твердый пек и огнеупорные марки) — примеси и остаточное содержание кислорода в кислородсодержащей меди могут вызвать пористость и другие нарушения сплошности при сварке или пайке меди.
    3. Медь раскисленная фосфором

    Сплавы с высоким содержанием меди: (a) Медь, свободная для механической обработки — для улучшения обработки могут быть внесены низколегированные добавки серы или теллура.Эти сорта считаются несвариваемыми из-за очень высокой склонности к растрескиванию. Сварочные котлы соединяются пайкой и пайкой.
    (b) Осаждение — отверждаемые медные сплавы — небольшие добавки бериллия, хрома или циркония могут быть добавлены к меди, а затем подвергнуты термообработке с дисперсионным упрочнением для улучшения механических свойств. Сварка или пайка этих сплавов приведет к износу незащищенной поверхности, что приведет к ухудшению механических свойств.

    Медно-цинковые сплавы (латунь): Медные сплавы, в которых цинк является основным легирующим элементом, обычно называют латунными. Латунь бывает кованой и литой, при этом литые изделия обычно не такие однородные, как кованые. Добавление цинка к меди снижает температуру плавления, плотность, электрическую и теплопроводность, а также модуль упругости. Добавки цинка увеличивают прочность, твердость, пластичность и коэффициент теплового расширения.Латуни можно разделить на две свариваемые группы: с низким содержанием цинка (до 20% цинка) и с высоким содержанием цинка (30-40% цинка). Основные проблемы, возникающие с латунью, связаны с улетучиванием цинка, которое приводит к образованию белых паров оксида цинка и пористости металла шва. Сплавы с низким содержанием цинка используются для изготовления ювелирных изделий и монет, а также в качестве основы для золотых пластин и эмали. Сплавы с более высоким содержанием цинка используются там, где важна более высокая прочность. Применения включают сердечники и баки автомобильных радиаторов, светильники, замки, сантехническую арматуру и цилиндры насосов.

    Медно-оловянные сплавы (фосфорная бронза): Медные сплавы, содержащие от 1% до 10% олова. Эти сплавы доступны в деформируемой и литой формах. Эти сплавы подвержены горячему растрескиванию в напряженном состоянии. Следует избегать использования высоких температур предварительного нагрева, большого подводимого тепла и медленных скоростей охлаждения. Примеры конкретных применений включают в себя опоры мостов и расширительные пластины и фитинги, крепежные детали, химическое оборудование и компоненты текстильного оборудования.

    Медно-алюминиевые сплавы (алюминиевая бронза): Содержат от 3% до 15% алюминия с существенными добавками железа, никеля и марганца. Обычные области применения сплавов алюминия и бронзы включают насосы, клапаны, другую водную арматуру и подшипники для использования в морской и других агрессивных средах.

    Медно-кремниевые сплавы (кремниевая бронза): Доступны как кованые, так и литые. Кремниевая бронза имеет важное промышленное значение благодаря своей высокой прочности, отличной коррозионной стойкости и хорошей свариваемости.Добавление кремния к меди увеличивает прочность на разрыв, твердость и скорость наклепа. Бронза с низким содержанием кремния (1,5% Si) используется в линиях гидравлического давления, трубах теплообменников, морском и промышленном оборудовании и крепежных изделиях. Бронза с высоким содержанием кремния (3% Si) используется для аналогичных применений, а также для химического технологического оборудования и судовых гребных валов.

    Медно-никелевые сплавы: Медно-никелевые сплавы, содержащие 10-30% Ni, обладают средней прочностью, обеспечиваемой никелем, который также улучшает стойкость меди к окислению и коррозии.Эти сплавы обладают хорошей формуемостью в горячем и холодном состоянии и производятся в виде плоского проката, труб, прутков, труб и поковок. Общие применения включают пластины и трубки для испарителей, конденсаторов и теплообменников.

    Медно-никель-цинковые сплавы (никель-серебро): Содержат цинк в диапазоне 17% -27% вместе с 8% -18% никеля. Добавление никеля делает эти сплавы серебряными по внешнему виду, а также увеличивает их прочность и коррозионную стойкость, хотя некоторые из них подвержены децинкованию и могут быть подвержены коррозионному растрескиванию под напряжением.Конкретные области применения включают оборудование, крепеж, детали оптики и камеры, травильный инвентарь и пустотелые изделия.


    Свариваемость меди и медных сплавов

    Сварочные процессы, такие как газовая дуговая сварка металла (GMAW) и газовая дуговая сварка вольфрамовым электродом (GTAW), обычно используются для сварки меди и ее сплавов, поскольку при сварке материалов с высокой теплопроводностью важен высокий локальный подвод тепла.Можно использовать ручную дуговую сварку металла (MMAW) меди и медных сплавов, хотя качество не такое хорошее, как при сварке в среде защитного газа. Свариваемость меди варьируется в зависимости от марки чистой меди (а), (б) и (в). Высокое содержание кислорода в меди с твердым пеком может привести к ожогам в зоне термического влияния и пористости металла сварного шва. Медь, раскисленная фосфором, более поддается сварке, и ее пористость можно избежать за счет использования присадочной проволоки, содержащей раскислители (Al, Mn, Si, P и Ti).Тонкие секции можно сваривать без предварительного нагрева, хотя более толстые секции требуют предварительного нагрева до 60 ° C. Медные сплавы, в отличие от меди, редко требуют предварительного нагрева перед сваркой. Свариваемость значительно различается для разных медных сплавов, и необходимо соблюдать осторожность, чтобы обеспечить выполнение правильных процедур сварки для каждого конкретного сплава, чтобы снизить риски сварочных дефектов.

    2.1 Конструкции сварных швов для соединения меди и медных сплавов:
    Рекомендуемые конструкции соединений для сварки меди и медных сплавов показаны на рисунках ниже.Из-за высокой теплопроводности меди конструкции швов шире, чем у стали, что обеспечивает адекватное сплавление и проплавление.

    Рисунок 1: Конструкции соединений для GTAW и дуговой сварки экранированного металла меди

    ПРИМЕЧАНИЕ A = 1,6 мм, B = 2,4 мм, C = 3,2 мм, D = 4,0 мм, R = 3,2 мм, T = толщина

    Рисунок 2: Конструкции шарниров для GMAW меди

    ПРИМЕЧАНИЕ A = 1.6 мм, B = 2,4 мм, C = 3,2 мм, R = 6,4 мм, T = толщина

    2.2 Подготовка поверхности:
    Перед сваркой зона сварки должна быть чистой и свободной от масла, жира, грязи, краски и окислов. Обработка проволочной щеткой бронзовой проволочной щеткой с последующим обезжириванием подходящим чистящим средством. Оксидную пленку, образовавшуюся во время сварки, также следует удалять проволочной щеткой после каждой наплавки.

    2.3 Предварительный нагрев:
    Сварка толстых медных секций требует сильного предварительного нагрева из-за быстрой передачи тепла от сварного шва в окружающий основной металл. Большинство медных сплавов, даже в толстых сечениях, не требуют предварительного нагрева, поскольку коэффициент температуропроводности намного ниже, чем у меди. Чтобы выбрать правильный предварительный нагрев для конкретного применения, необходимо учитывать процесс сварки, свариваемый сплав, толщину основного металла и, в некоторой степени, общую массу сварного изделия.Алюминиевая бронза и медно-никелевые сплавы не следует предварительно нагревать. Желательно ограничить нагрев как можно более локализованной областью, чтобы избежать попадания слишком большого количества материала в температурный диапазон, который приведет к потере пластичности. Также важно обеспечить поддержание температуры предварительного нагрева до завершения сварки стыка.


    Газовая дуговая сварка (GMAW) меди и медных сплавов

    3.1 GMAW меди:
    Электроды из меди ERCu рекомендуются для GMAW меди. Aufhauser Deoxidized Copper — это универсальный сплав меди с чистотой 98% для GMAW меди. Требуемая газовая смесь будет в значительной степени определяться толщиной свариваемого медного участка. Аргон обычно используется для диаметров 6 мм и ниже. Смеси гелия с аргоном используются для сварки более толстых участков. Наплавочный металл следует наносить с помощью бусинок стрингера или бусинок узкого переплетения с использованием распылительного переноса.В таблице 1 ниже приведены общие рекомендации по процедурам GMAW меди.

    Таблица 1: Типичные условия для ручного GMAW
    Толщина металла (мм) Совместное проектирование * Диаметр электрода (мм) Температура предварительного нагрева Сварочный ток (А) Напряжение Расход газа (л / мин) Скорость перемещения (мм / мин)
    1.6 A 0,9 75 ° С 150-200 21–26 10-15 500
    3,0 A 1.2 75 ° С 150-220 22-28 10-15 450
    6,0 B 1,2 75 ° С 180–250 22-28 10-15 400
    6.0 B 1,6 100 ° С 160–280 28-30 10-15 350
    10 B 1.6 250 ° С 250-320 28-30 15-20 300
    12 С 1,6 250 ° С 290-350 29-32 15-20 300
    16 + C, D 1.6 250 ° С 320–380 29-32 15-25 250

    * см. Рисунок 2


    Рекомендуемые защитные газы для GMAW меди и медных сплавов:
    • Аргон для сварки
    • Ar +> 0-3% O 2 или эквивалентные защитные газы
    • Ar + 25% He или эквивалентный защитный газ
    • He + 25% Ar или эквивалентный защитный газ

    Дополнительные сведения см. В руководстве по защитному газу .


    3,2 GMAW медно-кремниевых сплавов:

    Сварочные материалы типа ERCuSi-A плюс аргонная защита и относительно высокие скорости перемещения используются в этом процессе. Aufhauser Silicon Bronze — провод на основе меди, рекомендованный для GMAW медно-кремниевых сплавов. Важно убедиться, что оксидный слой удаляется проволочной щеткой между проходами. В предварительном нагреве нет необходимости, а температура между проходами не должна превышать 100 ° C.

    3.3 GMAW медно-оловянных сплавов (фосфорная бронза):

    Эти сплавы имеют широкий диапазон затвердевания, что дает крупнозернистую дендритную зернистую структуру. Поэтому во время сварки необходимо соблюдать осторожность, чтобы предотвратить растрескивание металла шва. Горячая закалка металла шва снизит напряжения, возникающие при сварке, и вероятность растрескивания. Сварочную ванну следует сохранять небольшого размера, используя бусинки стрингера при высокой скорости движения.


    Газовая вольфрамовая дуговая сварка (GTAW) меди и медных сплавов

    4.1 GTAW меди:

    Медные профили толщиной до 16,0 мм можно успешно сваривать с использованием процесса GTAW. Типовые конструкции шарниров показаны на Рис. 1 . Рекомендуемая присадочная проволока — это присадочный металл, состав которого аналогичен составу основного металла. Для секций толщиной до 1,6 мм предпочтительным является защитный газ аргон, а для сваривания секций толщиной более 1,6 мм предпочтительны смеси гелия.

    По сравнению с аргоном смеси аргона и гелия обеспечивают более глубокое проплавление и более высокие скорости перемещения при том же сварочном токе.Смесь 75% He / 25% Ar обычно используется для обеспечения хороших характеристик проплавления гелия в сочетании с легким зажиганием дуги и улучшенными характеристиками стабильности дуги аргона. Для GTAW меди с бортами стрингера или бортами с узким переплетением предпочтительна прямая сварка. Типичные условия для ручной GTAW меди показаны в таблице 2 ниже.

    Таблица 2: Типичные условия для ручной GTAW
    Толщина металла (мм) Совместное проектирование * Защитный газ Тип вольфрама и сварочный ток
    Диаметр сварочного стержня (мм) Температура предварительного нагрева Сварочный ток (А)
    0.3-0,8 A Аргон Ториед / DC- 15-60
    1,0–2,0 B Аргон Ториед / DC- 1.6 40–170
    2,0-5,0 С Аргон Ториед / DC- 2,4 — 3,2 50 ° С 100-300
    6.0 С Аргон Ториед / DC- 3,2 100 ° С 250-375
    10,0 E Аргон Ториед / DC- 3.2 250 ° С 300-375
    12,0 D Аргон Ториед / DC- 3,2 250 ° С 350-420
    16.0 F Аргон Ториед / DC- 3,2 250 ° С 400-475

    * см. Рисунок 1


    4.2 Газовая вольфрамовая дуговая сварка медно-алюминиевых сплавов:

    Присадочный стержень ERCuAl-A2 может использоваться для GTAW сплавов алюминия и бронзы.Переменный ток (AC) с защитой аргоном может использоваться для обеспечения действия по очистке дуги, чтобы помочь в удалении оксидного слоя во время сварки. Отрицательный электрод постоянного тока (DC-) со сварочными смесями аргона или аргона с гелием может использоваться в приложениях, требующих более глубокого проплавления и более высокой скорости перемещения. Предварительный нагрев требуется только для толстых секций.

    4.3 Газовая вольфрамовая дуговая сварка кремний-бронзы:

    Пруток из кремниевой бронзы Aufhauser (ERCuSi-A) можно использовать для сварки кремниевой бронзы во всех положениях.Также можно использовать сварочный пруток из алюминиевой бронзы ERCuAl-A2. Сварка может выполняться на постоянном токе с использованием аргона или аргон / гелий, либо на переменном токе с использованием защитного газа аргона.


    Ручная металлическая дуговая сварка (MMAW) меди и медных сплавов

    5.1 MMAW меди:

    MMAW обычно используется для технического обслуживания и ремонтной сварки меди, медных сплавов и бронз. Aufhauser PhosBronze AC-DC электрод (ECuSn-C) можно использовать в следующих целях:

    • Мелкий ремонт относительно тонких сечений
    • Соединения угловые с ограниченным доступом
    • Сварка меди с другими металлами

    Конструкции шарниров должны быть аналогичны показанным на Рисунок 1 .Положительный электрод постоянного тока (DC +) следует использовать с методом стрингера. Сечения более 3,0 мм требуют предварительного нагрева до 250 ° C или выше.

    5.2 Ручная дуговая сварка медных сплавов металлом:

    Aufhauser PhosBronze AC-DC (ECuSn-C) может использоваться для сварки медно-оловянных и медно-цинковых сплавов. Требуются большие стыковые углы, и наплавка металла шва должна выполняться методом стрингера.

    Таблица 3: Рекомендации по MMAW латуни и фосфорной бронзы
    Медный сплав Рекомендуемый код электродов AWS Сварочный электрод Aufhauser Полярность электрода Совместное проектирование
    Латунь ECuSn-A или ECuSn-C Aufhauser PhosBronze AC-DC DC + C дюйм Рисунок 1
    Фосфорная бронза ECuSn-A или ECuSn-C Aufhauser PhosBronze AC-DC DC + C дюйм Рисунок 1


    Пайка меди и медных сплавов

    Принцип пайки заключается в соединении двух металлов сплавлением с присадочным металлом.Наплавочный металл должен иметь более низкую температуру плавления, чем основные металлы, но выше 450 ° C (при пайке используется присадочный металл с температурой плавления менее 450 ° C). Обычно требуется, чтобы присадочный металл попадал в узкий зазор между деталями за счет капиллярного действия.

    Пайка широко используется для соединения меди и медных сплавов, за исключением алюминиевых бронз, содержащих более 10% алюминия, и сплавов, содержащих более 3% свинца. Пайка меди широко используется в электротехнической промышленности, а также в строительстве и в области отопления, вентиляции и кондиционирования воздуха.

    Для достижения надлежащего сцепления во время пайки необходимо учитывать следующие моменты:

    • Поверхности стыков чистые, без оксидов и т.п.
    • Обеспечение правильного зазора шва для конкретного припоя
    • Создание правильной схемы нагрева, при которой присадочный металл течет вверх по температурному градиенту в стык
    6.1 Подготовка поверхности:

    Для очистки неблагородных металлов меди подходят стандартные процедуры обезжиривания с использованием растворителя или щелочи. Необходимо соблюдать осторожность, если для удаления поверхностных оксидов используются механические методы. Для химического удаления поверхностных оксидов следует использовать соответствующий травильный раствор.

    6.2 Соображения по конструкции соединения:
    • Расстояние между соединяемыми соединениями должно контролироваться в пределах определенных допусков, которые зависят от используемого припоя и основного металла.Оптимальный зазор между стыками обычно составляет от 0,04 до 0,20 мм.
    • Обычно достаточно перекрытия стыка, в три или четыре раза превышающего толщину самого тонкого соединяемого элемента. Цель состоит в том, чтобы использовать как можно меньше материала для достижения желаемой прочности.

    Рисунок 3: Общая конструкция соединения для серебряной пайки

    6.3 Регулировка пламени

    Используйте нейтральное пламя. Нейтральное пламя — это когда равные количества кислорода и ацетилена смешиваются с одинаковой скоростью. Белый внутренний конус четко очерчен и не имеет дымки.

    6.4 Удаление флюса:

    Если использовался флюс, остатки должны быть удалены одним из следующих методов:

    • A Разбавление в горячей каустической соде
    • Очистка проволочной щеткой и ополаскивание горячей водой
    • Проволочная щетка и пар
    Неполное удаление флюса может вызвать слабость и повреждение сустава.


    Сварка меди припоем

    Сварка пайкой — это технология, аналогичная сварке плавлением, за исключением того, что присадочный металл имеет более низкую температуру плавления, чем основной металл. Прочность процесса пайки твердым припоем определяется пределом прочности на разрыв наплавленного присадочного металла, а также фактической прочностью связи, развиваемой между присадочным металлом и основным металлом.Кислородно-ацетилен обычно предпочтителен из-за его более легкого схватывания пламени и быстрого тепловложения.

    7.1 Выбор сплава:

    Сплав, наиболее подходящий для работы, зависит от прочности соединения, устойчивости к коррозии, рабочей температуры и экономических характеристик. Обычно используются следующие сплавы: Aufhauser Low Fuming Bronze или Aufhauser Low Fuming Bronze (с флюсовым покрытием).

    7.2 Подготовка шва:

    Типичные конструкции швов показаны на Рис. 4 ниже.

    Рисунок 4: Типовые конструкции соединений для сварки пайкой меди

    7.3 Регулировка пламени

    Используйте слегка окисляющее пламя.

    7.4 Флюс:

    Используйте медь и латунь Aufhauser Flux , смешайте с водой до состояния пасты и нанесите на обе стороны стыка. Стержень можно покрыть пастой или нагреть и окунуть в сухой флюс.

    7.5 Предварительный нагрев:

    Предварительный нагрев рекомендуется только для тяжелых секций.

    7.6 Углы выдувной трубы и стержня:

    Наконечник выдувной трубы на металлическую поверхность от 40 ° до 50 °. Расстояние внутреннего конуса от металлической поверхности 3,25 мм до 5.00мм. Присадочный стержень к металлической поверхности от 40 ° до 50 °.

    Таблица 5: Данные для пайки меди
    Толщина листа (мм) Присадочный стержень (мм) Расход ацетилена на выдувной трубе
    (куб. Л / мин)
    Размер наконечника
    0.8 1,6 2,0 12
    1,6 1,6 3,75 15
    2,4 1,6 4.25 15
    3,2 2,4 7,0 20
    4,0 2,4 8,5 20
    5.0 3,2 10,0 26
    6,0 5,0 13,5 26

    7.7 Техника сварки:

    После предварительного нагрева или повышения температуры соединения до температуры, достаточной для сплавления присадочного стержня и меди, расплавьте шарик металла с конца стержня и нанесите его на стык, смачивание или лужение. поверхность.Когда произойдет лужение, начинайте сварку форхендом. Не роняйте присадочный металл на неокрашенные поверхности. См. Рисунок 5 .

    Рис. 5. Техника прямой сварки припоем

    7.8 Удаление флюса:

    Для удаления остатков флюса можно использовать любой из следующих методов:

    • Шлифовальный круг или проволочная щетка и вода
    • Пескоструйная очистка
    • Раствор каустической соды

    Металлические присадки Aufhauser

    Aufhauser производит полную линейку сплавов для пайки и сварки меди.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    © 2011-2024. Mkada.ru | Cтроительная доска бесплатных объявлений.