Подключение светодиода к сети 220в через конденсатор: Страница не найдена – Светодиодное освещение

Содержание

Как подключить светодиоды к 220 В используя простые схемы

Достаточно часто нам приходится сталкиваться с таким вопросом — как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.

Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто — ставим ограничительный резистор и забываем. Светодиод как работал «в прямом направлении» так и будет работать. Резисторы любого номинала, а также наборами можно купить в этом магазине буквально за копейки и с бесплатной доставкой!

Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.

В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.

Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так — муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже. На нашем сайте есть уже подготовленный калькулятор расчета резистора для светодиода.

к оглавлению ↑

Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод — вариант 1


Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.

к оглавлению ↑

Подключение LED по простой схеме с резистором и диодом — вариант 2


Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода — VD1. Как только в схему «попадает» отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод LED1 (при этом прямое падение напряжения на светодиоде LED1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода LED1).

к оглавлению ↑

Расчетная часть схемы


Номинальное напряжение сети:

UС.НОМ = 220 В

Принимается минимальное и максимальное напряжение сети (опытные данные):

UС.МИН = 170 В
UС.МАКС = 250 В

Принимается к установке светодиод LED1, имеющий максимально допустимый ток:

ILED1.ДОП = 20 мА

Максимальный расчетный амплитудный ток светодиода LED1:

ILED1.АМПЛ.МАКС = 0,7*ILED1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде LED1(опытные данные):

ULED1 = 2 В

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

UR.ДЕЙСТВ.МИН = UС.МИН = 170 В
U

R.ДЕЙСТВ.МАКС = UС.МАКС = 250 В

Расчетное эквивалентное сопротивление резисторов R1, R2:

RЭКВ.РАСЧ = UR.АМПЛ.МАКС/ILED1.АМПЛ.МАКС = 350/14 = 25 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

PR.ДОП = 2·2 = 4 Вт

Расчетное сопротивление каждого резистора:

RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

R1 = R2 = 51 кОм

Эквивалентное сопротивление резисторов R1, R2:

RЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

ILED1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА

ILED1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

ILED1.СР.МИН = IVD1.СР.МИН = ILED1.ДЕЙСТВ.МИНФ = 3,3/1,1 = 3,0 мА
ILED1.СР.МАКС = IVD1.СР.МАКС = ILED1.ДЕЙСТВ.МАКСФ = 4,8/1,1 = 4,4 мА

Обратное напряжение диода VD1:

UVD1.ОБР = ULED1.ПР = 2 В

Расчетные параметры диода VD1:

UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС

/0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

UVD1.ДОП = 30 В
IVD1.ДОП = 20 мА
I0.МАКС = 250 мкА

к оглавлению ↑

Минусы использования схемы подключения светодиодов к 220 В по варианту 2


Главные недостатки подключения светодиодов по этой схеме — малая яркость светодиодов, за счет малого тока. ILED1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.

к оглавлению ↑

Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В


При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.

Расчет параметров схемы аналогичен второму варианту. Кому надо — посчитает и сравнит. Разница небольшая.

к оглавлению ↑

Минусы подключения по 3 варианту


Если самые «пытливые умы» уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень — придется поверить на слово. Минус такого подключения — также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего ILED1.СР = (2,8-4,2) мА.

Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.

к оглавлению ↑

Подключение светодиода на 220 В с использованием диодного моста — 4 вариант


Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В
IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

UVD.ДОП = 30 В
IVD.ДОП = 20 мА
I0.МАКС = 250 мкА

к оглавлению ↑

Недостатки схемы подключения по 4 варианту


Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.

Однако при такой схеме мы получим заметное увеличение яркости светодиода: LED1: ILED1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

к оглавлению ↑

Как подключить светодиод к 220 В используя конденсатор


Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент — конденсатор. На схеме — C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.

к оглавлению ↑

 Подключение светодиода к сети 220 В на примере выключателя с подсветкой


Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки — не понятно.

к оглавлению ↑

Видео на тему подключения светодиода к сети 220 В


Ну и в конце всего длинного поста посмотрим видео на тему : «как подключить светодиоды к 220 В». Для тех, кому лень все читать было.

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

 При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока — розетки, которая есть в любой благоустроенной квартире.
 Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

 Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

 Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

 

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль — это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

 

(…как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не  стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

 

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

 Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье «Драйвер для светодиодов (светодиодной лампы)».

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Подключение светодиода к сети 220В

Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение 220В, что значительно больше, чем нужно для питания обычных светодиодов. Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети 220В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться.

Прежде всего, речь может идти о подключении мощных источников света. В этом случае совсем простыми способами не обойтись, потребуются специализированные драйвера или аналогичные приборы, которые будут способны выдать стабилизированный ток большой мощности. Оставим этот вариант напоследок.

Также часто бывает необходимо к 220В подключить маломощный индикаторный светодиод — для, собственно, индикации того, что напряжение в данный момент присутствует. Или может потребоваться маломощное дежурное освещение, для которого городить сложную электронику совсем не хочется. В этих случаях, если нужные токи светодиодов не превышают 20-25мА, можно обойтись минимальным количеством дополнительных деталей. Рассмотрим эти подключения подробнее.

Самый простой способ ограничения тока — использование резистора. Этот вариант подойдет и для сети переменного тока с напряжением 220В. Необходимо только учесть один важный нюанс: 220В — это ДЕЙСТВУЮЩЕЕ напряжение. Фактически же напряжение в бытовой сети меняется в более широких пределах — от -310В до +310В. Это, так называемое, АМПЛИТУДНОЕ напряжение. Подробнее, почему так — читайте в Википедии. Для нас же важно, что для расчета значений токоограничиваюжего резистора нужно использовать не действующее, а именно амплитудное значение сети переменного тока, т.е. 310В.

Сопротивление резистора рассчитывается по привычному закону Ома:

R = (Ua — UL) / I, где Ua — амплитудное значение напряжения (310В), UL — падение напряжения на светодиодах, I — требуемая сила тока.

Токоограничивающий резистор должен быть очень мощным, поскольку на нем будет рассеиваться большое количество тепла, которое будет зависеть от рабочего тока и сопротивления резистора:

P = I2 * R

Резистор будет греться и, если окажется, что он не рассчитан на рассеивание того количества тепла, которое на нем выделяется, он достаточно эффектно сгорит. Поэтому про допустимую мощность резистора забывать ни в коем случае не следует, а для реального использования подбирать ее еще и с запасом. Если вам не хочется заниматься собственными расчетами значений резистора, можете воспользоваться «Калькулятором светодиодов».

Простые схемы для подключения светодиода к сети 220В с токоограничивающим резистором

Светодиоды способны выдержать только небольшое обратное напряжение (до 5-6В) и для работы в сети переменного тока им нужна защита. В самом простом случае для этого может быть использован диод, которые включается в цепь последовательно светодиоду. Требования к диоду — он должен быть рассчитан на обратное напряжение не менее 310В и на прямой ток, который нам нужен. Подойдет, например, диод 1N4007 — обратное напряжение 1000В, прямой ток 1А.

Второй вариант — включить диод параллельно светодиоду, но в обратном направлении. В этом случае подойдет любой маломощный диод, например, КД521 или аналогичный. Более того, можно вместо диода подключить второй светодиод (как и изображено на правой схеме). В этом случае они будут защищать друг друга и одновременно светиться.

Для ограничения тока в переменной сети можно использовать и, так называемый, балластный конденсатор. Это неполярный керамический конденсатор, который включается в цепь последовательно. Его допустимое напряжение должно быть, по меньшей мере, с полуторным запасом больше напряжения сети — не менее 400В. Ограничение тока будет зависеть от емкости конденсатора, которая может быть рассчитана по следующей эмпирической формуле:

C = (4,45 * I) / (Ua — UL), где I — требуемый ток в миллиамперах. Значение емкости при этом получится в микрофарадах.

Использование балластного конденсатора для подключения светодиода к сети 220В

В приведенной выше схеме резистор R1 необходим для разряда конденсатора после отключения питания. Без его использования конденсатор C1 заряд в себе сохранит и пребольно ударит, если потом коснуться его выводом. Резистор R2 служит для ограничения начального тока заряда конденсатора C1. Использование его очень желательно, поскольку он продлевает срок службы других деталей, кроме того, при пробое конденсатора он будет служить предохранителем и сгорит первым, защитив остальную часть схемы.

Оставшиеся детали — светодиод D1 и защитный диод D2 уже знакомы нам с предыдущих схем.

Почему не использовать конденсаторы вместо токоограничивающего резистора все время? Дело в том, что высоковольтные конденсаторы достаточно крупные по размеру да и при их использовании резисторы все равно нужны — готовая схема в итоге займет больше места. Преимущество же их в том, что они практически не греются.

Приведенные схемы подключения светодиодов к сети 220В часто используются на практике. Индикаторные светодиоды можно встретить в выключателях с подсветкой.

Схема обычного выключателя с подсветкой

Как можно увидеть, здесь даже не используется защитный диод! Дело в том, что сопротивление резистора очень велико, итоговый ток получается очень небольшой — около 1мА. Светодиод светится совсем не ярко, но этого свечения хватает, чтобы подсветить выключатель в темной комнате.

Схемы с балластным конденсатором используются в простых светодиодных лампах.

Схема светодиодной лампы мощностью до 5Вт

Здесь ток выпрямляется диодным мостом. Резисторы R2 и R3 служат для защиты моста и светодиодов соответственно. Для уменьшения мерцания света используется конденсатор С2.

Как же быть, если к бытовой сети переменного тока необходимо подключить светодиоды общей мощностью в десятки и даже сотни ватт? Самый правильный вариант — использовать специализированные драйвера, которые позволят это сделать. Их можно приобрести уже готовыми или собрать самому. Подробнее об этом написано в статье «Схема драйвера для светодиода от сети 220В».

Есть еще один не совсем правильный, но достаточно простой и работающий способ — можно переделать электронный балласт компактной люминесцентной лампы (обычной домашней энергосберегайки). Несложные манипуляции позволят подключить светодиоды к сети 220В, используя старую лампу, которая стала светить тускло или перестала светить вовсе. Как это сделать — читайте в статье «Простой драйвер светодиода от сети 220В».

Как подключить светодиод: инструкция 12 в и 220 в, расчет резистора

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

  • Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.
  • Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:
  • 9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.
  • То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.
  • Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора.

Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1.

R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

  1. где U – амплитудное напряжение сети (310 В),
  2. I – ток, проходящий через светодиод (в миллиамперах),
  3. Uд – падение напряжения на led в прямом направлении.
  4. Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока.

При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время.

Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению.

Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам.

Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации.

Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя.

В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Источник: http://ledno.ru/svetodiody/podklyuchenie-led-k-220-v.html

Как подключить светодиод к 220В: резистор, конденсатор, способы подключения

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов.

Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников.

Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт.

Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал.

В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы.

Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера.

В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Установка дополнительного резистора гасит излишки мощности электричества

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин.

В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В.

В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более).

Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом.

Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Встречно-параллельное подключение

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно.

Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности.

Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Использование накопительного конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

Схема подключения светодиода к сети 220В

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня.

Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту).

В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

Не следует устанавливать в цепь диодов полярные конденсаторы

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно.

В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей.

Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Источник: https://StrojDvor.ru/elektrosnabzhenie/pitanie-svetodiodov-ot-220v-svoimi-rukami-sxema-podklyucheniya/

Подключение светодиода к 12 вольтам в машине (расчет сопротивления) (видео)

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

  Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло. А значит вторая, оставшаяся, достается непосредственно нашему потребителю — светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы. У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней. Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери. То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

 Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения.

А значит, он также может работать без опасности быть сожженным. Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор.

  В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе. При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод.

Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

 Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло. А это актуально! Но что сделать, таков уж принцип их работы.

В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло.

Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему… Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

 Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле.  14,5-3,3= 11,2 вольта.

То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод.  Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается.

R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле  P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена.

 Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Подключение светодиода через стабилизатор напряжения к 12 вольтам в машине (через микросхему)

 Теперь перейдем к стабилизированной схеме питания светодиодов от 12 вольт. Здесь, как мы уже и говорили, существует схема, которая регулирует собственное внутреннее сопротивление. Таким образом, питание светодиода будет осуществляться устойчиво, независимо от скачков напряжения бортовой сети.

  К сожалению минусом применения микросхемы является тот факт, что минимальное стабилизированное напряжение, которое возможно добиться будет 5 вольт. Именно с таким напряжением можно встретить наиболее широко известные микросхемы – стабилизаторы КР142 ЕН 5Б или иностранный аналог L7805 или L7805CV.

Здесь разница лишь в производителе и номинальном рабочем токе от 1 до 1,5 А.

 Так вот, оставшееся напряжение с 5 до 3,3 вольт придется гасить все по тому же примеру что и в предыдущих случаях, то есть с помощью применения резистора. Однако снизить напряжение резистором на 1,7 вольта это уже не столь критично как на 8-9 вольт.

Стабилизация напряжения в этом случае все же будет наблюдаться! Приводим схему подключения микросхемы стабилизатора.Как видите, она очень простая. Реализовать ее может каждый. Не сложнее чем припаять тот же резистор.

Единственное условие это установка радиатора, который будет отводить тепло от микросхемы. Его установить нужно обязательно. На схеме написано что микросхема может питать 10 цепочек со светодиодом, на самом деле этот параметр занижен.

По факту, если через светодиод проходит около 0,02 А, то она может обеспечивать питанием до 50 светодиодов. Если вам необходимо обеспечить питание большего количества, то используйте вторую такую же независимую схему. Использование двух микросхем подключенных параллельно не правильно.

Так как их характеристики немного, да будут отличаться друг от друга, из-за индивидуальных особенностей. В итоге, у одной из микросхем будет шанс перегореть намного быстрее, так как режимы работы у нее будут иные — завышенные.

 О применение аналогичных микросхем мы уже рассказывали в статье «Зарядное устройство на 5 вольт в машине». Кстати, если вы все же решитесь выполнить питание для светодиода на ШИМ, хотя это вряд ли того стоит, то эта статья также раскроет вам все секреты реализации такого проекта.

Подводя итог о подключение светодиода к 12 вольтам в машине своими руками

Видео по подключению светодиода к сети в автомобиле

… а теперь чтобы вам было легче прикинуть какой номинал сопротивления нужен и какой мощностью для вашего конкретного случая, можете воспользоваться калькулятором подбора резистора

Источник: https://autosecret.net/tuning/elektro-tuning/1983-podkljuchenie-svetodioda-k-12-voltam

Схемы подключения светодиодов к 220в и 12в — LED Свет

04.03.2019

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В.

Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение.

Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления.

Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться.

Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется.

Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают.

Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера.

Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока.

Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

  • Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.
  • Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность.

Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся.

На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Download WordPress ThemesDownload Best WordPress Themes Free DownloadFree Download WordPress ThemesDownload Premium WordPress Themes Freelynda course free downloadFree Download WordPress Themesudemy paid course free download

Источник:

Как подключить светодиод к 12 вольтам

Источник: https://svet100led.ru/harakteristiki/shemy-podklyucheniya-svetodiodov-k-220v-i-12v.html

Как подключить светодиод к 12 вольтам: расчет подключения в схемах

Содержание:

Светодиоды уже давно используются в различных сферах жизни и деятельности людей. Благодаря своим качествам и техническим характеристикам, они приобрели широкую популярность. На основе этих источников света создаются оригинальные светотехнические конструкции.

Поэтому у многих потребителей довольно часто возникает вопрос, как подключить светодиод к 12 вольтам. Данная тема очень актуальна, поскольку такое подключение имеет принципиальные отличия от других типов ламп. Следует учитывать, что для работы светодиодов используется только постоянный ток.

Большое значение имеет соблюдение полярности при подключении, в противном случае, светодиоды просто не будут работать.

Особенности подключения светодиодов

В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них.

Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи.

Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.

Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток.

Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор.

При подаче питания светильник выходит из строя буквально за несколько минут.

Одним из вариантов некорректного подключения в сеть на 12 вольт является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.

Существует несколько способов, как подключить светодиоды на 12 вольт схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства.

Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению.

При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.

Влияние светодиодных ламп на зрение

В другом случае предлагается соединить каждый светодиод с отдельным резистором. Получается своеобразный стабилитрон, обеспечивающий корректную работу, поскольку токи приобретают независимость.

Однако данная схема получается слишком громоздкой и чрезмерно загруженной дополнительными элементами. В большинстве случаев ничего не остается, как подключить светодиоды к 12 вольтам последовательно. При таком подключении схема становится максимально компактной и очень эффективной.

Для ее стабильной работы следует заранее позаботиться об увеличении питающего напряжения.

Определение полярности светодиода

Чтобы решить вопрос, как подключить светодиоды в цепь 12 вольт, необходимо определить полярность каждого из них. Для определения полярности светодиодов существует несколько способов.

Стандартная лампочка имеет одну длинную ножку, которая считается анодом, то есть, плюсом. Короткая ножка является катодом – отрицательным контактом со знаком минус.

Пластиковое основание или головка имеет срез, указывающий на место расположения катода – минуса.

В другом способе необходимо внимательно посмотреть внутрь стеклянной колбочки светодиода. Можно легко разглядеть тонкий контакт, который является плюсом, и контакт в форме флажка, который, соответственно, будет минусом.

При наличии мультиметра можно легко определить полярность. Нужно выполнить установку центрального переключателя в режим прозвонки, а щупами прикоснуться к контактам. Если красный щуп соприкоснулся с плюсом, светодиод должен загореться.

Значит черный щуп будет прижат к минусу.

Тем не менее, при кратковременном неправильном подключении лампочек с нарушением полярности, с ними не произойдет ничего плохого.

Каждый светодиод способен работать только в одну сторону и выход из строя может случиться только в случае повышения напряжения. Значение номинального напряжения для отдельно взятого светодиода составляет от 2,2 до 3 вольт, в зависимости от цвета.

При подключении светодиодных лент и модулей, работающих от 12 вольт и выше, в схему обязательно добавляются резисторы.

Расчет подключения светодиодов в схемах на 12 и 220 вольт

Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит.

Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.

Коэффициент пульсации светодиодных ламп

В качестве примера можно взять схему, используемую при подключение светодиодов на 12 вольт в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:

  • Uпит = 12В – напряжение в автомобильном аккумуляторе;
  • Uпад = 2,2В – питающее напряжение светодиода;
  • I = 10 мА или 0,01А – ток отдельного светодиода.

В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора.

Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 вольтам. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.

2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.

В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 вольт.

Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.

Расчет подключения светодиода к сети 220В осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В.

Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.

2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора – 30 кОм.

Как сделать светодиодную лампу

Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.

2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.

свет = Rсвет х I = 220 х 0,007 = 1,54В.

Для определения мощности резистора используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.

Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду.

Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света.

Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.

Ошибки при подключении

Источник: https://electric-220.ru/news/kak_podkljuchit_svetodiod_k_12_voltam/2017-03-05-1194

способы интеграции, схемы питания и особенности подключения

Светодиоды — неотъемлемая часть электроники, позволяющая осуществлять индикацию состояния приборов. В зависимости от цвета и расположения на корпусе светоизлучающие диоды сигнализируют о состоянии зарядки, подключении гаджета к сети и т. п. Но бывают ситуации, когда в приборе отсутствует штатная сигнализация, а человеку она нужна. Тогда и встаёт вопрос о том, как включить светодиод в 220 В, не используя понижающих напряжение трансформаторных устройств.

Технические особенности диода

Светодиод представляет собой радиотехнический элемент, пропускающий ток, как и стандартный диод, только в одном направлении, но при этом излучающий электромагнитные волны в видимом диапазоне. Если осуществлять интеграцию такого диода в сеть с постоянным током, то важно не перепутать «плюс» и «минус». Внедрение же светового диода в переменную сеть и решение вопроса о том, как запитать светодиод от сети 220 В, где периодически (с частотой 50 Гц) происходит изменение направления тока и напряжения, потребует дополнительных расчётов.

Чтобы определить среднее значение тока и подключить светодиод к сети 220 вольт, необходимо разделить напряжение действующей сети пополам, то есть 220 В / 2 = 110 В. Это значение берут за основу для последующих расчётов.

Электрическое сопротивление светодиода, как и любого полупроводникового элемента, не линейно и зависит от величины разности потенциалов, приложенной к нему. Для сети с переменным током и напряжением 220 В с приемлемой точностью можно взять усреднённое значение в 1,7 Ом. Тогда, согласно закону Ома, величина тока, который будет проходить через полупроводниковый кристалл диода, если его подключить напрямую к сети, будет примерно равна 65 ампер (110/1,7).

Такой показатель просто приведёт к сжиганию прибора. Для уменьшения величины тока, проходящего через полупроводник, потребуется последовательное включение в цепь рядом со световым диодом сопротивления.

Для этой цели применяют исключительно резисторы в цепях с постоянным напряжением, а с переменным током есть возможность применять так называемые реактивные сопротивления — конденсаторы и катушки индуктивности. Сопротивление они создают благодаря накапливанию электромагнитной энергии в первый полупериод (ток протекает в одном направлении) и возвращению её в сеть во втором полупериоде (при обратном течении электрического тока).

Подключение через резистор

Подобная схема обычно реализуется для индикации работы электротехнических устройств. Она используется в световом сигнале, свидетельствующем о включении в сеть электрочайника, в подсветке кнопки выключателя и т. д. Главными достоинствами этого варианта интеграции светящегося диода в сеть считаются относительная дешевизна, простота и надёжность.

Но есть в этой схеме один нюанс. Он заключается в необходимости гашения обратного напряжения, так как его избыток может привести к выходу из строя полупроводникового прибора. С этой задачей легко справляются кремниевые диоды, которые способны пропускать ток по величине не меньше того, что проходит в сети. Подключить их можно в цепь двумя способами:

  • последовательно, то есть после резистора и перед светодиодом, но соблюдая полярность;
  • параллельно со светящимся диодом, но изменив полярность на 180 градусов.

Некоторые специалисты считают, что использование гасящих диодов необязательно, но практика показывает, что обратный ток в некоторых случаях вызывает тепловой пробой p-n перехода. Поэтому дополнительные затраты на приобретение кремниевых диодов вполне оправданы для реализации подключения светодиода к сети 220 В, схема которого содержит гасящий резистор.

Применение конденсатора

Негативной стороной использования резистора для уменьшения тока при включении в цепь 220 В светодиода является довольно существенное рассеивание мощности. Эта проблема становится заметной при нагрузке с большим током потребления. Решением является схема подключения светодиода к 220 В, где реализуется интеграция неполярного конденсатора вместо резистора. Сопротивление конденсаторов имеет реактивный характер, что исключает рассеивание мощности.

Подключение конденсатора в схему светодиода с целью токоограничения имеет один нюанс, который может привести к выходу из строя светового диода, — сохранение накопленного заряда после отключения питания сети. Из-за этого в схему с неполярным конденсатором добавляют:

  • два резистора;
  • диод, подключённый параллельно светодиоду, но в обратном направлении.

Резисторы (один — параллельно с конденсатором, а второй — последовательно) защищают всю схему от бросков напряжения при подаче напряжения из сети, а диод является защитой светодиода от разности потенциалов с обратной полярностью.

Эти способы подключения применимы к маломощным светодиодам, которые используются для индикации или подсветки. Подключение мощных диодных элементов, предназначенных для светодиодных ламп освещения, осуществляется схемами с использованием спецблоков питания (драйверов).

Индикаторы сети 220В на светодиодах, замена индикаторным неонкам

Принципиальные схемы простых индикаторов наличия сети 220В на светодиодах, меняем старые неоновые индикаторные лампы на светодиоды. В электрооборудовании повсеместно применяются индикаторные неоновые лампы для индикации включения аппаратуры.

В большинстве случаев схема как на рисунке 1. То есть, неоновая лампа через резистор сопротивлением 150-200 киолом подключается к сети переменного тока. Порог пробоя неоновой лампы ниже 220V, потому она легко пробивается и светится. А резистор ограничивает ток через неё, чтобы она не взорвалась от превышения тока.

Бывают и неоновые лампы со встроенными токоограничительными резисторами, в таких схемах кажется как будто неоновая лампа включена в сеть без резистора. На самом деле резистор спрятан в её цоколе или в её проволочном выводе.

Недостаток неоновых индикаторных ламп в слабом свечении и только розовом цвете свечения, ну и еще в том что это стекло. Плюс, неоновые лампы сейчас в продаже встречаются реже светодиодов. Понятно, что есть соблазн сделать аналогичный индикатор включения, но на светодиоде, тем более светодиоды бывают разных цветов и значительно более яркие чем «неонки», ну и нет стекла.

Но, светодиод низковольтный прибор. Прямое напряжение обычно не более ЗV, да и обратное тоже весьма низкое. Даже если светодиодом заменить неоновую лампу, он выйдет из строя за счет превышения обратного напряжения при отрицательной полуволне сетевого напряжения.

Рис. 1. Типовая схема подключения неоновой лампы к сети 220В.

Впрочем, есть двухцветные двухвыводные светодиоды. В корпусе такого светодиода есть два разноцветных светодиода, включенных встречно-параллельно. Такой светодиод можно подключить практически так же, как неоновую лампу (рис.2), только резистор взять сопротивлением поменьше, потому что для хорошей яркости через светодиод должен протекать ток больше чем через неоновую лампу.

Рис. 2. Схема индикатора сети 220В на двухцветном светодиоде.

В этой схеме одна половина двухцветного светодиода HL1 работает на одной полуволне, а вторая — на другой полуволне сетевого напряжения. В результате обратное напряжение на светодиоде не превышает прямого. Единственный недостаток — цвет. Он желтый. Потому что обычно два цвета — красный и зеленый, но горят они почти одновременно, потому зрительно выглядит как желтый цвет.

Резистор R1 в схеме на рисунке 2 сопротивлением ниже, чем с неоновой лампой, и на нем выделяется больше тепловой мощности. Полностью избавится от паразитной тепловой мощности можно, если заменить резистор конденсатором (рис. 3). Прямой ток через светодиод ограничивается реактивным емкостным сопротивлением конденсатора, а на нем тепло не выделяется.

Рис. 3. Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе.

На рисунках 4 и 5 показана схема индикатора включения на двух светодиодах, включенных встречно-параллельно. Это почти то же, что на рис. 3 и 4, но светодиоды отдельные для каждого полупериода сетевого напряжения. Светодиоды могут быть как одного цвета, так и разного.

Рис. 4. Схема индикатора сети 220В с двумя светодиодами.

Рис. 5. Схема индикатора сети 220В с двумя светодиодами и конденсатором.

Но, если нужен только один светодиод, -второй можно заменить обычным диодом, например, 1N4148 (рис.6 и 7). И нет ничего страшного в том, что этот светодиод не рассчитан на напряжение электросети. Потому что обратное напряжение на нем не превысит прямого напряжения светодиода.

Рис. 6. Схема индикатора сети 220В со светодиодом и диодом.

Рис. 2. Схема индикатора сети 220В с одним светодиодом и конденсатором.

В схемах испытывались светодиоды, двухцветные типа L-53SRGW и одно-цветные типа АЛ307. Конечно же можно применить и любые другие аналогичные индикаторные светодиоды. Резисторы и конденсаторы так же могут быть других величин, — все зависит от того, какую силу тока нужно пустить через светодиод.

Андронов В. РК-2017-02.

Драйвер для светодиодов своими руками с питанием от 220 в

Главная » Статьи » Драйвер для светодиодов своими руками с питанием от 220 в

Самодельный драйвер для светодиодов от сети 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Оцените, пожалуйста, статью. Мы старались:) (4 оценок, среднее: 5,00 из 5) Загрузка…

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Схема драйвера для светодиодов 220

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор. Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Драйвер питания светодиодов 7 х 1 Вт (220 В). Дёшево и качественно?! + Сюрприз от монтажников 🙂

  • AliExpress
  • Фонарики и светодиодные лампы
Привет всем! Поделюсь очередной версией драйвера для питания 1 Вт-ных светодиодов от 220 В. Это первый заказанный мной драйвер в Китае, поэтому выбирал на пробу самый дешевый и относительно мощный. А какой он вышел по конструктиву и характеристикам — судить вам. Описание продавца: ( 4-7 ) х 1 Вт 7 x 1 Вт из светодиодов драйвер 4 Вт 5 Вт 6 Вт 7 Вт лампы драйвер питания освещения трансформатор AC85-265V для из светодиодов газа прожектор. На страничке товара (идентификатор 32284860572) много фотографий разных драйверов, мне же достался такой:

Производитель — Dark Energy, версия чего-то — 1.6. Нижняя сторона:

Верхняя сторона:

Схема:

На выход подключил сборку из семи 1-ваттных светодиодов:

Судя по обзорам на mySKU.ru драйверов, на плате установлены входной конденсатор, соответствующий заявленой мощности 7 Вт — 6,8 мкФ х 400 В и конденсатор подавления помех. По крайней мере, приёмник ФМ на работу драйвера никак не реагирует. Что интересно, драйвер заработал сразу и без всяких неожиданностей (смотри картинку ниже)! Измеренные параметры вышли такие: напряжение на 7-ми светодиодах — 23,45 В, ток через них — 245 мА. Планка со светодиодами нагрелась через 5 минут выше 70 градусов, поэтому на большее время не включалась. А сюрпризом оказалась микросхема, которая при внимательном рассмотрении оказалась припаянная мимо контактных площадок:

Мало того, что припаяна криво, так еще и отвалилась, стоило её чуть ковырнуть 🙂 Несмотря на это — схема работала! После нормальной запайки все параметры остались такими же, как и при первом измерении. На всякий случай, замерил еще при 5-ти светодиодах: 16,5 В х 250 мА. П.С. Осталось несколько вопросов к специалистам: 1. Стоит ли менять быстрый диод D2 (ES1D) на диод Шоттки? 2. Стоит ли ставить параллельно выходному конденсатору керамический? 3. Входной конденсатор 6,8 мкФ х 400 В имеет ESR 3,5 Ома. Это нормально, или стоит поискать что-то понадёжней? Всем пока и спасибо за внимание! Планирую купить +26 Добавить в избранное Обзор понравился +20 +48

Работа светодиодов от источника переменного тока

светодиод обычно считается устройствами постоянного тока, работающими от нескольких вольт постоянного тока. В маломощных приложениях с небольшим количеством светодиодов это вполне приемлемый подход, например, в мобильных телефонах, где питание подается от батареи постоянного тока. Но другие приложения, например, линейная система ленточного освещения, протянувшаяся на 100 м вокруг здания, требуют других соображений. Привод постоянного тока страдает от потерь на расстоянии, что требует использования более высоких напряжений привода при запуске, а также дополнительных регуляторов, которые тратят энергию.

Напротив, переменный ток лучше работает на расстоянии, поэтому этот метод используется для подачи электроэнергии в дома и предприятия по всему миру. Переменный ток позволяет очень просто использовать трансформаторы для понижения напряжения до 240 В или 120 В переменного тока по сравнению с киловольтами, используемыми в линиях электропередач, но с постоянным током это гораздо более проблематично.

Для работы светодиодного светильника от сети (например, 120 В переменного тока) требуется, чтобы электроника между источником питания и самими устройствами обеспечивала постоянное напряжение (например.грамм. 12 В постоянного тока), способный управлять несколькими светодиодами.

Новый подход заключается в разработке светодиодов переменного тока, которые могут работать непосредственно от источника переменного тока. Это дает несколько преимуществ, как объясняет Боб Коттриш из Lynk Labs, одной из компаний, которая является авангардом этого подхода: «Благодаря переменному току энергия передается и используется гораздо более эффективно», — говорит он. «Если вы можете поставить свои светодиоды прямо на торец без необходимости включать сложную электронику для преобразования переменного тока обратно в постоянный ток, то вы получите двойное преимущество: вы эффективно управляете мощностью в среде распределения, и вы доставили это более эффективно без вмешательства электроники.»

Конечно, если вы также можете получить больше света при меньшем энергопотреблении, как Lynk Labs заявляет о своем подходе AC-LED, тогда у вас еще больше положительной позиции.

Работа светодиодов от источника переменного тока

Существует несколько вариантов управления светодиодами от источника переменного тока. Многие автономные светодиодные светильники просто имеют трансформатор между розеткой и осветительным прибором для обеспечения необходимого напряжения постоянного тока. Ряд компаний разработали светодиодные лампы, которые вкручиваются напрямую в стандартные розетки, но они неизменно также содержат миниатюрную схему, которая преобразует переменный ток в постоянный перед подачей его на светодиоды.

Другой подход состоит в том, чтобы сконфигурировать светодиоды или сами умереть в мостовой схеме постоянного тока. Хотя переменный ток вводится в эту конфигурацию светодиодной мостовой схемы, светодиоды по-прежнему управляются постоянным током, и этот подход требует большей мощности привода, чем «настоящая» конструкция светодиодов переменного тока.

Одной из ранних форм «настоящей» системы светодиодов переменного тока, в которой устройства работают при прямом подключении к источнику переменного тока, является подход «света рождественской елки». Здесь несколько светодиодов подключены последовательно, так что падение напряжения на всей цепочке равно напряжению питания.

Однако были предприняты попытки разработать «настоящие» светодиоды переменного тока на уровне сборки или комплектного устройства. В авангарде этих разработок находятся Lynk Labs, Seoul Semiconductor и III-N Technology.

Технология, разработанная Seoul Semiconductor и отдельно III-N Technology, использует подход рождественской елки на уровне кристалла. Светодиодное устройство переменного тока фактически состоит из двух цепочек последовательно соединенных кристаллов, соединенных в разных направлениях; одна струна светится в течение положительной половины цикла переменного тока, а другая — в течение отрицательной.Строки попеременно включаются и отключаются на частоте 50/60 Гц источника питания переменного тока, и, таким образом, светодиод всегда выглядит включенным. Технология, разработанная Сеулом и III-N, специально предназначена для светодиодных устройств, предназначенных для работы от сети переменного тока высокого напряжения 50/60 Гц.

Lynk Labs technology

Lynk Labs, однако, разработала и запатентовала альтернативную технологию AC-LED для высокого и низкого напряжения переменного тока. Lynk использует существующие светодиоды или кристаллы с различными запатентованными конструкциями драйверов на основе продукта AC-LED.Компания утверждает, что владеет широчайшим портфелем патентов на устройства, сборки, драйверы и системы AC-LED. Кроме того, Lynk и Philips по отдельности придерживаются фундаментальных принципов IP в управлении светодиодами с помощью высокочастотных драйверов инверторного типа.

В отличие от Сеула или III-N, подход Lynk Labs заключался в разработке технологии AC-LED, которая объединяет всего 2 кристалла или светодиода в одной сборке или корпусе вместе с соответствующей технологией драйверов для конкретного AC-LED.

«Производители освещения заинтересованы в предложении светодиодных осветительных приборов, а не в том, чтобы стать экспертами в области электроники или полупроводников», — говорит Майк Мискин, генеральный директор Lynk Labs.«Подход Lynk заключается в предоставлении нашим клиентам комплексных решений plug-and-play».

Технология Lynk Labs AC-LED используется на обоих концах системы. Драйверы компании предназначены для обеспечения светодиодов переменного тока либо (а) постоянным напряжением, либо (б) постоянным напряжением и постоянной частотой. Устройство или сборка AC-LED предназначены для подключения к драйверу без необходимости каких-либо дополнительных инженерных работ, за исключением приспособления, предоставляемого производителем светильника или конечным пользователем.

Для устройства или сборки AC-LED доступны различные конструкции, однако все они основаны на использовании драйверов AC-LED, обеспечивающих либо постоянное напряжение, либо постоянное напряжение и постоянную частоту.

С драйверами постоянного напряжения переменного тока Lynk Labs светодиоды управляются в конфигурации встречно-параллельной цепи на различных частотах в зависимости от приложения. Здесь высокочастотный / низковольтный драйвер используется для управления устройством или сборкой AC-LED, которые соответствуют драйверу постоянного напряжения.В качестве альтернативы, другие устройства и сборки предназначены для прямого подключения к электросети или низковольтным трансформаторам, например, к тем, которые используются в ландшафтном освещении.

Светодиоды управления емкостным током

В драйверах постоянного напряжения / постоянной частоты светодиод C 3 (светодиод управления емкостным током) имеет емкостную связь с драйвером и управляется им. Конденсатор заменяет любые резистивные компоненты в системе, тем самым уменьшая нагрев и повышая эффективность.

Светодиодное устройство или узел C 3 включает перевернутый противоположный кристалл или светодиоды со встроенным или встроенным согласующим конденсатором.

По сравнению с использованием того же кристалла в схеме на основе резистора, управляемой постоянным током, светодиодный подход C 3 может обеспечить более высокую яркость при той же мощности (или, альтернативно, использует более низкую мощность при той же яркости), в зависимости от устройства или системы. дизайн.

Стандартное светодиодное устройство обычно питается от источника постоянного тока, и в простейшей форме схема драйвера включает в себя резистор для обеспечения правильного падения напряжения на эмиттере (, рис. 1а, ).В отличие от этого, в подходе Lynk Lab C 3 для светодиодов используется четное количество светодиодов или кристалл в цепи, которая также содержит конденсатор и подключена к источнику переменного тока (, рис. 1b, ). Система спроектирована таким образом, что оба полупериода волны переменного тока используются эффективно.

Типичное светодиодное устройство C 3 объединяет 2 или более светодиода на кристалл (кратно 2 или более, чтобы эффективно использовать обе половины цикла переменного тока) с конденсатором.

Майк Мискин объясняет роль конденсатора в цепи.«Подобно резистору в цепи постоянного тока, конденсатор снижает напряжение и подает требуемый ток на светодиоды в зависимости от входного напряжения и частоты на конденсаторе от источника переменного тока. Когда источник переменного тока, такой как сеть переменного тока или запатентованный нами драйверы высокочастотного инвертора (технология BriteDriver от Lynk Labs) обеспечивают постоянное напряжение и постоянную частоту, конденсатор подает постоянный ток на светодиоды, но также изолирует светодиоды от других светодиодов в системе и от драйвера в случае сбоя. происходить.»

Хотя оба устройства, указанные выше, требуют разных напряжений и токов, они оба могут быть подключены к одному и тому же драйверу AC-LED или источнику питания без необходимости в дополнительной электронике или компонентах.

Этот подход C 3 LED также улучшает управление температурой , эффективность за счет устранения резистивной составляющей, которая необходима в цепи постоянного тока.

Надежность системы

Существует также проблема дополнительной надежности.

В цепи постоянного тока, показанной на рис. текущий драйвер отправляет 1.4 А на 4 параллельных цепочках светодиодов, при 350 мА на цепочку. Если одна строка выходит из строя (, рис. 2b, ), драйвер по-прежнему выдает 1,4 А, что теперь означает 467 мА на каждой из оставшихся 3 строк. Этой ситуации перегрузки по току, которая явно нежелательна, можно избежать с помощью технологии Lynk Labs AC-LED. В , рис. 3a, , источник питания 12 В переменного тока обеспечивает 350 мА каждой из четырех цепочек светодиодов C 3 , каждая из которых, в свою очередь, содержит 6 эмиттеров. Если одна цепочка выходит из строя ( рис. 3b, ), тот же ток 350 мА продолжает подаваться на каждую цепочку светодиодов C 3 , потому что драйвер обеспечивает постоянное напряжение и частоту, а ток регулируется конденсатором в каждой цепочке. .

Световой поток

Предварительные результаты показывают, что светодиодный подход C 3 может обеспечить более высокую яркость при той же мощности или, в качестве альтернативы, может потреблять меньше энергии для достижения того же уровня яркости. Происхождение этих результатов не совсем понятно, но отчасти связано с тем, что светодиоды имеют более низкую температуру перехода, потому что они включены только в течение одной половины цикла переменного тока.

Дальнейшая оценка и данные независимых испытаний должны служить для подтверждения правильности подхода Lynk Labs к AC-LED.

Объяснение 4 простых схем бестрансформаторного источника питания

В этом посте мы обсуждаем 4 простых в сборке, компактных простых схемах бестрансформаторного источника питания. Все схемы, представленные здесь, построены с использованием теории емкостного реактивного сопротивления для понижения входного сетевого напряжения переменного тока. Все представленные здесь конструкции работают независимо без трансформатора или без трансформатора .

Концепция бестрансформаторного источника питания

Как следует из названия, бестрансформаторная схема источника питания обеспечивает низкий постоянный ток от сети высокого напряжения переменного тока без использования трансформатора или катушки индуктивности.

Он работает за счет использования высоковольтного конденсатора для понижения сетевого переменного тока до необходимого более низкого уровня, который может быть подходящим для подключенной электронной схемы или нагрузки.

Характеристики напряжения этого конденсатора выбраны таким образом, чтобы его пиковое значение действующего напряжения было намного выше, чем пиковое напряжение сети переменного тока, чтобы гарантировать безопасное функционирование конденсатора. Пример конденсатора, который обычно используется в цепях бестрансформаторного питания, показан ниже:

Этот конденсатор подключается последовательно с одним из входов сети, предпочтительно с фазовой линией переменного тока.

Когда сетевой переменный ток поступает на этот конденсатор, в зависимости от номинала конденсатора, реактивное сопротивление конденсатора вступает в действие и не позволяет сетевому переменному току превысить заданный уровень, определяемый номиналом конденсатора.

Однако, несмотря на то, что ток ограничен, напряжение нет, поэтому, если вы измеряете выпрямленный выход бестрансформаторного источника питания, вы обнаружите, что напряжение равно пиковому значению сетевого переменного тока, что составляет около 310 В, и это может насторожить любого нового любителя.

Но поскольку конденсатор может значительно снизить уровень тока, с этим высоким пиковым напряжением можно легко справиться и стабилизировать с помощью стабилитрона на выходе мостового выпрямителя.

Мощность стабилитрона должна быть выбрана соответствующим образом в соответствии с допустимым уровнем тока конденсатора.

ВНИМАНИЕ: прочтите предупреждающее сообщение в конце сообщения

Преимущества использования цепи бестрансформаторного источника питания

Идея недорогая, но очень эффективная для приложений, требующих малой мощности для работы.

Использование трансформатора в источниках питания постоянного тока, вероятно, довольно распространено, и мы много слышали об этом.

Однако одним из недостатков использования трансформатора является то, что вы не можете сделать устройство компактным.

Даже если текущие требования к вашей схеме невысоки, вы должны включить тяжелый и громоздкий трансформатор, что сделает работу действительно громоздкой и беспорядочной.

Схема бестрансформаторного источника питания, описанная здесь, очень эффективно заменяет обычный трансформатор для приложений, требующих тока ниже 100 мА.

Здесь на входе используется высоковольтный металлизированный конденсатор для необходимого понижения мощности сети, а предыдущая схема представляет собой не что иное, как простые мостовые конфигурации для преобразования пониженного переменного напряжения в постоянное.

Схема, показанная на схеме выше, представляет собой классическую конструкцию, может использоваться в качестве источника питания постоянного тока 12 В для большинства электронных схем.

Однако, обсудив преимущества вышеупомянутой конструкции, стоит сосредоточиться на нескольких серьезных недостатках, которые эта концепция может включать.

Недостатки схемы бестрансформаторного источника питания

Во-первых, схема не может выдавать сильноточные выходные сигналы, но это не будет проблемой для большинства приложений.

Еще один недостаток, который, безусловно, требует некоторого внимания, заключается в том, что данная концепция не изолирует цепь от опасных потенциалов сети переменного тока.

Этот недостаток может иметь серьезные последствия для конструкций с оконечными выводами или металлическими шкафами, но не имеет значения для устройств, в которых все находится в непроводящем корпусе.

Таким образом, начинающие любители должны работать с этой схемой очень осторожно, чтобы избежать поражения электрическим током. И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проходить через нее, что может вызвать серьезное повреждение цепи с питанием и самой цепи питания.

Однако в предложенной простой схеме бестрансформаторного источника питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих каскадов после мостового выпрямителя.

Этот конденсатор заземляет мгновенные скачки высокого напряжения, тем самым эффективно защищая связанную с ним электронику.

Как работает схема

Работу этого источника питания без преобразования можно понять по следующим пунктам:

  1. Когда вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня. уровень, определяемый значением реактивного сопротивления C1. Здесь можно приблизительно принять значение около 50 мА.
  2. Тем не менее, напряжение не ограничено, и поэтому все 220 В или что-то еще, что может быть на входе, может достигать следующей ступени мостового выпрямителя.
  3. Мостовой выпрямитель выпрямляет эти 220 В постоянного тока до более высоких 310 В постоянного тока из-за преобразования среднеквадратичного значения в пиковое значение сигнала переменного тока.
  4. Этот постоянный ток 310 В мгновенно понижается до постоянного низкого уровня с помощью следующего каскада стабилитрона, который шунтирует его на значение стабилитрона. Если используется стабилитрон 12 В, он станет 12 В и так далее.
  5. C2 наконец фильтрует 12 В постоянного тока с пульсациями в относительно чистый 12 В постоянного тока.

1) Базовая бестрансформаторная конструкция

Давайте попробуем более подробно разобраться в функциях каждой из частей, используемых в приведенной выше схеме:

  1. Конденсатор C1 становится наиболее важной частью схемы, так как он который снижает высокий ток из сети 220 В или 120 В до желаемого более низкого уровня, чтобы соответствовать выходной нагрузке постоянного тока. Как показывает практика, каждая отдельная микрофарада этого конденсатора будет обеспечивать выходную нагрузку током около 50 мА.Это означает, что 2 мкФ обеспечит 100 мА и так далее. Если вы хотите узнать расчеты более точно, вы можете обратиться к этой статье.
  2. Резистор R1 используется для обеспечения пути разряда для высоковольтного конденсатора C1 всякий раз, когда цепь отключена от сетевого входа. Потому что C1 имеет способность сохранять в себе сетевой потенциал 220 В, когда он отключен от сети, и может подвергнуться риску поражения высоким напряжением любого, кто дотронется до контактов вилки. R1 быстро разряжает C1, предотвращая любую подобную аварию.
  3. Диоды D1 — D4 работают как мостовой выпрямитель для преобразования слаботочного переменного тока от конденсатора C1 в слаботочный постоянный ток. Конденсатор C1 ограничивает ток до 50 мА, но не ограничивает напряжение. Это означает, что постоянный ток на выходе мостового выпрямителя является пиковым значением 220 В переменного тока. Это можно рассчитать как: 220 x 1,41 = 310 В постоянного тока приблизительно . Итак, у нас на выходе моста 310 В, 50 мА.
  4. Однако напряжение 310 В постоянного тока может быть слишком высоким для любого устройства с низким напряжением, кроме реле.Поэтому стабилитрон подходящего номинала используется для шунтирования 310 В постоянного тока на желаемое более низкое значение, такое как 12 В, 5 В, 24 В и т. Д., В зависимости от характеристик нагрузки.
  5. Резистор R2 используется как токоограничивающий резистор. Вы можете почувствовать, когда C1 уже существует для ограничения тока, зачем нам нужен R2. Это связано с тем, что во время периодов мгновенного включения питания, то есть, когда входной переменный ток впервые подается на схему, конденсатор C1 просто действует как короткое замыкание в течение нескольких миллисекунд.Эти несколько начальных миллисекунд периода включения позволяют полному высокому току 220 В переменного тока войти в цепь, чего может быть достаточно, чтобы разрушить уязвимую нагрузку постоянного тока на выходе. Чтобы этого не произошло, введем R2. Однако лучшим вариантом может быть использование NTC вместо R2.
  6. C2 — это конденсатор фильтра, который сглаживает пульсации 100 Гц от выпрямленного моста до более чистого постоянного тока. Хотя на схеме показан высоковольтный конденсатор 10uF 250V, вы можете просто заменить его на 220uF / 50V из-за наличия стабилитрона.

Схема печатной платы для объясненного выше простого бестрансформаторного источника питания показана на следующем изображении. Обратите внимание, что я предусмотрел место для MOV также на печатной плате со стороны входа сети.

Пример схемы для приложения светодиодного декоративного освещения

Следующая схема бестрансформаторного или емкостного источника питания может использоваться в качестве схемы светодиодной лампы для безопасного освещения второстепенных светодиодных цепей, таких как небольшие светодиодные лампы или светодиодные гирлянды.

Идею запросил г-н.Jayesh:

Требования к спецификации

Струна состоит из примерно 65-68 светодиодов на 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 6 струн связаны вместе, чтобы образовать одну струну, так что расположение лампочки составляет 4 дюйма в окончательной веревке. итак всего 390 — 408 светодиодных лампочек в финальной тросе.
Итак, пожалуйста, предложите мне лучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полный канат, состоящий из 6 струн.
у нас есть еще одна веревка из 3-х струн. Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 3 струны связаны вместе, чтобы образовать одну струну, поэтому расположение лампочки получается, что длина последней веревки составляет 4 дюйма. итак всего 195-204 светодиодных лампочки в готовом тросе.
Итак, пожалуйста, предложите мне лучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полная веревка из 3-х струн вместе.
Пожалуйста, предложите лучшую надежную схему с устройством защиты от перенапряжения и посоветуйте, какие дополнительные устройства необходимо подключить для защиты цепей.
, и обратите внимание, что на принципиальных схемах указаны значения, необходимые для того же, поскольку мы не являемся техническим специалистом в этой области.

Схема

Схема драйвера, показанная ниже, подходит для управления любой цепочкой светодиодных ламп , имеющей менее 100 светодиодов (для входа 220 В), каждый светодиод рассчитан на 20 мА, 3,3 В, 5 мм светодиоды:

Здесь вход конденсатор 0,33 мкФ / 400 В определяет величину тока, подаваемого на светодиодную цепочку. В этом примере это будет около 17 мА, что примерно соответствует выбранной светодиодной цепочке.

Если один драйвер используется для большего количества параллельных цепочек светодиодов 60/70, то просто указанное значение конденсатора может быть пропорционально увеличено для поддержания оптимального освещения светодиодов.

Следовательно, для двух параллельно включенных последовательностей требуется значение 0,68 мкФ / 400 В, для трех строк вы можете заменить его на 1 мкФ / 400 В. Аналогично, для 4-х струн его необходимо увеличить до 1,33 мкФ / 400 В и так далее.

Важно : Хотя я не показал ограничивающий резистор в конструкции, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой цепочкой светодиодов для дополнительной безопасности.Его можно было вставить в любое место последовательно с отдельными струнами.

ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УКАЗАННЫЕ В ДАННОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ переменного тока, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ОПАСНЫ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ AC ……..

2) к бестрансформаторному источнику питания со стабилизированным напряжением

Теперь давайте посмотрим, как обычный емкостной источник питания может быть преобразован в бестрансформаторный источник питания без перенапряжения или переменного напряжения, применимый практически ко всем стандартным электронным нагрузкам и схемам.Идея была предложена г-ном Чанданом Мэйти.

Технические характеристики

Если вы помните, я уже общался с вами раньше с комментариями в вашем блоге.

Бестрансформаторные схемы действительно хороши, я протестировал пару из них и использовал светодиоды мощностью 20 Вт, 30 Вт. Теперь я пытаюсь добавить контроллер, вентилятор и светодиоды вместе, следовательно, мне нужен двойной источник питания.

Примерная спецификация:

Номинальный ток 300 мАР1 = 3.3-5 В 300 мА (для контроллера и т. Д.) P2 = 12-40 В (или более высокий диапазон), 300 мА (для светодиода)
Я решил использовать вашу вторую цепь, как упоминалось https://homemade-circuits.com/2012/08/ high-current-transformerless-power.html

Но я не могу заморозить способ получения 3,3 В без использования дополнительного конденсатора. 1. Можно ли поставить вторую схему с выхода первой? 2. Или второй мост TRIAC, который нужно разместить параллельно первому, после конденсатора, чтобы получить 3.3-5V

Буду рад, если вы любезно поможете.

Спасибо,

Конструкция

Функционирование различных компонентов, используемых на различных этапах показанной выше цепи управления напряжением, можно понять из следующих пунктов:

Напряжение сети выпрямляется четырьмя 1N4007 диоды и фильтруется конденсатором 10 мкФ / 400 В.

Выходной сигнал на 10 мкФ / 400 В теперь достигает примерно 310 В, что является пиковым выпрямленным напряжением, достигаемым от сети.

Сеть делителей напряжения, сконфигурированная в основании TIP122, обеспечивает снижение этого напряжения до ожидаемого уровня или требуемого уровня на выходе источника питания.

Вы также можете использовать MJE13005 вместо TIP122 для большей безопасности.

Если требуется 12 В, потенциометр 10 кОм может быть установлен для достижения этого через эмиттер / землю TIP122.

Конденсатор 220 мкФ / 50 В гарантирует, что во время включения база получает мгновенное нулевое напряжение, чтобы держать ее в выключенном состоянии и защищать от начального скачка напряжения.

Катушка индуктивности также обеспечивает высокое сопротивление в течение периода включения катушки и предотвращает попадание пускового тока внутрь цепи, предотвращая возможное повреждение цепи.

Для достижения 5 В или любого другого прилагаемого пониженного напряжения можно использовать регулятор напряжения, такой как показанная 7805 IC.

Принципиальная схема

Использование управления MOSFET

Вышеупомянутая схема, использующая эмиттерный повторитель, может быть дополнительно усовершенствована путем применения источника питания истокового повторителя MOSFET вместе с дополнительным каскадом управления током с использованием транзистора BC547.

Полную принципиальную схему можно увидеть ниже:

Видео-подтверждение защиты от перенапряжения

3) Цепь бестрансформаторного источника питания с нулевым переходом

Третий интерес объясняет важность обнаружения пересечения нуля в емкостных бестрансформаторных источниках питания для полной защиты от бросков импульсных токов при включении сетевого выключателя. Идея была предложена г-ном Фрэнсисом.

Технические характеристики

Я с большим интересом читал статьи о бестрансформаторных источниках питания на вашем сайте, и, если я правильно понимаю, основная проблема заключается в возможном пусковом токе в цепи при включении, и это вызвано тем, что включение не всегда происходит при нулевом напряжении цикла (переход через ноль).

Я новичок в электронике, и мои знания и практический опыт очень ограничены, но если проблема может быть решена, если реализован переход через ноль, почему бы не использовать компонент перехода через нуль для управления им, например, оптотриак с переходом через ноль.

Входная сторона Optotriac имеет малую мощность, поэтому можно использовать резистор малой мощности для понижения сетевого напряжения для работы Optotiac. Поэтому на входе оптотриака конденсатор не используется. Конденсатор подключен к выходу, который будет включаться TRIAC, который включается при переходе через ноль.

Если это применимо, это также решит проблемы с высокими требованиями к току, поскольку Optotriac, в свою очередь, может без каких-либо затруднений управлять другим более высоким током и / или напряжением TRIAC. В цепи постоянного тока, подключенной к конденсатору, больше не должно быть проблем с пусковым током.

Было бы неплохо узнать ваше практическое мнение и спасибо, что прочитали мою почту.

С уважением,
Фрэнсис

Дизайн

Как справедливо указано в приведенном выше предположении, вход переменного тока без контроля перехода через нуль может быть основной причиной броска импульсного тока в емкостных бестрансформаторных источниках питания.

Сегодня, с появлением сложных оптоизоляторов драйвера симистора, переключение сети переменного тока с контролем перехода через нуль больше не является сложной задачей и может быть легко реализовано с использованием этих устройств.

О оптронах MOCxxxx

Драйверы симисторов серии MOC имеют форму оптопар и являются специалистами в этом отношении и могут использоваться с любым симистором для управления сетью переменного тока посредством обнаружения и контроля перехода через ноль.

Драйверы симисторов серии MOC включают в себя MOC3041, MOC3042, MOC3043 и т. Д., Все они почти идентичны по своим рабочим характеристикам с небольшими различиями в размах напряжений, и любой из них может быть использован для предлагаемого приложения для контроля перенапряжения в емкостных источниках питания.

Обнаружение и выполнение перехода через ноль обрабатываются внутри этих блоков оптических драйверов, и нужно только настроить силовой симистор с ним для наблюдения за предполагаемым управляемым срабатыванием при переходе через ноль интегральной схемы симистора.

Перед тем, как исследовать схему бестрансформаторного питания без импульсных помех симистора с использованием концепции управления переходом через ноль, давайте сначала вкратце разберемся, что такое переход через нуль, и связанные с ним особенности.

Что такое переход через нуль в сети переменного тока

Мы знаем, что потенциал сети переменного тока состоит из циклов напряжения, которые растут и падают с изменением полярности от нуля до максимума и наоборот по заданной шкале.Например, в нашей сети переменного тока 220 В напряжение переключается с 0 на пиковое значение +310 В) и обратно до нуля, затем идет вниз от 0 до -310 В и обратно к нулю, это происходит непрерывно 50 раз в секунду, составляя переменный ток 50 Гц. цикл.

Когда сетевое напряжение близко к мгновенному пику цикла, то есть около 220 В (для 220 В) на входе сети, оно находится в самой сильной зоне с точки зрения напряжения и тока, и если происходит включение емкостного источника питания в этот момент можно ожидать, что все 220 В выйдет из строя через источник питания и связанную с ним уязвимую нагрузку постоянного тока.Результатом может быть то, что мы обычно наблюдаем в таких блоках питания … то есть мгновенное сгорание подключенной нагрузки.

Вышеупомянутые последствия обычно наблюдаются только в емкостных бестрансформаторных источниках питания, поскольку конденсаторы имеют характеристики короткого замыкания в течение доли секунды, когда они подвергаются напряжению питания, после чего они заряжаются и настраиваются в соответствии с заданными параметрами. выходной уровень

Возвращаясь к проблеме пересечения нулевого уровня сети, в обратной ситуации, когда сеть приближается или пересекает нулевую линию своего фазового цикла, ее можно рассматривать как самую слабую зону с точки зрения тока и напряжения, и можно ожидать, что любое устройство, включенное в этот момент, будет полностью безопасным и не подверженным скачкам напряжения.

Следовательно, если емкостной источник питания включается в ситуациях, когда вход переменного тока проходит через нулевую фазу, мы можем ожидать, что выходной сигнал источника питания будет безопасным и не будет иметь импульсного тока.

Как это работает

Схема, показанная выше, использует драйвер оптоизолятора симистора MOC3041 и сконфигурирована таким образом, что всякий раз при включении питания он срабатывает и запускает подключенный симистор только во время первого перехода фазы переменного тока через ноль, а затем поддерживает нормально включенным переменный ток до тех пор, пока питание не будет отключено и снова не включено.

Обращаясь к рисунку, мы можем увидеть, как крошечный 6-контактный MOC 3041 IC соединен с симистором для выполнения процедур.

Вход на симистор подается через высоковольтный токоограничивающий конденсатор 105/400 В, нагрузку можно увидеть, подключенную к другому концу источника питания через конфигурацию мостового выпрямителя для достижения чистого постоянного тока на предполагаемой нагрузке, которая может светодиод.

Как контролируется импульсный ток

При включении питания сначала симистор остается выключенным (из-за отсутствия привода затвора), как и нагрузка, подключенная к мостовой сети.

Напряжение питания, получаемое с выхода конденсатора 105/400 В, достигает внутреннего ИК-светодиода через контакт 1/2 оптической микросхемы. Этот вход контролируется и обрабатывается внутри в соответствии с откликом светодиодного ИК-света … и как только обнаруживается, что поданный цикл переменного тока достигает точки пересечения нуля, внутренний переключатель мгновенно переключает и запускает симистор и сохраняет систему включенной в течение оставшееся время до выключения и повторного включения агрегата.

При описанной выше настройке при каждом включении питания оптоизолирующий симистор MOC обеспечивает включение симистора только в тот период, когда сеть переменного тока пересекает нулевую линию своей фазы, что, в свою очередь, отлично поддерживает нагрузку. безопасный и свободный от опасного всплеска спешки.

Улучшение вышеупомянутой конструкции

Здесь обсуждается комплексная схема емкостного источника питания с детектором перехода через ноль, ограничитель перенапряжения и регулятор напряжения, идея была представлена ​​г-ном Чами.

Разработка улучшенной схемы емкостного источника питания с Обнаружение пересечения нуля

Привет, Свагатам.

Это моя конструкция емкостного источника питания с защитой от перенапряжения с переходом через ноль и стабилизатором напряжения, я постараюсь перечислить все мои сомнения.
(я знаю, что это будет дорого для конденсаторов, но это только для целей тестирования)

1-Я не уверен, нужно ли менять BT136 на BTA06 для обеспечения большего тока.

2-Q1 (TIP31C) может обрабатывать только 100 В макс. Может его стоит поменять на транзистор 200В 2-3А?, Вроде 2SC4381.

3-R6 (200R 5W), я знаю, что этот резистор довольно маленький, и это моя ошибка
, я действительно хотел поставить резистор 1 кОм.А вот с резистором 200R 5W
работать будет?

4-Некоторые резисторы были изменены в соответствии с вашими рекомендациями, чтобы сделать его способным к напряжению 110 В. Может быть, резистор 10 кОм должен быть меньше?

Если вы знаете, как заставить его работать правильно, я буду очень рад исправить это. Если он работает, я могу сделать для него печатную плату, и вы можете опубликовать ее на своей странице (бесплатно, конечно).

Спасибо, что нашли время и просмотрели мою полную неисправностей схему.

Хорошего дня.

Chamy

Оценка конструкции

Здравствуйте, Chamy,

мне кажется, что ваша схема в порядке. Вот ответы на ваши вопросы:

1) да BT136 следует заменить на симистор более высокого номинала.
2) TIP31 следует заменить транзистором Дарлингтона, например, TIP142 и т. Д., Иначе он может работать некорректно.
3) при использовании Дарлингтона базовый резистор может иметь высокое значение, может быть, резистор 1 кОм / 2 ватт будет вполне нормальным.
Однако дизайн сам по себе выглядит излишним, гораздо более простую версию можно увидеть ниже https://homemade-circuits.com/2016/07/scr-shunt-for-protecting-capacitive-led.html
С уважением

Swagatam

Ссылка:

Zero Crossing Circuit

4) Импульсный бестрансформаторный источник питания с использованием IC 555

Это четвертое простое, но интеллектуальное решение реализовано здесь с использованием IC 555 в ее моностабильном режиме для контроля скачков напряжения в безтрансформаторном источнике питания через концепция схемы переключения при переходе через нуль, в которой входная мощность от сети может поступать в схему только во время перехода сигнала переменного тока через нуль, тем самым исключая возможность скачков напряжения.Идею подсказал один из заядлых читателей этого блога.

Технические характеристики

Будет ли работать бестрансформаторная схема с нулевым переходом для предотвращения начального пускового тока, не позволяя включаться до точки 0 в цикле 60/50 Гц?

Многие твердотельные реле, которые дешевы, менее 10,00 индийских рупий и имеют встроенную возможность.

Также я хотел бы управлять 20-ваттными светодиодами с этой конструкцией, но я не уверен, какой ток или насколько горячие конденсаторы получат, я полагаю, это зависит от того, как светодиоды подключены последовательно или параллельно, но допустим, что конденсатор рассчитан на 5 амперы или 125 мкФ конденсатор нагреется и взорвется ???

Как читать характеристики конденсаторов, чтобы определить, сколько энергии они могут рассеять.

Вышеупомянутый запрос побудил меня искать связанную конструкцию, включающую концепцию переключения перехода через нуль на основе IC 555, и натолкнулся на следующую превосходную схему бестрансформаторного источника питания, которую можно было бы использовать для убедительного устранения всех возможных шансов на скачки напряжения.

Что такое переключение с переходом через нуль:

Важно сначала изучить эту концепцию, прежде чем исследовать предлагаемую бестрансформаторную схему без перенапряжения.

Все мы знаем, как выглядит синусоида сетевого сигнала переменного тока.Мы знаем, что этот синусоидальный сигнал начинается с отметки нулевого потенциала и экспоненциально или постепенно повышается до точки пикового напряжения (220 или 120), а оттуда экспоненциально возвращается к отметке нулевого потенциала.

После этого положительного цикла форма сигнала опускается и повторяет вышеуказанный цикл, но в отрицательном направлении, пока снова не вернется к нулевой отметке.

Вышеупомянутая операция выполняется примерно от 50 до 60 раз в секунду в зависимости от технических характеристик электросети.
Поскольку именно эта форма сигнала входит в цепь, любая точка формы сигнала, кроме нуля, представляет потенциальную опасность выброса при включении из-за высокого тока в форме сигнала.

Однако вышеупомянутой ситуации можно избежать, если нагрузка сталкивается с переключателем во время перехода через нуль, после чего экспоненциальный рост нагрузки не представляет никакой угрозы для нагрузки.

Именно это мы и попытались реализовать в предлагаемой схеме.

Работа схемы

Ссылаясь на приведенную ниже принципиальную схему, 4 диода 1N4007 образуют стандартную конфигурацию мостовых выпрямителей, катодный переход создает пульсацию на линии 100 Гц.
Вышеупомянутая частота 100 Гц снижается с помощью делителя потенциала (47 кОм / 20 кОм) и подается на положительную шину IC555. По этой линии потенциал соответствующим образом регулируется и фильтруется с помощью D1 и C1.

Вышеупомянутый потенциал также прикладывается к базе Q1 через резистор 100 кОм.

IC 555 сконфигурирован как моностабильный MV, что означает, что на его выходе будет высокий уровень каждый раз, когда его контакт №2 заземлен.

В течение периодов, в течение которых напряжение сети переменного тока выше (+) 0,6 В, Q1 остается выключенным, но как только форма сигнала переменного тока касается нулевой отметки, то значение ниже (+) 0.6 В, Q1 включает заземляющий контакт №2 микросхемы и обеспечивает положительный выход вывода №3 микросхемы.

Выход IC включает SCR и нагрузку и сохраняет его включенным до истечения времени MMV, чтобы начать новый цикл.

Время включения моностабильного может быть установлено изменением предустановки 1M.

Большее время включения обеспечивает больший ток нагрузки, делая ее ярче, если это светодиод, и наоборот.

Условия включения этой схемы бестрансформаторного питания на основе IC 555, таким образом, ограничиваются только тогда, когда переменный ток близок к нулю, что, в свою очередь, гарантирует отсутствие скачков напряжения при каждом включении нагрузки или цепи.

Принципиальная схема

для приложения драйвера светодиода

Если вы ищете бестрансформаторный источник питания для приложения драйвера светодиодов на коммерческом уровне, то, вероятно, вы можете попробовать концепции, описанные здесь.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Выбор правильного конденсатора для увеличения срока службы светодиодов

Тщательный выбор конденсаторов, основанный на правильном знании их технических характеристик, необходим для обеспечения того, чтобы они не снижали срок службы светодиодной продукции.

Шрути Мишра

Системы светодиодного освещения

за прошедшие годы значительно улучшились с точки зрения качества и эффективности.Чтобы повысить эстетическую привлекательность архитектурных пространств, светодиодные светильники в наши дни становятся более гладкими, элегантными и утонченными. Но одна вещь, которая осталась неизменной в этой эволюции светодиодов, — это их базовая конструкция, которая состоит из светодиодного чипа, микросхем и конденсаторов.
Поскольку светодиоды известны своей надежностью и более длительным сроком службы, использование практически любой схемы или компонента с ними может отрицательно сказаться на их надежности. Для достижения максимальной световой отдачи производители светодиодов [Чтобы найти полный список производителей светодиодных ламп в Индии щелкните здесь ] , как правило, используют высокоэффективные драйверы светодиодов, в которых используются долговечные конденсаторы.Среди всех электронных компонентов, используемых в драйвере светодиодов, конденсаторы имеют самый высокий уровень отказов, поскольку они более уязвимы к электрическим, механическим или внешним воздействиям, хотя при правильном использовании они чрезвычайно надежны. Конденсаторы
обычно используются в драйверах светодиодов для сглаживания и уменьшения пульсаций, исходящих от источника питания. Правильный выбор конденсаторов для светодиодных систем освещения помогает избежать мерцания, устраняет чрезмерное нагревание и обеспечивает долговечность светодиодных фонарей.

Что следует учитывать перед покупкой конденсатора
При выборе подходящего конденсатора следует иметь в виду один важный фактор — его номинальное напряжение. Каждый конденсатор имеет максимальное номинальное напряжение, поэтому при выборе конденсатора для светодиодов необходимо учитывать величину напряжения, приложенного к конденсатору. Рабочее напряжение всех конденсаторов полностью зависит от типа используемого диэлектрического материала и его толщины.

Что произойдет, если вы выберете неправильный конденсатор?
Выбор неправильного конденсатора может отрицательно повлиять на любую схему светодиода из-за трещин, образованных в диэлектрическом материале этих конденсаторов.Это явление известно как пробой диэлектрика и является одной из основных причин выхода из строя конденсаторов. Если приложенное к конденсатору напряжение становится слишком высоким, диэлектрический материал разрушается, образуя дугу между пластинами конденсатора, что приводит к короткому замыканию.

Типы конденсаторов, которые используются в светодиодной промышленности
Электролитические конденсаторы
Эти конденсаторы всегда остаются популярным выбором из-за их низкой стоимости.Это тип поляризованного конденсатора, который сглаживает напряжение, поступающее на драйвер светодиода, а также ток, протекающий через светодиоды, так что они не мерцают на высокой скорости.
Наиболее распространенным типом электролитических конденсаторов является алюминиевый конденсатор. Он предлагает большую емкость на единицу объема, чем любой другой тип.

[ Нажмите здесь , чтобы найти индийских дистрибьюторов электролитических конденсаторов]

Ограничения: Электролитические конденсаторы очень чувствительны к температуре.Присутствующий внутри них электролит имеет форму геля, который постепенно испаряется из-за тепла, выделяемого во время работы. Более высокие рабочие температуры ускоряют испарение и, следовательно, сокращают срок службы конденсатора.

Керамические конденсаторы: Они подпадают под категорию неполяризованных конденсаторов и широко используются для создания более изящных светодиодных конструкций. Множественные керамические слои расположены и сжаты в виде блока, что уменьшает размер печатных плат.Эти конденсаторы демонстрируют стабильную работу при высоких температурах с улучшенной влагостойкостью.

[Ищете дистрибьюторов керамических конденсаторов в Индии? Нажмите здесь , чтобы найти их]

Ограничения: Керамические конденсаторы, работающие со схемой диммера с широтно-импульсной модуляцией (ШИМ), могут вызывать акустический шум и мерцание света из-за пьезоэлектрических эффектов внутри керамического материала. Еще одним потенциальным препятствием является то, что керамический конденсатор треснет при перенапряжении, что может вызвать обрыв или короткое замыкание.Кроме того, эти конденсаторы не очень гибкие, что делает их более восприимчивыми к механическим воздействиям.

Пленочные конденсаторы: Это еще один тип неполяризованных конденсаторов, которые содержат изолирующую пластиковую пленку в качестве диэлектрика. Производители светодиодов предпочитают пленочные конденсаторы другим разновидностям, потому что они обладают уникальной способностью восстанавливаться после электрического пробоя. У них отличные высокочастотные и температурные характеристики, как правило, намного лучше, чем у керамических конденсаторов.
Еще одна причина их популярности в светодиодной индустрии заключается в том, что они хорошо совместимы с новейшими методами сборки светодиодов. Основными преимуществами пленочных конденсаторов по сравнению с керамическими, алюминиевыми электролитическими и танталовыми конденсаторами являются высокая надежность, экстремальные импульсные токи, жесткие допуски, низкое диэлектрическое поглощение и небольшое изменение емкости независимо от приложенного напряжения.

[ Нажмите здесь , чтобы найти дистрибьюторов пленочных конденсаторов в Индии]

Ограничения: Во-первых, их характеристики напряжения ухудшаются при высокой температуре.Во-вторых, эти конденсаторы не подходят для наружного освещения, поскольку они не могут выдерживать влажную среду и, таким образом, демонстрируют снижение сопротивления изоляции.
В-третьих, они имеют низкую диэлектрическую проницаемость, что означает, что они имеют тенденцию быть большими по сравнению с их емкостью по сравнению с другими популярными керамическими и алюминиевыми электролитическими конденсаторами.

Несколько продуктов, доступных на рынке

Модель: Серия LE, Производитель: CapXon
Компания CapXon представила серию электролитических конденсаторов LE, которые обеспечивают высокую надежность и сверхдлительный срок службы в системах светодиодного освещения.Доступные в Великобритании от Components Bureau, продукты работают в расширенном диапазоне температур от -40 -C до + 105˚C, что делает их подходящими для светодиодных драйверов, питающих системы наружного освещения. Эта серия предлагает более длительный срок службы, чем серия FL, используемая в электронных пускорегулирующих аппаратах и ​​энергосберегающих светильниках.

Основные характеристики

  • Диапазон рабочих температур: от -40 ° C до + 105 ° C
  • Диапазон номинального напряжения: 160 В ~ 450 В постоянного тока
  • Диапазон номинальной емкости: от 1 до 68 мкФ
  • Допуск емкости: ± 20% (120 Гц, + 20 ° C)

Контактное лицо: www.capxon-europe.com


Модель: PG — LL9, Производитель: Alcon Electronics
Alcon производит широкий ассортимент алюминиевых электролитических конденсаторов с винтовыми зажимами на напряжение от 50 до 500 В постоянного тока. Соблюдение современных производственных технологий и использование новейшего оборудования обеспечивает хорошее качество и широкий диапазон номинальных значений емкости.

Основные характеристики

  • Диапазон напряжения: от 315 В до 450 В постоянного тока
  • Размер тары: от 50 ϕ x 80 мм до 90 ϕ x 220 мм
  • Диапазон рабочих температур: от -40 ° C до + 85 ° C
  • Емкость: от 1000 до 20000 MFD
  • Допуск ± 20%

Контактное лицо: www.alconelectronics.com


Модель: Конденсатор полипропиленовой пленки, Производитель: Neotroniks Pvt Ltd
Эти типы конденсаторов используют полиэстер в качестве диэлектрического материала. Они идеально подходят для импульсных, логических и временных схем, а также для светодиодного освещения. Они также используются в высокочастотных цепях и электронных балластах.

Основные характеристики

  • Допуск: 20, 10 и 5 процентов
  • Коэффициент рассеяния <= 0.001 при 1 кГц при 25 ° C (типичное значение: 0,004)
  • Испытательное напряжение: 2,5 x Vr в течение 2 с
  • Макс. нарастание импульса: 1000 В / мкс
  • Диапазон температур: от -25 ° C до + 85 ° C
  • Сопротивление изоляции:> = 50 G для C <= 0,33 мкФ при 25º C

Контакт: www.elciarcapacitors.com


Модель: AVG, Производитель: Иллинойс Конденсатор
Иллинойс Конденсаторы алюминиево-полимерные обладают преимуществами очень низкого эквивалентного последовательного сопротивления (ESR) полимера с более высокими максимальной рабочей температурой и номинальным напряжением.Из-за их низкого ESR один алюминиево-полимерный конденсатор может заменить до трех алюминиевых электролитических конденсаторов. По сравнению с большинством других полимерных конденсаторов, источники в Illinois Capacitor заявляют, что их продукция рассчитана на более высокие температуры (до 125 ° C), до 160 Вт постоянного тока и более высокие значения CV (емкость x напряжение). Продукты очень устойчивы к температуре и обладают хорошими высокочастотными характеристиками. Помимо светодиодного освещения, эти конденсаторы также используются в телекоммуникационных и силовых установках.

Основные характеристики

  • Диапазон рабочих температур: от -55 ° C до + 125 ° C
  • Допуск емкости: +20% при 120 Гц, 20 ° C
  • Коэффициент рассеяния: 120 Гц, 20 ° C: максимум 12%
  • Ресурс нагрузки: 2000 часов (1500 часов для WVDC> 35 В) при 125 ° C с номинальным WVDC

Контакт: www.illinoiscapacitor.com


Модель: Радиальный электролитический конденсатор, Производитель: Shanghai Yongming Electronic Co.Ltd
Этот алюминиевый электролитический конденсатор от Shanghai Yongming Electronic Co. Ltd разработан для высокотехнологичных источников питания и других электронных устройств. Эти конденсаторы используются в современных источниках питания, розетках, дорожных фонарях, светодиодных устройствах питания, драйверах светодиодов, светодиодных лампах, светодиодном освещении, измерителях мощности и счетчиках энергии.

Основные характеристики

  • Диапазон рабочих температур: ≤100 В постоянного тока: -55 ° C ~ + 105 ° C; 160 В ~ 500 В постоянного тока: -40 ° C ~ + 105 ° C;
  • Диапазон напряжения: 6.3 В ~ 500 В постоянного тока;
  • Диапазон емкости: 0,47 мкФ ~ 4700 мкФ
  • Допуск емкости: ± 20%
  • Ток пульсации: высокий (≈15 мА / Вт)

Контакт: www.sh-ymin.com

[ Нажмите здесь , чтобы найти дистрибьюторов всех типов конденсаторов в Индии]

Резистор для светодиода | Применение резистора

Резисторы в схемах светоизлучающих диодов (LED)

Светодиод (светоизлучающий диод) излучает свет, когда через него проходит электрический ток.Самая простая схема для питания светодиода — это источник напряжения с последовательно соединенными резистором и светодиодом. Такой резистор часто называют балластным резистором. Балластный резистор используется для ограничения тока через светодиод и предотвращения его возгорания. Если источник напряжения равен падению напряжения светодиода, резистор не требуется. Сопротивление балластного резистора легко рассчитать по закону Ома и по законам Кирхгофа. Номинальное напряжение светодиода вычитается из источника напряжения и затем делится на желаемый рабочий ток светодиода:

Где V — источник напряжения, V LED — напряжение светодиода, а I — ток светодиода.Таким образом вы сможете подобрать подходящий резистор для светодиода.

светодиода также доступны в интегрированном корпусе с резистором, подходящим для работы светодиода. Эту простую схему можно использовать в качестве индикатора включения DVD-плеера или монитора компьютера. Хотя эта простая схема широко используется в бытовой электронике, она не очень эффективна, поскольку избыток энергии источника напряжения рассеивается балластным резистором. Поэтому иногда применяются более сложные схемы с большей энергоэффективностью.

Пример простой схемы светодиода

В следующем примере светодиод с напряжением 2 вольта и силой тока 20 миллиампер должен быть подключен к источнику питания 12 вольт. Балластный резистор можно рассчитать по формуле:

Резистор должен иметь сопротивление 333 Ом. Если точное значение недоступно, выберите следующее значение, которое выше.

Светодиод в последовательной цепи

Часто несколько светодиодов подключаются к одному источнику напряжения последовательным соединением.Таким образом, несколько резисторов могут использовать один и тот же ток. Поскольку ток через все последовательно соединенные светодиоды одинаков, они должны быть одного типа. Обратите внимание, что для освещения одного светодиода в этой цепи требуется столько же энергии, сколько для нескольких последовательно соединенных светодиодов. Источник напряжения должен обеспечивать достаточно большое напряжение для суммы падений напряжения светодиодов и резистора. Обычно напряжение источника на 50 процентов выше суммы напряжений светодиодов. Напротив, иногда выбирается источник более низкого напряжения.В этой стратегии более низкая яркость компенсируется большим количеством светодиодов. Кроме того, снижаются тепловые потери, а светодиоды имеют более длительный срок службы из-за меньшей нагрузки.

Пример серии светодиодов

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и синий светодиод с напряжением 4,5 В. Оба имеют номинальную силу тока 30 мА. Согласно законам Кирхгофа, сумма падений напряжения в цепи равна нулю. Следовательно, напряжение резистора должно быть равно напряжению источника за вычетом суммы падений напряжения светодиодов.По закону Ома рассчитываем значение сопротивления балластного резистора:

Сопротивление резистора должно быть не менее 183,3 Ом. Учтите, что падение напряжения составляет 5,5 вольт. Можно было бы подключить в схему дополнительные светодиоды.

Светодиод в параллельной цепи

Можно подключить светодиоды параллельно, но это создает больше проблем, чем последовательные цепи. Прямые напряжения светодиодов должны точно совпадать, в противном случае загорится только светодиод с самым низким напряжением и, возможно, сгорит от большего тока.Даже если светодиоды имеют одинаковую спецификацию, они могут иметь плохие согласованные ВАХ из-за различий в производственном процессе. Это заставляет светодиоды пропускать другой ток. Чтобы минимизировать разницу в токе, параллельно включенные светодиоды обычно имеют балластный резистор для каждой ветви.

Как работает светодиод?

Светодиод (светоизлучающий диод) — полупроводниковый прибор; По сути, это соединение P-N с выводами, прикрепленными к каждой стороне. Идеальный диод имеет нулевое сопротивление при прямом смещении и бесконечное сопротивление при обратном смещении.Однако в реальных диодах на диоде должно быть небольшое напряжение, чтобы он проводил. Это напряжение наряду с другими характеристиками определяется материалами и конструкцией диода. Когда напряжение прямого смещения становится достаточно большим, избыточные электроны с одной стороны перехода начинают объединяться с дырками с другой стороны. Когда это происходит, электроны переходят в менее энергичное состояние и выделяют энергию. В светодиодах эта энергия выделяется в виде фотонов. Материалы, из которых изготовлен светодиод, определяют длину волны и, следовательно, цвет излучаемого света.Первые светодиоды были сделаны из арсенида галлия и излучали красный свет. Сегодня светодиоды могут быть изготовлены из самых разных материалов и могут излучать разные цвета. Напряжение варьируется от примерно 1,6 В для красных светодиодов до примерно 4,4 В для ультрафиолетовых. Знание правильного напряжения важно, потому что приложение слишком большого напряжения на диоде может вызвать больший ток, чем светодиод может безопасно выдержать.


Светодиоды сегодня выпускаются малой и большой мощности. Светодиоды обычно выделяют меньше тепла и потребляют меньше энергии, чем лампы накаливания такой же яркости.Они служат дольше, чем аналогичные лампочки. Светодиоды используются в широком спектре осветительных и светочувствительных приложений.

Использование светодиодов в качестве фотодиодов

В качестве фотодиодов можно использовать

светодиода. Фотодиоды — это полупроводники, которые ведут себя противоположно светодиодам. В то время как светодиод будет излучать свет, когда он проводит, фотодиод будет генерировать ток при воздействии света с правильной длиной волны. Светодиод будет проявлять эту характеристику при воздействии света с длиной волны ниже его нормальной рабочей длины волны.Это позволяет использовать светодиоды в таких схемах, как датчики света и оптоволоконные цепи связи.

Светодиодный символ

Светодиодная лента 220В, соединительная и разностная лента на 12 вольт

Многие планируют освещение и то ли не догадываются, что там светодиодная лента 220В. Не требует блока питания 12В, только миниатюрные выпрямители, через которые подключается непосредственно к розетке. Очевидным преимуществом является простота использования и возможности подключения, практически эквивалентные светодиодной лампе.Кроме того, есть очевидные достоинства и недостатки.

Типы диодных лент 220В

Популярные модели SMD 5050 и SMD3528

Вид кормов на 220 состоит из нескольких видов, и это светодиодные 3528, 5050, 2835, 3014 и мощные SMD 5630. Наиболее распространены светодиодные ленты 5050 и 3528, которые легко купить в России, а вот остальные придется заказывать у китайцев, но покупать у них не советую обманутые. Внешне почти не отличим от обычного, но имеет маркировку, на которую он рассчитан.Особенностью является то, что его обычно режут только кратным 1 метру или кратным 50 см. Это не работает, чтобы сократить 30 см или 80 см.

Основные настройки:

  1. кратность разрезов 50, 100, 200 см;
  2. Мощность
  3. Вт на метр;
  4. степень защиты от влаги;
  5. красочная температура.

Стандартно доступны различные версии по степени защиты от влаги. Защита может быть IP67, IP68 в виде силиконовой трубки, такие протечки позволят им работать во влажных помещениях, таких как сауны и на улицах.По мнению моих коллег, достойно работающих в суровых условиях высоких и низких температур. Основание может быть гибким и жестким, за счет жесткого основания измерительный элемент превращается в линейку светодиода или модуля. Из этих линий можно собрать светильник. По типу монтажа может быть самоклеящимся на акриловой липкой ленте и не может иметь клеящую основу.
Устройство и принцип работы

Устройство и принцип действия

Двойная подача в 2 раза шире

Рассмотрим, как они питаются от высокого напряжения:

  1. с использованием обычных светодиодов с напряжением 3.3В — 3,5В;
  2. им требуется полярное питание, которое создает диодный мост, иначе они будут мигать с частотой 50 Гц;
  3. Мультипликаторы можно разрезать только на 50 и 100 см., Так что светодиоды соединены последовательно в цепи 60 витков на метр светодиода.
  4. Почему 60? делим на 220V 3,3V шт., получаем около 60 подключений таких серий, блок питания на 12V нам не нужен.

Для повышения надежности светодиодной ленты 220В применяется соединение диодов попарно, в случае выхода из строя одного из диодов ток пройдет через остальные, но повышенная нагрузка ляжет на него.

Мощный SMD 5630 при потреблении более 10 Вт на метр потребует радиатора или алюминиевого профиля для охлаждения. Но повышенную мощность можно получить на более слабых светодиодах. Склеить две части бок о бок, получая двойную, с увеличенной вдвое шириной. Кроме того, широкая база лучше отводит тепло при нагреве.

Цветной RGB, резистор на светодиод или два.

Цвета светового потока такие же, как у обычного :. Белые, красные, зеленые, синие и трехцветные светодиодные ленты RGB RGB на 220В требуют специальных регуляторов яркости, каждый цвет рассчитывается на те же 220 вольт, найти их сложно, потому что почти все они вырабатываются на 12 вольт.Поэтому советую покупать готовые комплекты.

Контроллер для RGB на 220 вольт

Как подключить светодиодную ленту к 220В

Подключение планки 220 Вольт

Подключение очень простое, нужно только подключить пару проводов с правильной полярностью. В случае с цветной полосой подключите в соответствии с проводом контроллера RGB с цветной маркировкой.

Шаг подключения:

  1. отрежьте необходимую длину, кратную длине, указанной производителем, обычно 50 или 100 см.;
  2. , если вы используете герметик, в конце разреза и нанесите герметик на силиконовый соединитель, в виде кольца;
  3. Вставляем разъем и прикручиваем к герметику;
  4. правильной полярности подключите провод от выпрямителя;
  5. проверьте всю полосу на герметичность, не допускайте попадания воды внутрь.
Соединение и уплотнение

Выпрямитель, через который он подключен, состоит из диодного моста и также имеет собственное питание. Он может иметь мощность 700 Вт., Хватит и на обычных 100 метров светодиодной ленты, или на 40 метров прочной. Этого достаточно, чтобы осветить очень большую комнату. Стоимость этого выпрямителя очень невысока, его очень легко сделать своими руками, купив 4 диода или финальную сборку радиодеталей в магазине.

Выпрямитель со штекером для подключения к сети

Преимущество ленты перед обычной состоит в отсутствии требований к толщине силовых проводов. В отличие от низкого напряжения, для которого требуются очень толстые кабели, при таких высоких требованиях нет, их можно соединять любыми тонкими проводами.Провода сечением 0,75 квадратных миллиметра без проблем тянут мощность 1500Вт.

Заправочный выпрямитель

Поскольку выпрямитель представляет собой диодный мост и в нем отсутствуют конденсаторы, которые будут сглаживать пульсации напряжения в сети, вся полоска мерцает с частотой 100 Герц. Согласно СанПиН, такие пульсации недопустимы в жилых помещениях, особенно там, где читаете или работаете. По этой причине не рекомендуется использовать в квартирах. Но пульсации можно уменьшить, если установить в выпрямитель высоковольтный конденсатор до 400 В, чем мощнее, тем больше требуется конденсатора.Тесно вопросом не занимался, но обычным светодиодным лампам мощностью 6 Вт требовалось 40 мкФ, чтобы вызвать скачок скорости, но полностью от них не избавиться. Чтобы использовать его, используйте одинаковую мощность на каждые 6 Вт.

Основные отличия

Разъем для подключения

Подводя итог, выделим основные достоинства и недостатки.

Преимущества.

  • Они не требуют дорогостоящего блока питания, если нужно подключить 1-3 метра, то окунулись в ближайшую розетку и запустились.
  • Подключайте тонкие провода так как сила тока мала.
  • Длина цельного куска может достигать 100 м. Или 70 Вт.

Недостатки.

  • Высокое напряжение требует особой осторожности при установке и эксплуатации.
  • Может быстро выйти из строя, если покупать дешевый китайский.
  • Ремонт герметика будет очень сложным.
  • Обрежьте только длину, кратную 100 или 50 сантиметрам.
  • Светодиод
  • мигает с частотой 100 Герц, глаз не видно, но воздействие на сознание человека утомляет и может появиться головная боль.

Эти недостатки ограничивают область применения, его можно установить в качестве вторичного освещения светодиодным кухонным освещением, освещением кладовой, гаража, коридора или гирлянд. В коммерческой сфере возможно освещение зданий, рекламных вывесок. Под Новый год строители украшают башенный кран и высоту стрелы.

Шокирующая правда о бестрансформаторных источниках питания

Бестрансформаторные блоки питания часто появляются здесь, на Hackaday, особенно в недорогих продуктах, где стоимость трансформатора значительно добавит к спецификации.Но бестрансформаторные блоки питания — палка о двух концах. Это название? Не кликбейт. Если вы ковыряетесь в устройстве с бестрансформаторным питанием, ваш осциллограф может превратиться в дымящуюся кучу или ударить током, если вы не понимаете их и не принимаете надлежащие меры безопасности.

Но это не страшно. Бестрансформаторные конструкции хороши на своем месте, и вы, вероятно, когда-нибудь столкнетесь с такой, потому что они есть во всем, от светодиодных лампочек до коммутаторов IoT WiFi. Мы собираемся посмотреть, как они работают, и как безопасно их проектировать и работать с ними, потому что никогда не знаешь, когда стоит взломать один из них.

Вот изюминка: бестрансформаторные источники питания можно безопасно использовать только в ситуациях, когда все устройство может быть закрыто и никто не может случайно прикоснуться к какой-либо его части. Это означает, что нет никаких физических электрических соединений внутри или снаружи — RF и IR — это честная игра. И когда вы работаете с одним, вы должны знать, что любая часть цепи может находиться под напряжением сети. А теперь читайте, почему!

Принцип

Бестрансформаторный источник питания (TPS) — это просто делитель напряжения, который снимает 115 или 220 В переменного тока с вашей стены и делит его до нужного вам напряжения.Если это напряжение должно быть постоянным, оно выпрямляется через несколько диодов и, возможно, регулируется до максимального напряжения, но мы доберемся до этого через минуту.

Обычно делители напряжения постоянного тока изготавливаются с парой резисторов. Вместе они определяют ток, протекающий по пути, и затем можно выбрать верхний резистор, чтобы уменьшить разницу между входным напряжением и желаемым выходом. Если в нашем случае эта разница составляет одну или две сотни вольт, даже если она должна пройти всего несколько десятков миллиампер, этот резистор быстро нагреется.

Лучшим компонентом для использования в верхней части делителя является конденсатор, реактивное сопротивление которого выбрано таким образом, чтобы обеспечить желаемое «сопротивление» при любой частоте сети, в которой вы живете. Например, предположим, что вы хотите получить 25 миллиампер при 5 В, и вы находитесь в Америке, и вам нужно сбросить 110 В. R = V / I = 4400 Ом. Используя реактивное сопротивление конденсатора, получаем C = 1 / (2 * pi * 60 Гц * 4400) = 0,6 мкФ. Если вам нужен больший ток, используйте конденсатор большего размера, и наоборот. Это так просто!

Для полностью продуманной конструкции TPS требуется еще несколько деталей.В целях безопасности и ограничения пускового тока рекомендуется установить на входе предохранитель и ограничивающий ток резистор мощностью 1 Вт. Разрядный резистор большого номинала, подключенный параллельно реактивному конденсатору, не позволит ему удерживать высокое напряжение и шокировать вас, когда цепь отключена.

И если говорить об этом конденсаторе, это критически важная для безопасности часть схемы. Он постоянно находится под высоким переменным напряжением, и в случае короткого замыкания на выходе «5 В» будет напряжение сети, и детали могут загореться.Это работа для конденсатора X-класса. Вы увидите, что они отмечены в основном X1 или X2, причем X1 способен выдерживать более высокие скачки напряжения. Любой из них подойдет, просто убедитесь, что он имеет рейтинг X и соответствует уровню вашего сетевого напряжения.

После конденсатора переменный ток, который проходит через него, необходимо преобразовать в постоянный. Здесь подойдет обычный полуволновой или двухполупериодный выпрямитель: несколько диодов и большой сглаживающий конденсатор. Если нагрузка непостоянна, вы, вероятно, захотите ограничить максимальное напряжение, воспринимаемое конденсатором, с помощью стабилитрона, чтобы избыточный ток шунтировался на землю, когда нагрузка потребляет менее 25 миллиампер, на которые мы рассчитывали.Эти детали воспринимают только низкое напряжение, поэтому здесь нет никаких особых требований.

Наконец, обратите внимание, что существует множество возможных конфигураций этой схемы. Вместо того, чтобы сбрасывать большую часть напряжения между нашим устройством и нашим устройством, можно также подключить наше устройство прямо к проводу под напряжением с конденсатором в нижней части делителя напряжения — та же схема в перевернутом виде. Разумеется, предохранители и защитные резисторы могут быть расположены в любом месте цепи. Но основы те же: конденсатор действует как одна ножка в делителе напряжения, за которой следует некоторое выпрямление и регулирование, а нагрузка — как другая ножка.

Закон Мафри

Большой недостаток схемы TPS заключается в том, что она должна быть изолирована . Это совершенно нормально для автономного переключателя IoT или диммера, сделанного своими руками. TPS хорошо подходит для радио или ИК-управления. Все светодиодные лампы используют внутри TPS, потому что они дешевы и полностью герметичны. Но если вы думаете о прикосновении к какой-либо части этой цепи или о подключении к ней сигнальной линии, вам следует вместо этого смотреть на трансформатор.

Почему полная изоляция? Обратите внимание, что провод, который служит опорным заземлением цепи, совпадает с нейтральной линией вашего дома (в отличие от «горячей» линии).А теперь представьте, что вы по ошибке вставили вилку задом наперед. Земля горячая, и хотя устройство работает нормально, потому что переменный ток симметричен, возникает опасность поражения электрическим током, если вы можете коснуться «земли». Подключите USB-последовательный разъем к этому устройству, и вы только что зажгли свой ноутбук через линию «земли». Итак, первая линия защиты — использовать поляризованные вилки, которые нельзя вставить неправильно. Если вы живете в Европе, это может быть не вариант.

Но даже поляризованных вилок недостаточно.В некоторых старых домах (включая квартиру, в которой мы жили в Вашингтоне, округ Колумбия) нейтральная линия и горячая линия поменялись местами. Опять же, вы никогда не заметите, пока не коснетесь «нейтральной» и реальной земли одновременно, но когда вы это сделаете, это может быть фатальным. Вы можете и, вероятно, должны проверить это с помощью мультиметра прямо сейчас. При подключении к земле нейтральная линия должна находиться под напряжением переменного тока, в то время как горячая линия будет показывать 115 или 220 В переменного тока. Сравните их с вашими местными типами вилок.

В любом случае, даже если вы правильно настроили поляризацию вилки, между нейтралью вашей розетки и линией заземления будет разница.Коды в США и ЕС говорят, что нейтраль — это токоведущая линия, а земля в нормальных условиях не должна проводить ее. Прерыватели цепи замыкания на землю (GFCI) обеспечивают это на практике. Тем не менее, высокие нагрузки где-либо в вашем доме в сочетании с существенным сопротивлением в проводке могут привести к напряжению около В = IR на нейтральной линии. Дисбаланс на служебном трансформаторе, который разделяет «фазы» мощности, поступающей в ваш дом, также может отвести напряжение нейтрали от земли, в зависимости от того, где она заземлена.Короче говоря, нейтральный должен находиться около земли, но это не гарантируется.

Единственный способ быть абсолютно безопасным с этой схемой — никогда не соприкасаться с ней. Поместите его в непроводящую коробку или в металлическую коробку, подключенную к заземлению. Если он вставлен в обратном направлении или нейтральный провод перегревается, никто не пострадает. Это то, что делают профессионалы.

Что еще может пойти не так с этой схемой? Мы выбрали реактивный конденсатор, чтобы он имел правильное сопротивление при 50 или 60 Гц, но он менее резистивный на более высоких частотах.Если у вас дома есть высокочастотные коммутационные устройства, они могут протолкнуть ваш TPS неожиданным током. Например, быстрые скачки напряжения в линии питания проходят прямо сквозь них, и их гашение является одной из причин использования входного резистора. Удар молнии? Бламмо! Что-нибудь еще может пойти не так? Оставьте нам комментарий! (Но не упоминайте Муфри.)

Блок питания на базе трансформатора будет немного дороже и немного больше, чем эквивалентный TPS. Но если вы не можете полностью закрыть устройство или не можете полностью гарантировать полярность входящего питания, вы не сможете безопасно использовать TPS.Для личного повседневного использования я всегда выбираю импульсный блок питания или настенный блок питания. Разве гальваническая изоляция от стены не стоит пары долларов?

Разберемся на части

С другой стороны, TPS есть во всех типах устройств, которые мы любим взламывать, поэтому вам нужно распознавать их в реальной жизни. Ищите предохранитель или большой конденсатор с номиналом X1 или X2, и вы будете на правильном пути. (Есть ли у него параллельный спускной резистор? В противном случае он может быть горячим.) Токоограничивающий резистор — это большая керамическая штука, едва заметная за крышкой X2.Взрыватель одет для ночевки в городе с цельным черным номером на термоусадочной пленке.

Затем найдите секцию выпрямления — двухполупериодный выпрямитель с четырьмя диодами и конденсатор емкостью 100 мкФ в этом дешевом настенном радиочастотном переключателе. Диоды указывают на положительную шину постоянного тока и от отрицательной.

Теперь поищите стабилитроны. В случае этого переключателя с ВЧ-управлением их два: стабилитрон на 25 В, используемый для активации реле, и стабилитрон на 5 В, который питает ИС и радиосхемы.Это удобная функция схемы TPS. Поскольку конденсатор пропускает некоторый ток, пока напряжение постоянного тока не превышает пиков переменного тока, вы можете получить практически любое или несколько напряжений из одной и той же цепи, просто выбрав правильные стабилитроны.

Игра с огнем

По возможности старайтесь избегать работы с включенным TPS, но существует и способов сделать это безопасно. Это главный случай для изолирующего трансформатора, который, по сути, включает трансформатор в схему, которой он не хватает.В вашей цепи все еще есть пара проводов с напряжением 115 или 220 В между ними, но, по крайней мере, с трансформатором вы можете прикрепить свой прицел к устройству.

Джекпот!

Без изолирующего трансформатора вы можете многое сделать с мультиметром с батарейным питанием (незаземленным). Подключите устройство TPS к удлинителю с выключателем и держите его выключенным как можно чаще. Чтобы снять показания: отсоедините TPS, припаяйте провода в том месте, где вы хотите провести измерение, подключите их к мультиметру, отойдите назад и включите удлинитель.Как только вы закончите считывание, выключите его и подождите, прежде чем касаться чего-либо.

Единственная часть TPS, которая может удерживать заряд, — это реактивный конденсатор, поэтому на нем должен быть резистор утечки. В нашей примерной схеме 0,6 мкФ * 1 МОм = 0,6 секунды, и вам, вероятно, хорошо подождать хотя бы пять из этих постоянных времени, прежде чем касаться чего-либо, поэтому сосчитайте до трех. Переключатель RF не использует конденсатор емкостью 0,33 мкФ с сопротивлением 220 кОм, поэтому он безопаснее и быстрее. (В нем также используются два последовательно подключенных резистора SMT, предположительно потому, что номинальное напряжение одного из них было недостаточным.Умный дизайн.)

Вы можете узнать, какие части схемы находятся под каким напряжением, измерив их относительно заземляющего контакта розетки. Например, с защитным резистором 560 Ом в обратном плече, «земля» ВЧ-переключателя фактически плавает примерно на 12 В переменного тока над землей. Это стоит знать, когда ковыряется. Снова подключите датчики, отойдите назад, включите, прочтите, выключите, подождите.

Вот и все. Теперь вы можете выяснить, какое напряжение находится в устройстве, и использовать его для своих целей.Просто убедитесь, что все, что вы делаете, помещается обратно в красивый футляр. Потому что, хотя TPS распространены, маленькие и дешевые, они потенциально (хи-хи!) Слишком горячие, чтобы их трогать.

Что внутри и светодиодная лампа

by ЛЕЛАНД ТЕШЛЕР, исполнительный редактор

Сюрприз: заглянув внутрь пяти светодиодных ламп, предназначенных для замены ламп накаливания мощностью 60 Вт, можно увидеть, какие режимы проектирования варьируются от совершенно простых до поразительно сложных.

Среднестатистический потребитель может подумать, что когда дело доходит до лампочек, одна примерно такая же, как и другая.Этот вид мог быть точным, когда в каждой розетке была лампа накаливания. Это, конечно, не так для светодиодных ламп, разработанных в качестве замены ламп накаливания.

Мы пришли к такому выводу после того, как разобрали пять светодиодных ламп, продаваемых как эквиваленты ламп накаливания мощностью 60 Вт. Все пять выбранных нами ламп получили высокие оценки журнала Consumer Reports. Но на этом общность остановилась. Когда мы вошли внутрь, мы обнаружили совершенно разные подходы к технологиям строительства, управлению температурным режимом и проектированию электроники.

Начнем с лампы под названием E27 A19 LED от Home EVER Inc. из Лас-Вегаса. Механика лампочки и ее электроники предельно просты. Двусторонняя печатная плата, похоже, была припаяна оплавлением. Два провода соединяют плату с металлической пластиной, на которой находится 30 светодиодов. Еще два провода идут к проводам розетки. Все четыре провода выглядят так, как если бы они были припаяны вручную.

Пластиковый корпус преобразователя постоянного / переменного тока Home EVER выдвинулся из нижней части радиатора. Плата преобразователя (справа) находится в пластиковом корпусе.

Лампа построена вокруг радиатора высотой 2 дюйма, который весит 2 унции и выглядит как отливка из металла. В основании лампы находится пластиковый корпус, в котором находится преобразователь постоянного / переменного тока. Электрические подключения к патрону лампы находятся на одном конце корпуса. Другой конец крепится к радиатору двумя маленькими винтами.

Радиатор и пластиковое основание лампы Home EVER удерживают преобразователь постоянного / переменного тока с удаленными металлическими резьбами. > Здесь соединение базовой лапка еще подключен к преобразователю.

Дополнительные приспособления к радиатору — это матовая поликарбонатная лампа, в которую заключены светодиоды, и металлическая пластина диаметром 2 дюйма, содержащая светодиоды. Пластиковая лампа, по-видимому, вставляется в радиатор, а светодиодная пластина крепится тремя винтами. Между светодиодной пластиной и радиатором нанесена пара точек теплопроводности.

Конструкция преобразователя переменного / постоянного тока проста. Единственные компоненты, не относящиеся к SMD, — это два больших конденсатора, импульсный резистор на входе и трансформатор.Соединения от платы к основанию винта и к плате светодиодов выполняются дискретными проводами, но подключение к контакту ножки лампы было выполнено машинным способом. Однако электрическое соединение с металлической резьбой — это просто отрезок оголенного провода, зажатого между пластиковым корпусом и внутренней поверхностью резьбы.

Электроника преобразователя переменного / постоянного тока — голая. Диодный мост на входе — четыре дискретных диода. На плате есть единственная микросхема. Это источник питания с понижающей топологией, предназначенный для обеспечения постоянного тока и производимый компанией Bright Power Semiconductor (BPS) в Китае.Чип, получивший название BP2812, включает полевой МОП-транзистор на 600 В. В спецификации указан рабочий ток микросхемы на уровне 200 мкА.

На плате Home EVER видны четыре диода, составляющие выпрямительный мост и микросхему BP2812 (внизу). На другой стороне платы (вверху) находятся компоненты управления энергией и плавкий предохранитель на входе.

«Типичная прикладная схема», указанная в спецификации BP2812, очень близка к реальной схеме, которую мы нашли на печатной плате светодиода. Семь резисторов входят в простые сети, которые обрабатывают напряжение Vcc, измеряют пиковый ток понижающей индуктивности и регулируют входное напряжение на ИС.Пять конденсаторов выполняют рутинную работу по фильтрации линии переменного тока, байпас переменного тока для вывода Vcc и контактов считывания линии, а также понижающую топологию. Встроенный предохранитель отключает питание всей цепи в случае слишком большого потребления тока.

Судя по графике на сайте BPS, похоже, что именно BPS собрал плату. Там есть изображения примеров плат для нескольких других светодиодных приложений, которые очень похожи на это.

Чип, питающий светодиодную лампу Home EVER, по сути, представляет собой источник постоянного тока, питающий встроенный MOSFET.Эталонная схема от производителя микросхем Bright Power Semiconductor близка к той, что мы нашли на печатной плате.

Следует отметить, что влияние температуры на работу светодиода не учитывается в преобразователе постоянного / переменного тока. Светодиоды излучают меньше света при повышении их температуры. Обычно это не проблема при небольших изменениях температуры. Чувствительность глаза к свету логарифмическая, и глаз не особенно чувствителен к небольшим изменениям яркости. Нет ничего необычного в том, что световой поток светодиода падает на 10% при повышении температуры перехода от комнатной до 150 ° C.

Но ток светодиода также можно уменьшить при более высоких температурах, чтобы уменьшить потребность в теплоотводе. Тем не менее, нет датчика температуры, который мы могли бы увидеть в преобразователе переменного / постоянного тока домашней лампы EVER. А схемы диммирования нет.

Но в целом светодиодная лампа, вероятно, хорошо работает там, где не требуется регулировка яркости.

Osram
Светодиодная лампа Osram Sylvania мощностью 60 Вт примечательна тем, что имеет относительно небольшой состоящий из двух частей радиатор.Одна часть представляет собой башню в форме пятиугольника высотой 1 дюйм, которая служит основой для шести светодиодных плат, пять из которых имеют форму пятиугольника, а шестая находится на вершине башни пятиугольника. Другой — цилиндрический литой радиатор длиной 0,75 дюйма, который, по-видимому, защелкивается в верхней части пластикового купола, в котором размещены светодиоды. Цилиндрический литой радиатор и башня вместе весят 1,3 унции.

Вид на светодиодную лампу Osram с отрезанным пластиковым шаром, открывающий башню в форме пятиугольника, на которой расположены светодиоды. Видно, что провода от платы преобразователя постоянного / переменного тока припаяны к верхней пластине.

Основание устройства представляет собой цельный пластиковый корпус, в котором находится монтажная плата преобразователя переменного / постоянного тока. Два провода соединяют его с пятиугольной башней с 18 светодиодами, по три на каждой грани. Соединения между платами, похоже, были припаяны оплавлением. Но дискретные провода между печатной платой и светодиодной сборкой, похоже, были припаяны вручную. Точно так же соединения с цоколем лампы представляют собой дискретные провода, один из которых зажат между металлической резьбой, а другой — машиной, установленной на ножке лампы.

Заливочный материал, окружающий плату преобразователя переменного / постоянного тока лампы Osram и пластиковый корпус, из которого она была извлечена.

По причинам, которые не совсем ясны, разработчики лампы Osram решили закрепить плату преобразователя переменного / постоянного тока. Относительно небольшой радиатор на этой плате по сравнению с другими конструкциями, которые мы видели, может указывать на то, что заливка предназначена для улучшения рассеивания тепла, хотя заливочный материал не полностью заполняет пустое пространство между электронными компонентами и внешней оболочкой.Однако заливка действительно усложнила процесс расшифровки схемы.

Эталонная схема SSL21082AT кажется близкой к той, что мы нашли на печатной плате Osram. Чип имеет вход для резистора NTC, но мы не обнаружили его ни на печатной плате, ни на металлических пластинах, к которым крепятся светодиоды.

Основная плата для светодиодной лампы Osram двусторонняя. Он содержит две микросхемы, одна из которых представляет собой диодный мост для входа переменного тока, а другая — микросхему драйвера SSL21082AT от NXP Semiconductors. Функции, реализованные на микросхеме NXP, включают регулировку яркости, защиту от перегрева и контроль перегрева светодиодов, защиту от короткого замыкания на выходе и режим перезапуска в случае отключения электроэнергии.Эта ИС имеет встроенный внутренний переключатель высокого напряжения и работает как понижающий преобразователь режима граничной проводимости (BCM).

Основной радиатор светодиодной лампы Osram представляет собой отливку цилиндрической формы, которая показана здесь в виде четырех частей после извлечения из корпуса лампы. Металлическая резьба крепится к пластиковому корпусу, на котором крепится плата преобразователя переменного / постоянного тока, которая видна здесь.

BCM — это квазирезонансный метод, используемый для повышения энергоэффективности. Основная идея BCM заключается в том, что ток индуктора начинается с нуля в каждый период переключения.Когда силовой транзистор повышающего преобразователя включен на фиксированное время, пиковый ток катушки индуктивности пропорционален входному напряжению. Форма волны тока треугольная; поэтому среднее значение в каждом периоде переключения пропорционально входному напряжению.

После того, как герметизирующий материал был удален с печатной платы лампы Osram, на печатной плате стала видна ИС драйвера SSL21082AT от NXP Semiconductors. Другая микросхема на плате — это мостовой выпрямитель. Конденсаторы для управления энергией и катушки индуктивности установлены с другой стороны платы.

Запасы энергии в катушке индуктивности при включенном переключателе. Ток катушки индуктивности равен нулю, когда полевой МОП-транзистор включен. Амплитуда нарастания тока в катушке индуктивности пропорциональна падению напряжения на катушке индуктивности и времени, в течение которого переключатель MOSFET находится во включенном состоянии. Когда полевой МОП-транзистор выключен, энергия в катушке индуктивности направляется к выходу. Ток светодиода зависит от пикового тока через дроссель и от угла диммера. Новый цикл начинается, когда ток индуктора становится равным нулю.

3M
Светодиод 3M имеет особый вид благодаря белой цилиндрической колонне высотой 2 дюйма, видимой под полупрозрачным пластиковым куполом. Колонка — это просто металлический радиатор; очевидно, это не имеет ничего общего с рассеянием света.

Светодиодная лампа 3М со снятым пластиковым глобусом. Белый столбец является теплоотводом и мало влияет на светоотдачу. Светодиоды расположены вокруг обода пластиковой колбы в металлическом радиаторе.

Светодиоды расположены на гибкой печатной плате, прикрепленной к другому 2-дюймовому разъему.-высокий теплоотвод, который также служит опорой для цоколя лампы. Пластиковая втулка идет в нижней части радиатора, чтобы удерживать резьбу металлических винтов и поддерживать контакт ножек в нижней части основания. Радиатор плюс колонка вместе весят 2,4 унции.

Цоколь лампы 3M состоит из пластиковой втулки вокруг радиатора, к которой крепятся металлическая резьба и контактная ножка. Электрические соединения находятся на гибкой цепи, удерживающей светодиоды и преобразователь постоянного / переменного тока. Здесь видны контакт, который загибается за край пластиковой втулки, чтобы войти в контакт с металлической резьбой винта, и второй контакт, который касается стойки на контакте для ног (справа).

Гибкая печатная плата, на которой расположены светодиоды, также содержит схему драйвера переменного / постоянного тока. Это CL8800 от Microchip Technology. Эталонный дизайн состоит из CL8800, шести резисторов и мостового выпрямителя (устройство Fairchild). От двух до четырех дополнительных компонентов являются дополнительными для различных уровней защиты от переходных процессов. Эталонный дизайн Microchip очень близок к тому, что мы нашли в лампочке 3M.

Эталонная схема для Microchip CL8800 близка к схеме на светодиодной лампе 3M, хотя лампа 3M включает дополнительную RC-цепь (здесь не показана) для регулирования фазового освещения.

Схема драйвера делит цепочку из 25 светодиодов на два набора по пять, один набор из четырех и один набор из шести. Мы не уверены, почему компания 3M разделила количество светодиодов таким образом. Однако интересна их ориентация. Они располагаются на выступе, образованном радиатором, и ориентированы прямо вверх. Прозрачный шар из карбоната помещается на тот же выступ, поэтому световой поток светодиода фактически направлен к краю самого пластикового шара, а не проходит через шар изнутри корпуса.

Крупный план гибкой схемы на светодиодной лампе 3M, которая удерживает как схему преобразователя переменного / постоянного тока, так и светодиоды.

Схема драйвера светодиода довольно проста и размещена на гибкой схеме без использования герметика, который мог бы мешать. Согласно паспорту Microchip, шесть линейных регуляторов тока потребляют ток на каждом ответвлении и последовательно включаются и выключаются, отслеживая входное синусоидальное напряжение. Микросхема минимизирует напряжение на каждом регуляторе при проводке, обеспечивая высокий КПД.

Выходной ток на каждом ответвлении индивидуально настраивается резистором. RC-цепь, состоящая из резистора и трех параллельно включенных конденсаторов, на входе мостового выпрямителя обеспечивает диммирование фазы. Два других компонента обеспечивают защиту от переходных процессов при подключении к линии переменного тока. Всего в гибкой схеме 13 дискретных компонентов, которые обеспечивают защиту от переходных процессов, диммирование фаз и задают токи в цепочках светодиодов.

Feit Electric Co.
Лампа от Feit Electric имела самую странную ориентацию для светодиодов из всех, что мы исследовали. Пластина диаметром 1 7⁄8 дюйма, на которой крепятся 36 светодиодов, частично скрыта в собранной колбе круглой пластиковой деталью с отверстием диаметром 1 дюйм посередине. Эта деталь устанавливается поверх светодиодной пластины. Итак, глядя на собранную лампу, можно увидеть пластиковую деталь и всего пять светодиодов, видимых в центре пластины под отверстием в ее середине.

Заливочный материал на печатной плате лампы Feit, видимый здесь у основания радиатора, также выступает в качестве структурного элемента, удерживающего опору на месте.Три винта крепили светодиодную пластину к радиатору светодиодной лампы Feit. На обратную сторону светодиодной пластины, видимую здесь, была нанесена термопаста между теплоотводом и поверхностями светодиодной пластины.

Мы не понимаем, почему Feit установил пластиковую деталь поверх большинства своих светодиодов. Изделие блокирует большую часть излучаемого света. (У нас нет способа количественно оценить количество света, проходящего через пластик. Но неофициальные тесты показывают, что он почти не проникает.) Таким образом, подавляющее большинство излучаемых люменов исходит от пяти светодиодов в центре пластины.

Светодиодная лампа Feit помещала пластиковый диск поверх всех 36 светодиодов, кроме пяти. Мы не знаем почему.

Остальная часть механической конструкции лампы менее загадочна. Светодиодная пластина крепится к верхней части массивного литого металлического радиатора весом 3,8 унции с помощью трех винтов. Радиатор служит основным корпусом лампы. Схема преобразователя постоянного / переменного тока помещается в пластиковый цилиндр, который вставляется в основание радиатора и прикрепляется к нему двумя винтами.

После снятия заливочного материала на печатной плате светодиодной лампы Feit с одной стороны были обнаружены ИС диодного моста и драйвер светодиода SSL2103T от NXP Semiconductors, а с другой — большие элементы накопления энергии и силовые полевые МОП-транзисторы.

Электроника залита в пластиковый цилиндр, который служит его корпусом. Заливочный материал обширен и заполняет цилиндр. Он также служит конструктивным элементом, поддерживающим резьбовое основание лампы и контактную ножку. Печатная плата, на которой находится электроника, двусторонняя и простирается почти до основания цоколя лампы. Отрицательный вывод к плате удерживается заливочным материалом на резьбе металлических винтов. Два провода идут от платы к плате светодиода и кажутся припаянными вручную.Сама плата припаяна оплавлением.

Заливочный материал закрыл некоторые детали на печатной плате, но на плате находятся два силовых полевых МОП-транзистора, микросхема диодного моста, пять больших конденсаторов, трансформатор и по крайней мере 22 дискретных компонента, состоящих из резисторов, маленьких колпачков и диодов. Входной мостовой выпрямитель кажется защищенным предохранителем.

Основной микросхемой является драйвер светодиода SSL2103T от NXP Semiconductors. SSL2103 — это, по сути, обратный преобразователь, который работает в сочетании со схемой диммера с отсечкой фазы непосредственно от выпрямленной сети.Он реализует диммирование с помощью интегральной схемы, которая оптимизирует кривую диммирования. Выходы привода доступны для резистивного переключения утечки.

Хотя заливочный материал скрывает некоторые детали подключения, схема кажется близкой к эталонным проектам NXP для микросхемы. Напряжение сети выпрямляется, буферизуется и фильтруется во входной секции и подключается к первичной обмотке трансформатора. Переданная энергия накапливается в конденсаторе и фильтруется перед запуском цепи светодиодов.

Печатная плата также включает два силовых полевых МОП-транзистора. Кажется, что один из них является частью схемы регулирования яркости, которая разделяет и фильтрует выпрямленное напряжение сети, чтобы обеспечить вход для генерации кривой регулирования яркости. Выходной сигнал управления сбросом от микросхемы NXP управляет полевым МОП-транзистором для переключения резисторов сброса, которые участвуют в таймере функции диммирования. Другой полевой МОП-транзистор является главным переключателем обратноходового трансформатора.

Схема преобразователя переменного / постоянного тока Feit была близка к эталонной схеме, которую NXP Semiconductors предоставляет для своего преобразователя SSL2103.

Также имеется буферная схема, состоящая из двух конденсаторов и катушки индуктивности. Схема накапливает энергию, чтобы преобразователь мог непрерывно передавать мощность на светодиодную цепочку, несмотря на любые колебания напряжения в сети. Он также фильтрует ток пульсации, генерируемый преобразователем, чтобы уменьшить любые проводимые в сети излучения.

Наконец, другая часть схемы состоит из конденсатора, выпрямительного диода, резистора, ограничивающего пиковый ток, и защитного стабилитрона, и используется для генерации внешнего источника VCC для ИС.

Philips Lighting Co.
Один примечательный момент в лампе Philips касается теплоотвода. У других ламп, которые мы исследовали, были металлические радиаторы весом от 1,3 до 3,8 унции. Лампа Philips справляется с тепловыми проблемами без дополнительного теплоотвода. Единственный компонент, который распространяет тепло, — это диск диаметром 2,5 дюйма, на который крепятся 26 светодиодов, 13 сбоку. Более того, можно ожидать, что дизайнеры расположили светодиоды на диске так, чтобы они не устанавливались прямо напротив друг друга — такое расположение также могло бы способствовать распространению тепла.Но светодиоды по обе стороны от диска расположены прямо напротив друг друга. Похоже, что светодиодный нагрев просто не был проблемой в этой конструкции.

Одна из причин — наличие термистора с отрицательным температурным коэффициентом (NTC) на плате светодиода. Но точно проследить схему температурной компенсации не удалось, поскольку плата драйвера имеет три слоя, один из которых скрыт. Дальнейшее усложнение анализа схемы заключается в том, что две шестиконтактные ИС, кажется, обрабатывают преобразование переменного тока в постоянное, и ни одна из них не отмечена логотипом производителя или номером детали.

Поскольку основные ИС невозможно идентифицировать, мы можем только предполагать, как работает драйвер светодиода. Наличие на печатной плате трансформатора, двух больших конденсаторов и силового npn-транзистора (от STMicroelectronics) указывает на то, что преобразователь имеет конструкцию обратного хода. Мы предполагаем, что схема температурной компенсации заключается в смещении переключателя, подающего ток на светодиоды от обратноходового трансформатора. Кажется, что два транзистора обрабатывают ток светодиода. Всего мы насчитали 32 небольших дискретных компонента, состоящих из резисторов, диодов и конденсаторов.Компоненты платы завершали микросхема мостового выпрямителя и три других силовых конденсатора.

Светодиодная лампа Philips не имела радиатора, кроме двусторонней пластины, на которой крепятся светодиоды. Одна причина: температурная компенсация. На этом снимке светодиодной пластины виден резистор NTC.

Оказывается, механическая конструкция светодиодной лампы без радиатора может быть довольно простой (а некоторые могут назвать ее элегантной). Лампа Philips представляет собой пластиковый корпус, который закрывает светодиодную пластину и печатную плату драйвера, а также поддерживает металлическую резьбу и контактную ножку.

Диодный мост и силовой npn-транзистор видны на одной стороне печатной платы светодиодной лампы Philips. На другой стороне находятся компоненты накопителя энергии и две неопознанные ИС, обеспечивающие температурную компенсацию, диммирование и преобразование мощности.

Форм-фактор отличается от других лампочек за счет двусторонней светодиодной пластины. Лампа Philips — это не столько лампочка, сколько диск. Вместо того, чтобы заключать светодиоды в прозрачный шарообразный корпус, устройство Philips представляет собой плоский профиль с пластиком, закрывающим двустороннюю светодиодную пластину.Кажется, что корпус просто защелкивается поверх светодиодной пластины и печатной платы драйвера.

В светодиодной лампе нет ничего особенного, если она может быть изготовлена ​​без радиатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *