Расчет арматуры для ленточного фундамента калькулятор: Калькулятор ленточного фундамента

Содержание

Калькулятор расчета арматуры для фундамента

Главная Калькулятор арматуры для фундамента

Чтобы рассчитать сколько вам потребуется арматуры, для строительства фундамента разных конфигураций и размеров, воспользуйтесь нашим калькулятором.

Вы купили участок и начинаете строительство. Взяли пробы грунта и сделали план будущей постройки. Теперь вам нужно определиться с фундаментом дома, незаменимой составляющей которого является строительная арматура для фундамента.

Как понять, подойдет ли ленточный сборный фундамент, или придется делать заливной. Никому не охота переплачивать и тратить свои силы, если это нерационально. Обратитесь в нашу компанию и мы посоветуем, как лучше сделать основу под дом и какие материалы выбрать. Наши специалисты подскажут, какой фундамент необходим именно для вашего строительства. У нас громадный выбор различных марок бетона, железобетонных изделий всевозможного назначения, в том числе и арматура — расчет арматуры для фундамента вы можете выполнить у нас на сайте и, конечно, здесь же доступен прайс с ценами.

Остановили свой выбор на сборном фундаменте — добро пожаловать к нам: железобетонные блоки будут доставлены вам со склада в необходимом количестве. Но надежнее и долговечнее будет ленточный фундамент, купить подходящую арматуру для которого вы можете в компании «Омега Бетон»

Цены на арматуру для фундамента:

АРМАТУРА А3 А500С

Диаметр мм

Цена за 1 тонну

Диаметр мм

Цена за 1 тонну

6мм-6м

28500

20мм11,7м

26600

8мм-6м

28300

22мм-11,7м

26600

10мм-6м

28600

25мм-11,7м

26600

12мм-11,7м

27600

28мм-11,7м

26600

14мм-11,7м

26600

32мм-11,7м

26600

16мм-11,7м

26600

36мм-11,7м

26600

18мм-11,7м

26600

40мм-11,7м

26600

Доставка по городу и области (выполняется шаландами и манипуляторами): от 5500 руб

Смотреть полный прайс-лист на черный металлопрокат

Сделать заказ

Заливка бетонного фундамента

Для заливки фундамента необходимо использовать специальную арматуру. Но ее не так просто выбрать. Как купить качественную арматуру для фундамента так, что бы она подходила именно для вашего дома и не слишком дорого стоила? Ведь тут важно знать, нужно ли приобретать пруты с периодичным профилем, или взять гладкие и сэкономить деньги.

Специалисты нашей фирмы с удовольствием расcчитают необходимое количество материала и посоветуют, какой диаметр прута нужен в вашем случае. Также проследят, чтобы класс прочности и эксплуатационные особенности полностью удовлетворяли вашим потребностям.

Способы скрепления арматуры для фундамента

Теперь когда арматура для фундамента у вас на участке, нужно строить каркас. Для соединения кусков стали используют два способа:

  1. Сварка;
  2. Связка проволокой.

Если использовать сварку, то это должен делать хороший специалист.

Большая нагрузка вместе с усадкой, при неправильно сваренных швах, могут привести к разрушению основы. Такой метод соединения в основном используют при строительстве больших объектов: там и диаметр арматуры для фундамента больше, и работают профессионалы.

Связывать стальную арматуру практичней, быстрее и проще. Каркас станет пластичнее и сможет легко перенести усадку грунта или другие дополнительные нагрузки.

Проволоку для связки приобретайте тоже у нас.

Удачного строительства!!!

Сделать заказ

Онлайн калькулятор ленточного фундамента: расчет арматуры, бетона, опалубки.

Скачать, сохранить результат

Выберите способ сохранения

Информация

Ленточный фундамент — сборное либо монолитное основание из высокопрочных железобетонных блоков, которые укладывают по периметру будущего строения, а также в зонах несущих конструкций. Формирование ленточного фундамента не предполагает привлечение тяжёлой строительной техники, но при этом требует абсолютной точности расчётно-измерительных операций.

Интерактивный калькулятор ленточного фундамента позволит быстро и безошибочно рассчитать долю песка, цемента и щебня при изготовлении бетона вручную, размеры ленты, а также параметры опалубки и арматуры основания для дома из пенобетона или газобетона.

Преимущества онлайн калькулятора ленточного фундамента

  • Экономит время, нервы, силы и средства при составлении сметы расходов на закупку стройматериалы.
  • Позволяет оценить объём созидательных действий, а также спрогнозировать сроки формирования фундамента ленточного типа.
  • Грамотный расчёт параметров арматуры и бетона гарантирует высокую прочность и надёжность внутреннего каркаса конструкции.
  • Возможность мгновенно рассчитать параметры для монолитного или сборного, малозаглубленного либо глубоко заложенного фундамента ленточного типа.
  • Опции 2D и 3D визуализации позволяют наглядно оценить адекватность расчётных манипуляций и своевременно внести необходимые поправки.

Задачи, которые решает калькулятора

Расчёт арматуры на ленточный фундамент помогает определить общую длину и вес арматурного каркаса, а также минимальный диаметр поперечных и продольных стержней, количество рядов в поясах арматуры, шаг хомутов и величину нахлёста. Расчёты производятся в соответствии с правилами СП 52-101-2003.

Расчёт бетона на ленточный фундамент даёт информацию о долях песка, щебня и цемента, а также весе основного стройматериала для заливки ленточного фундамента. Результаты расчётов позволяют грамотно и компетентно распределить нагрузку на сегменты конструкции.

Расчёт опалубки конкретизирует общую длину периметра, а также площадь подошвы и наружной боковой грани железобетонной ленты.

Онлайн калькулятор для расчёта ленточного фундамента работает для вас совершенно бесплатно. По любому вопросу пишите чуть ниже в комментариях — мы Вам обязательно поможем.

поделиться и оценить

Смотрите также:

Добавить комментарий

какое ее количество нужно, как вычислить параметры опалубки и сечения

Ленточный фундамент занимает основное место среди всех опорных конструкций для зданий и сооружений.

Он способен эффективно работать на самых сложных грунтах, имеет оптимальный набор эксплуатационных качеств.

Монолитные конструкции ленты не теряют своих рабочих качеств до 150 лет, что превышает срок службы стен дома.

Такие высокие возможности возникли из-за высокой жесткости и прочности ленты, которые обеспечивает совместная работа и металлической арматуры.

Каждый из них выполняет свою функцию, в сумме обеспечивая надежность и высокую несущую способность ленточного основания.

Содержание статьи

Как работает арматура в ленточном фундаменте

Арматурный каркас необходим для компенсации осевых противонаправленных (растягивающих) нагрузок, возникающих в ленте при появлении деформирующих воздействий — изгибающих или скручивающих усилий.

Особенность бетона состоит в способности принимать гигантские давления без каких-либо последствий.

При этом, он практически беззащитен перед разнонаправленными усилиями, быстро покрывается трещинами и разрушается.

Поэтому для ленты крайне опасны любые усилия, приложенные в одной точке — например, боковые или вертикальные нагрузки пучения. Арматурные стержни предназначены для приема этих усилий на себя.

Существует горизонтальная (рабочая) и вертикальная арматура. Основные нагрузки принимают горизонтальные стержни.

Они имеют больший диаметр и рифленую поверхность, обладающую хорошим сцеплением с бетоном.

Вертикальные стержни выполняют две функции:

  • Фиксация рабочей арматуры в необходимом положении до момента заливки бетоном.
  • Частичная компенсация скручивающих усилий.

Первая задача основная, а вторая — дополнительная, поскольку наличие таких специфических нагрузок наблюдается довольно редко.

В большинстве случаев вертикальная (гладкая) арматура служит лишь опорной конструкцией, удерживающей рабочие стержни в необходимом положении до момента заливки.

Они довольно толстые, так как — процесс с достаточно интенсивными воздействиями на каркас, сосредоточенными в одной точке (место падения тяжелого материала в опалубку), а также распределенными по всей длине (штыкование, обработка виброплитой).

Онлайн калькулятор

Как рассчитать ленточный фундамент дома? В этой вам может специально разработанный сервис — ленточного фундамента.

Инструкция по работе с калькулятором

                   

В сети интернет имеется немало онлайн-калькуляторов, помогающих рассчитать параметры ленточных фундаментов по всем важным позициям. Расчет арматуры с их помощью занимает буквально пару минут.

Например, на сайте необходимо лишь внести собственные данные в соответствующие окошечки программы и нажать кнопку «рассчитать».

Дается схема армирования, в которой надо указать основные параметры — количество рабочих стержней в одном ряду, общее число рядов, расстояние между вертикальными прутками и т.п. В отдельном окне указывается стоимость арматуры за единицу.

В результате программа выдает количество арматуры и общую цену. Расчет производится просто и быстро, кроме арматуры ресурс выдает параметры всех элементов ленты — , количества бетона и т. д.

Недостатком данного калькулятора можно считать необходимость заранее знать схему армирования, диаметр стержней и рыночную стоимость материала.

Если требуется определить количество и сечение стержней, ресурс бесполезен. Он дает только количественную информацию, не касаясь качественных моментов, что иногда не совсем то,что нужно.

ВАЖНО!

Не все онлайн-калькуляторы работают по такому алгоритму. Имеются и другие, определяющие именно размеры и общие параметры арматурного каркаса, которые станут полезными для получения первичной информации. Стоимость материала следует узнавать непосредственно у продавцов, поскольку в этом вопросе имеется масса специфических факторов.

Порядок расчета

Рассмотрим, как рассчитать арматурный каркас ленты самостоятельно.

Прежде всего, необходимо определить количество рабочих стержней в одном ряду. Для этого понадобится использовать требование СП 52-101-2003, ограничивающее максимальное расстояние между соседними прутками в 40 см.

Учитывая, что погружения рабочей арматуры не должна превышать 2-5 см, получаем:

  • Для лент толщиной менее 50 см — 2 рабочих стержня.
  • Для лент шире 50 см — 3 стержня.

В случаях, когда можно использовать и 2, и 3 стержня в одном ряду, обычно стараются подстраховаться и принять большее значение, так как фундамент — ответственный и важный участок постройки.

Вторым этапом является определение диаметра рабочих стержней. Для этого понадобится рассчитать площадь сечения рабочей части ленты, умножив ширину на высоту.

Общая площадь сечения арматуры составляет 0,1% от сечения (это минимально возможное значение, его можно увеличить, но нельзя уменьшать).

Получив это значение, надо разделить его на число рабочих стержней. По таблице диаметров арматурных прутков находится наиболее удачный вариант, который и принимается в работу.

Диаметр вертикальной арматуры выбирается исходя из высоты ленты:

  • При высоте до 60 см — 6 мм.
  • От 60 до 80 см — 8 мм.

Диаметр поперечных стержней обычно принимается равным 6 мм.

Для подсчета количества рабочих стержней надо умножить их число в решетке на общую длину ленты, после чего полученное значение делится на длину рабочего прутка (обычно 6 м, но это значение лучше узнать у продавцов точно).

Вертикальную арматуру рассчитывают путем умножения количества хомутов на длину единицы.

Количество получают делением общей длины ленты на шаг хомутов (обычно 50-70 см).

Пример вычисления необходимых параметров

Рассмотрим расчет арматуры для ленточного фундамента на примере.

Допустим, что высота ленты составляет 100 см, а ширина — 40 см (распространенный вариант ).

Тогда площадь сечения составит:

40 • 100 = 4000 см2.

Определяем общую площадь сечения арматуры (минимальную):

4000 : 1000 = 4 см2.

Поскольку ширина ленты составляет 40 см, то в одной решетке нужно разместить 2 стержня, а общее количество составляет 4 шт.

Тогда минимальная площадь сечения одного прутка составит 1 см2. По таблицам СНиП (или из иных источников) находим наиболее близкое значение. В данном случае можно использовать арматурные стержни толщиной 12 мм.

Определяем количество продольных стержней. Допустим, общая длина ленты составляет 30 м (лента 6 : 6 м с одной перемычкой 6 м).

Тогда количество рабочих стержней при длине 6 м составит:

(30 : 6) • 4 = 20 шт.

Определяем количество вертикальных стержней. Допустим, шаг хомутов составляет 50 см.

Тогда при длине ленты 30 м понадобится:

30 : 0,5 = 60 шт.

Определяем длину одного хомута.

Для этого от ширины и высоты сечения отнимаем по 10 см и складываем результаты:

(40 — 10) + (100 — 10) = 120 см. Длина одного хомута равна 120 • 2 = 140 см = 2,4 м.

Общая длина вертикальной арматуры:

2,4 • 60 = 144 м. Количество стержней при длине 6 м составит 144 : 6 = 24 шт.

ОБРАТИТЕ ВНИМАНИЕ!

Полученные значения следует увеличивать на 10-15%, чтобы иметь запас на случай ошибок или непредвиденных расходов материала.

Виды и размеры

Существует две основные :

  • Металлическая.
  • Композитная.

Металлические стержни, используемые для сборки арматурного каркаса, имеют ребристую или гладкую поверхность.

Ребристые стержни идут на горизонтальную (рабочую) арматуру, так как они имеют повышенную силу сцепления с бетоном, необходимую для качественного выполнения своих функций.

Вертикальные прутки, как правило, гладкие, так как их задача сводится к поддержанию в нужном положении рабочих стержней до момента заливки. Диаметр стержней колеблется в пределах от 5,5 до 80 мм. используются рабочие стержни 10, 12 и 14 мм и гладкие 6-8 мм.

Композитная арматура состоит из разных элементов:

  • Стекло.
  • Углерод.
  • Базальт.
  • Арамид.
  • Полимерные добавки.

Наиболее широко применяется стеклопластиковая арматура.

Она имеет наибольшую прочность, самая жесткая и устойчивая к растягивающим нагрузкам из всех остальных вариантов.

Как и все виды композитных стержней, стеклопластиковая арматура полностью устойчива к воздействию влаги.

Производители заявляют о неизменности эксплуатационных качеств в течение всего периода службы, но на практике справедливость такого утверждения пока не проверена. Проблема композитной арматуры в сложности технологии, из-за которой качество материала у разных производителей заметно отличается.

Кроме того, композитные стержни не способны сгибаться, что неудобно при сборке каркасов и снижает прочность угловых соединений каркаса.

ВАЖНО!

Среди строителей отношение к композитной арматуре сложное. Не отрицая положительных качеств, они не слишком доверяют малоизученным строительным материалам, не прошедшим полный цикл эксплуатации. Кроме того, металлическая арматура имеет вполне определенные технические характеристики, тогда как композитные виды обладают довольно большим разбросом свойств. Все эти факторы ограничивают применение композитных стержней.

Как сделать правильный выбор

Выбор арматурных стержней основан на расчетных данных и предпочтениях строителей.

Обычно выбирают металлические стержни, хотя и композитную арматуру с каждым годом все активнее применяют при строительстве ленточных оснований. Предпочтение металлическим пруткам отдается из-за возможности придать им необходимый изгиб, чего со стеклопластиковыми стержнями сделать невозможно.

Особенно это важно при строительстве лент с криволинейными участками или при наличии углов перелома, отличных от 90°.

Кроме того, металлическая арматура экономичнее, так как позволяет делать хомуты из одного прутка, без необходимости создавать несколько точек соединения.

Диаметры стержней давно отработаны на практике, нередко их выбирают без предварительного расчета — при около 30 см используют пруток 10 мм, для лент шириной 40 см выбирают 12-мм стержни, а при ширине более 50 см — 14 мм. Толщину вертикальной арматуры определяют по высоте ленты, до 70 см выбирают 6 мм, а при высоте свыше 70 см — 8 мм и более.

Полезное видео

В данном разделе Вы также сможете посмотреть как производится расче на примере реальной стройки:

Заключение

Грамотно выбранная схема армирования и сам материал обеспечивают прочность и устойчивость ленты к возможным нагрузкам.

Сложные и проблемные грунты, склонные к пучению или сезонным подвижкам, требуют ответственного и внимательного подхода к .

Необходимо учитывать, что все расчетные значения определяют минимальные параметры конструкции, требующие некоторого увеличения для определенного запаса прочности.

Выбирая арматуру и схему армирования, надо умножать все значения на 1,2-1,3 (коэффициент надежности), чтобы снизить риск появления непредвиденных факторов.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Онлайн расчет ленточного фундамента — бесплатный калькулятор

Онлайн калькулятор по расчету ленточного фундамента. Расчет необходимых материалов для монолитного ленточного фундамента (количество бетона, арматуры).

Выберите тип ростверка:

Параметры фундамента:

Расчет арматуры:

Расчет опалубки ростверк:

Рассчитать

Результаты расчетов

Фундамент:

Общая длина ленты: 0 м.

Площадь подошвы ленты: 0 м2.

Площадь внешней боковой поверхности: 0 м2.

Объем бетона (с 10% запасом): 0 м3.

Вес бетона: 0 кг.

Нагрузка на почву: 0 кг/см2.

Расчет арматуры ростверка:

Минимальный диаметр поперечной арматуры (хомутов): 0 мм.

Максимальный шаг поперечной арматуры (хомутов) для ростверка: 0 мм.

Общий вес хомутов: 0 кг.

Опалубка:

Минимальная толщина доски при опорах через каждый 1 метр: 0 мм.

Максимальное расстояние между опорами: 0 м.

Количество досок для опалубки: 0 шт.

Периметр опалубки: 0 м.

Объем досок для опалубки: 0 м3.

Примерный вес досок для опалубки: 0 кг.

Дополнительная информация о калькуляторе

Онлайн калькулятор монолитного ленточного фундамента поможет рассчитать необходимые параметры фундамента данного типа: размеры фундамента, количество опалубки и бетона, количество и диаметр арматуры. Чтобы определить оптимальный тип фундамента для своего сооружения, следует обязательно обратиться к специалистам за консультацией.

Обратите внимание! При расчётах учитываются нормативы из ГОСТ Р 52086-2003, СНиП 3. 03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».

По своей конструкции ленточный фундамент – это замкнутая полоса из железобетона, погружённая в землю и проходящая под всеми несущими стенами строения. Нагрузка, которую оказывает здание, равномерно распределяется по всей площади фундамента (длине ленты). Такая конструкция предотвращает деформацию постройки из-за естественного вспучивания почвы, сокращает риск, что здание просядет либо изменит форму. Наиболее ответственные участки в данном фундаменте – углы, на которых сосредоточены основные нагрузки.

Существует несколько вариантов конструкции ленточного фундамента. Он может быть мелко- или глубокозаглублённым, сборным или монолитным. Выбор конкретного типа зависит от предполагаемой нагрузки, конструкции здания, конфигурации несущих стен, характеристик почвы и других индивидуальных параметров.

Ленточный фундамент имеет настолько широкое применение, что его можно использовать для всех типов построек, включая подвалы и цокольные этажи. Во многом поэтому он наиболее распространён при постройке частных домов. К тому же он имеет оптимальное соотношение себестоимости и функциональности.

Проектирование фундамента – особенно важная часть строительства здания. Если фундамент подвергнется деформации или будет спроектирован ошибочно, это скажется на всей постройке. Исправлять ошибку в фундаменте – дело дорогостоящее, сложное и возможное далеко не всегда. Воспользуйтесь данным калькулятором, чтобы избежать ошибок в проектировании и расчетах.

Также вы можете задать свой вопрос или оставить пожелание по улучшению данного калькулятора. Будем рады вашим комментариям!

Пояснения к результатам расчетов

Общая длина ленты

Длина периметра фундамента. Измеряется по внешней стороне контура.

Площадь подошвы ленты

Площадь горизонтального основания фундамента, которое опирается на почву. Определяет потребность в гидроизоляции фундамента.

Площадь внешней боковой поверхности

Площадь боковой поверхности фундамента. Определяет потребность в утеплителе для внешней стороны сооружения.

Объем бетона

Количество бетона, требуемое для полной заливки фундамента. Возможны уплотнения при заливке, а также неточности при доставке бетона на место. Рекомендуем заказывать бетон с запасом в 10%.

Вес бетона

Приблизительный вес бетона при его средней плотности.

Нагрузка на почву от фундамента

Нагрузка, которую фундамент оказывает на площадь опоры (почву).

Минимальный диаметр продольных стержней арматуры

Определяется исходя из нормативов СНиП.

Минимальное количество рядов арматуры сверху и снизу

Минимально необходимое число продольных стержней в верхних и нижних поясах ленты, необходимое для обеспечения устойчивости к деформации силами растяжения и сжатия.

Общий вес арматуры

Вес всех стержней, составляющих арматуру фундамента.

Величина нахлеста арматуры

Размер нахлёста при соединении стержней арматуры.

Суммарная длина арматуры

Включает всю продольную арматуру каркаса, включая нахлёст стержней.

Минимальный диаметр поперечной арматуры (хомутов)

Определяется исходя из нормативов СНиП.

Шаг поперечной арматуры (хомутов)

Минимальный шаг хомутов, требуемый для сохранения жесткости арматурного каркаса.

Общий вес хомутов

Масса хомутов, необходимых при строительстве фундамента.

Минимальная толщина доски опалубки (при опорах через каждый метр)

Рассчитывается исходя из нормативов ГОСТ Р 52086-2003, при заданном шаге опоры и других параметрах фундамента.

Количество досок для опалубки

Количество досок заданной толщины для фундамента указанного размера. За основу берется доска длиной 6 метров.

Периметр опалубки

Полный периметр опалубки ленточного фундамента, включая внутренние перегородки.

Объем и примерный вес досок для опалубки

Вес опалубки в килограммах, а также объем досок в кубических метрах.

Расчет арматуры на ленточный фундамент

Ленточный фундамент наиболее распространен при самостоятельном возведении различных построек. Однако заливка в опалубку одного лишь бетонного раствора не делается. Для укрепления фундамента производится его армирование, что значительно усиливает конструкцию и повышает ее несущую способность. 

На практике для обустройства такого «проволочного» каркаса используется металлический пруток (можно использовать новейшую композитную арматуру). Он может быть гладким или ребристым, иметь различный диаметр. Но в процессе подготовки к проведению работ необходимо рассчитать арматуру для ленточного фундамента с помощью удобного онлайн-калькулятора. Ведь если его окажется значительно больше, то куда потом девать излишки? А если не хватит, то это задержка, простой, потеря времени.

Что учесть при расчете

  1. Любой металл подвержен коррозии. Следовательно, надежность конструкции, в которой он был использован, при его прямом контакте с водой резко снижается. В процессе монтажа, а также при дальнейшей эксплуатации бетон частично начинает крошиться. Плюс к этому, в него с разной степенью интенсивности (в зависимости от марки, наличия или отсутствия различных добавок, качества гидроизоляции) постепенно впитывается влага. Для защиты от нее арматуры каркас монтируется таким образом, чтобы все его части (прутки) отстояли от поверхности заливки примерно на 50 мм. Причем с любой стороны – с боков, сверху, снизу.
  2. Нагрузка на вертикальные (и поперечные) части каркаса (прутки) ниже, чем на продольные. Поэтому для экономии можно использовать продукцию с меньшим диаметром. Обычно для ленточного монолита частного строения берут пруток 10 или 12 мм (для продольной укладки) и 6 или 8 мм – для вертикальной и поперечной.
  3. Если лента имеет разную ширину (например, по периметру и внутри строения, под несущие перегородки), то расчет производится отдельно для каждой части.
  4. Соединение продольных элементов делается с взаимным перекрытием – примерно на 50 см. Следовательно, длина каждого последующего прутка «уменьшается» на эту величину.
  5. При заливке бетона каркас «распирает» под тяжестью раствора, особенно если использован заполнитель с крупными фракциями. Поэтому для укрепления конструкции дополнительно из этого же прутка по всему периметру ставятся скобы (в виде буквы «П»), которые «стягивают» боковые стенки «решетки».
  6. Количество рядов по горизонтали и вертикали зависит от параметров ленты – ее ширины и глубины закладки (высоты). Чтобы не заниматься вычислениями по формулам, в которых и не каждый разберется, используют ориентировочные данные. Для небольших частных построек этого вполне достаточно.

Расстояние между прутками в горизонтальной плоскости выбирается так, чтобы между ними было не более 25 – 30 см. Как правило, они укладываются по 4 штуки в ряд. Между вертикальными элементами (и поперечными) – от 30 до 60 см по всей ленте.

Расчет производится на основании проекта, по которому будет возводиться дом. Исходными данными являются параметры монолита. Все данные замеров, во избежание путаницы, записываются в метрах.

Калькулятор расчета

 

Приведем сам алгоритм, выбрав произвольные данные. Подставить истинные их значения для конкретной конструкции труда не составит.

  • Измеряется длина ленты – L. Вдоль нее будет уложено в одном ряду, к примеру, 4 прутка. Допустим, таких рядов, в соответствие с глубиной заливки, будет 3. Следовательно, общая длина прутка = L х 4 х 3.
  • Количество мест соединений продольных элементов 24. Мы знаем, что каждое из них «уменьшает» пруток на длину перекрытия. Следовательно, получается: 50 см х 24 = 120 см = 12м.
  • По всей длине нужно уложить скобы, поперечные и вертикальные прутки.
  • Общая длина материала получается:

(L х 4 х 3) + 12 м + (длина поперечин, умноженная на их количество) + (длина вертикальных прутков х на количество) + (длина скобы х на количество).

Но это, если вся конструкция собирается из материала одного и того же сечения. В случае использования прутков различных диаметров подсчет ведется для каждого из них отдельно. Весь процесс армирования подробно описан в этой статье.

При наличии внутренних несущих стен для их основания вычисления проводятся по той же методике.

Несколько советов:

  • Ребристый пруток (в отличие от гладкого) более надежно «сцепляется» с бетонным раствором.
  • Необходимо выбирать прутки такой длины, чтобы при их продольной укладке было как можно меньше стыков.
  • Соединения по углам ленты не допускаются. Только – изгиб прутков.
  • Материала для арматуры нужно брать чуть больше требуемого, так как отрезки прутков могут понадобиться и для других целей. Например, установить закладные при облицовке газобетонных стен кирпичной кладкой. Вариантов много, поэтому нужно учесть все нюансы строительства, чтобы не ездить на закупки по несколько раз.

Расчет и калькулятор арматуры для фундамента от московской компании «АСТИМ

получить скидку
В наши дни на всех строительных площадках, будь то малоэтажная застройка или высотное здание, используется арматура. Для подготовки оснований одно- двухэтажных частных коттеджей обязательно нужно рассчитать количество и тип усиливающих изделий.

Фундамент любого дома должен быть долговечным и прочным — от его правильного устройства будет зависеть срок эксплуатации всего объекта. Огромную роль в увеличении периода службы конструкции играет грамотный расчет арматуры. Для этого необходимо правильно определить тип и объем материала.

Калькулятор расчета арматуры

Номенклатура

Арматура 10 мм

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 В500С Ф10 мм0.61758000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф10 мм мерная 11.7 метров0.61736500,00

Арматура 14 мм

Арматура А3 А500 Ф14 мм0.9253000,00

Арматура А3 А500С Ф14 мм немерная1.2150000,00

Арматура А3 А500С Ф14 мм мерная 11,7 метров1.2153000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура 16 мм

Арматура А3 А500 Ф16 мм1.6153000,00

Арматура А3 А500С Ф16 мм немерная1.5850000,00

Арматура А3 А500С Ф16 мм мерная 11,7 метров1.5853000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура 18 мм

Арматура А3 А500С Ф18 мм немерная250000,00

Арматура А3 А500С Ф18 мм мерная 11,7 метров253000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура 20 мм

Арматура А3 А500С Ф20 мм немерная2.4750000,00

Арматура А3 А500С Ф20 мм мерная 11,7 метров2.4753000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура 22 мм

Арматура А3 А500С Ф22 мм немерная2.9850000,00

Арматура А3 А500С Ф22 мм мерная 11,7 метров2.9853000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура 25 мм

Арматура А3 А500С Ф25 мм мерная 11,7 метров3.8553000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура 28 мм

Арматура А3 А500С Ф28 мм мерная 11,7 метров4.8353000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура 32 мм

Арматура А3 А500С Ф32 мм мерная 11,7 метров6.3153000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура 36 мм

Арматура А3 А500С Ф36 мм мерная 11,7 метров7.9953000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура 40 мм

Арматура А3 А500С Ф40 мм мерная 11,7 метров9.8753000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура 6 мм

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура А1 А240 Ф6 мм мерная 6 метров0.22239500,00

Арматура гладкая А1 А240

Арматура 12 бухта0.88855000,00

Арматура А1 А240 32мм6.3155000,00

Арматура А1 А240 28мм4.8355000,00

Арматура А1 А240 25мм3.8555000,00

Арматура А1 А240 22мм2.9855000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура А1 А240 Ф12 мм мерная 11.7 метров0.88833000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф10 мм мерная 11.7 метров0.61736500,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура А1 А240 Ф6 мм мерная 6 метров0.22239500,00

Арматура гладкая А1 10 мм

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф10 мм мерная 11.7 метров0.61736500,00

Арматура гладкая А1 14 мм

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура гладкая А1 16 мм

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура гладкая А1 18 мм

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура гладкая А1 20 мм

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура гладкая А1 22мм

Арматура А1 А240 22мм2.9855000,00

Арматура гладкая А1 25мм

Арматура А1 А240 25мм3.8555000,00

Арматура гладкая А1 28мм

Арматура А1 А240 28мм4.8355000,00

Арматура гладкая А1 32мм

Арматура А1 А240 32мм6.3155000,00

Арматура гладкая А1 8 мм

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Гладкая арматура А1 6 мм (А240)

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура А1 А240 Ф6 мм мерная 6 метров0.22239500,00

Стальная арматура А1 12 мм

Арматура 12 бухта0.88855000,00

Арматура А1 А240 Ф12 мм мерная 11.7 метров0.88833000,00

Арматура мерная

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф40 мм мерная 11,7 метров9.8753000,00

Арматура А3 А500С Ф36 мм мерная 11,7 метров7.9953000,00

Арматура А3 А500С Ф32 мм мерная 11,7 метров6.3153000,00

Арматура А3 А500С Ф28 мм мерная 11,7 метров4.8353000,00

Арматура А3 А500С Ф25 мм мерная 11,7 метров3.8553000,00

Арматура А3 А500С Ф22 мм мерная 11,7 метров2.9853000,00

Арматура А3 А500С Ф20 мм мерная 11,7 метров2.4753000,00

Арматура А3 А500С Ф18 мм мерная 11,7 метров253000,00

Арматура А3 А500С Ф16 мм мерная 11,7 метров1.5853000,00

Арматура А3 А500С Ф14 мм мерная 11,7 метров1.2153000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Арматура 11,7 метров мерная

Арматура А3 А500С Ф40 мм мерная 11,7 метров9.8753000,00

Арматура А3 А500С Ф36 мм мерная 11,7 метров7.9953000,00

Арматура А3 А500С Ф32 мм мерная 11,7 метров6.3153000,00

Арматура А3 А500С Ф28 мм мерная 11,7 метров4.8353000,00

Арматура А3 А500С Ф25 мм мерная 11,7 метров3.8553000,00

Арматура А3 А500С Ф22 мм мерная 11,7 метров2.9853000,00

Арматура А3 А500С Ф20 мм мерная 11,7 метров2.4753000,00

Арматура А3 А500С Ф18 мм мерная 11,7 метров253000,00

Арматура А3 А500С Ф16 мм мерная 11,7 метров1.5853000,00

Арматура А3 А500С Ф14 мм мерная 11,7 метров1.2153000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф20 мм мерная 11,7 метров2.4732000,00

Арматура А1 А240 Ф18 мм мерная 11,7 метров232000,00

Арматура А1 А240 Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А1 А240 Ф14 мм мерная 11,7 метров1.2132000,00

Арматура 6 метров

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А1 А240 Ф10 мм мерная 6 метров0.61736500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Арматура немерная

Арматура 12 бухта0.88855000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500С Ф22 мм немерная2.9850000,00

Арматура А3 А500С Ф20 мм немерная2.4750000,00

Арматура А3 А500С Ф18 мм немерная250000,00

Арматура А3 А500С Ф16 мм немерная1.5850000,00

Арматура А3 А500С Ф14 мм немерная1.2150000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Арматура в бухтах

Арматура 12 бухта0.88855000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А1 А240 Ф10 мм в бухтах0.61736500,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф6 мм в бухтах0.22239500,00

Немерная арматура 12

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура Ф8 мм

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А1 А240 Ф8 мм в бухтах0.39538500,00

Арматура А1 А240 Ф8 мм мерная 6 метров0.39538500,00

Рифленая арматура А3

Арматура 12 бухта0.88855000,00

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 В500С Ф12 мм0.88856000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф10 мм0.61758000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Арматура А3 А500 Ф16 мм1.6153000,00

Арматура А3 А500 Ф14 мм0.9253000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А3 25Г2С

Арматура А3 А400 25Г2С Ф40 мм мерная 11,7 метров9.8768000,00

Арматура А3 А400 25Г2С Ф36 мм мерная 11,7 метров7.9955000,00

Арматура А3 А400 25Г2С Ф32 мм мерная 11,7 метров6.3155000,00

Арматура А3 А400 25Г2С Ф28 мм мерная 11,7 метров4.8355000,00

Арматура А3 А400 25Г2С Ф25 мм мерная 11,7 метров3.8555000,00

Арматура А3 А400 25Г2С Ф22 мм мерная 11,7 метров2.9855000,00

Арматура А3 А400 25Г2С Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 25Г2С Ф18 мм мерная 11,7 метров250000,00

Арматура А3 А400 25Г2С Ф16 мм мерная 11,7 метров1.5850000,00

Арматура А3 А400 25Г2С Ф14 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 25Г2С Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 35ГС

Арматура А3 А400 35ГС Ф40 мм мерная 11,7 метров9.8755000,00

Арматура А3 А400 35ГС Ф36 мм мерная 11,7 метров7.9950000,00

Арматура А3 А400 35ГС Ф32 мм мерная 11,7 метров6.3150000,00

Арматура А3 А400 35ГС Ф28 мм мерная 11,7 метров1.2150000,00

Арматура А3 А400 35ГС Ф14 мм мерная 11,7 метров0.88850000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф8 мм мерная 6 метров0.39556000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Арматура А3 А400 35ГС Ф25 мм мерная 11,7 метров3.8550000,00

Арматура А3 А400 35ГС Ф22 мм мерная 11,7 метров2.9850000,00

Арматура А3 А400 35ГС Ф20 мм мерная 11,7 метров2.4750000,00

Арматура А3 А400 35ГС Ф18 мм мерная 11,7 метров232000,00

Арматура А3 А400 35ГС Ф16 мм мерная 11,7 метров1.5832000,00

Арматура А500

Арматура А3 А500 Ф16 мм1.6153000,00

Арматура А3 А500 Ф14 мм0.9253000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А500С

Арматура 12 бухта0.88855000,00

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А500С 12 мм А3

Арматура 12 бухта0.88855000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А500С 6мм

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура Ф8 А500С

Арматура А3 А500С Ф8 мм мерная 6 метров0.39565000,00

Описание и характеристики арматуры Ф10 А500С

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура В500С

Арматура А3 В500С Ф12 мм0.88856000,00

Арматура А3 В500С Ф6 мм в бухтах0.22270000,00

Арматура А3 В500С Ф10 мм0.61758000,00

Арматура А3 В500С Ф8 мм в бухтах0.39555000,00

Рифленая арматура А3 10 мм

Арматура А3 А500С Ф10 мм мерная 6 метров0.22258000,00

Арматура А3 А500 Ф10 мм0.6456000,00

Арматура А3 А500С Ф10 мм немерная0.61754000,00

Арматура А3 А500С Ф10 мм мерная 11,7 метров0.61757000,00

Арматура А3 А400 25Г2С Ф10 мм мерная 11,7 метров0.61754000,00

Арматура А3 А400 35ГС Ф10 мм мерная 11,7 метров0.61754000,00

Рифленая арматура А3 12 мм

Арматура 12 бухта0.88855000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Рифленая арматура А3 6 мм

Арматура А3 А500С Ф6 мм в бухтах0.22260000,00

Арматура А3 А500С Ф6 мм мерная 6 метров0.22260000,00

Арматура А3 А400 25Г2С Ф6 мм мерная 6 метров0.22256000,00

Арматура А3 А400 35ГС Ф6 мм мерная 6 метров0.22258000,00

Стальная арматура 12 мм

Арматура А3 В500С Ф12 мм0.88856000,00

Арматура А3 А500 Ф12 мм1.2555000,00

Арматура А3 А500С Ф12 мм немерная0.88851000,00

Арматура А3 А500С Ф12 мм мерная 11,7 метров0.88855000,00

Арматура А3 А400 25Г2С Ф12 мм мерная 11,7 метров0.88852000,00

Арматура А3 А400 35ГС Ф12 мм мерная 11,7 метров0.61752000,00

Арматура А1 А240 Ф12 мм мерная 11.7 метров0.88833000,00

Сделать заказ

Схема армирования ленточного основания

Чтобы грамотно рассчитать арматуру в железобетонной ленте, рассмотрим типовые случаи ее расположения в таких фундаментах.

При возведении частных малоэтажных объектов используются два основных варианта армирования:

  • шестью усиливающими элементами;
  • четырьмя изделиями.

Какой вариант лучше?

В соответствии с требованиями СП 52-101-2003, при расположении соседних прутов максимальное расстояние должно быть не больше 40 см (400 мм). При расчете арматуры отступают 5–7 см (50–70 мм) между крайним стержнем и боковой стенкой основания. Если ширина опорной конструкции здания больше 50 см, используют схему армирования шестью прутками.

Было выбрано оптимальное расположение стержней, теперь необходимо определить их другие параметры.

Расчет диаметра арматуры

Определение параметров вертикальных и поперечных усиливающих элементов. Для правильного выбора воспользуйтесь информацией из таблицы:

Условия использования арматуры Минимальный диаметр арматуры, мм
Вертикальная арматура при высоте поперечного сечения ленты менее 80 см 6 мм
Вертикальная арматура при высоте ленты более 80 см 8 мм
Поперечная арматура 6 мм

При строительстве малоэтажных коттеджей (до 2 этажей) для вертикальной и поперечной обвязки используются прутки диаметром 8 мм. Этого показателя достаточно для закладки прочного ленточного фундамента.

Расчет диаметра арматуры продольного типа

В соответствии с требованиями СНиП 52-01-2003, минимальная площадь сечения арматурных прутов в ленточном основании должна быть 0,1 % от общего поперечного размера железобетонной ленты.

Площадь сечения железобетонной конструкции определяем путем умножения ширины на высоту. Например, при параметрах ленты 40 х 100 см, при расчете получается 4000 см². Площадь арматуры составляет 0,1 % от сечения фундамента, поэтому 4000 см²/1000 = 4 см².

Чтобы не рассчитывать показатель для каждого стержня, пользуйтесь таблицей. В ней есть незначительные неточности из-за округления чисел, не влияющие на окончательный результат.

Важно! Если длина ленты составляет менее 3 м, принимают минимальный диаметр арматуры 10 мм. При размере конструкции больше 3 метров выбирают стержни с показателем 12 мм.

Рассчитывая арматуру, мы получили минимальную площадь поперечного сечения прутков в сечении ленточного основания — она равна 4 см² (с учетом числа продольных элементов).

Если ширина фундамента составляет 40 см, достаточно применять схему армирования с четырьмя стержнями. Вернемся к таблице, чтобы узнать значение для 4 стержней и подбираем показатель.

В ходе расчета определяем, что для основания шириной 40 см и высотой 1 м, самой подходящей будет арматура диаметром 12 мм, так как площадь сечения 4 элементов составляет 4,52 см².

Для конструкции с шестью стержнями все действия производятся аналогично. Нужно только воспользоваться значениями из соответствующего столбца.

Продольные усиливающие элементы для ленточного основания должна иметь одинаковый диаметр. Если по каким-то причинам стержни получились с разными диаметрами, то прутки с большим показателем используют в нижнем ряду.

Как рассчитать количество арматуры для основания?

Часто бывает, что арматурные стержни доставили на объект, а при вязке каркаса обнаруживается недостаток материала. Приходится докупать необходимый объем, оплачивать доставку, нести дополнительные расходы, которые ведут к удорожанию возведения частного дома.

Например, у нас есть следующий план:

Давайте попробуем рассчитать арматуру для конструкции такого типа.

Определение числа продольных прутков

Проведем грубые вычисления. Для этого находим длину всех стен фундамента:

6 х 3 + 12 х 2 = 42 м,

полученный параметр умножаем на 4:

4 х 42 = 168 м.

Мы получили общую длину продольных прутков. Чтобы правильно рассчитать арматуру, нужно учесть еще несколько факторов. Подсчитывая объем материала, учитывайте запуск арматурных изделий при стыковке, ведь длина одного элемента может составлять 4–6 метров, и для заполнения расстояния 12 м необходимо связывать несколько отрезков. Стыковка прутков производится внахлест с запасом минимум 30 диаметров. Чтобы рассчитать арматуру (при ее диаметре 12 мм) определяем запуск 12 х 30 = 360 мм (36 см).

Чтобы учесть запас, используются два способа:

  • составляется план размещения прутков и осуществляется расчет числа стыков;
  • прибавляем 10–15 % к полученному значению.

Определение количества вертикальной и поперечной арматуры

По плану на один «прямоугольник» необходимо:

2 х 0,35 + 2 х 0,90 = 2,5 м

Рассчитывая арматуру, принимаем значения с запасом (а не 0,3 и 0,8), чтобы обвязка была немного больше получившегося прямоугольника.

Важно! При сборке каркаса в подготовленной траншее вертикальные арматурные пруты устанавливают на дно, иногда их углубляют в грунт для повышения устойчивости конструкции. Тогда при расчете арматуры нужно принимать длину не 0,9 м, а увеличивать ее на 10–20 см.

Находим такие части во всей конструкции, с учетом расположения на местах стыковки стен и углах по 2 «прямоугольника».

Чтобы рассчитать арматуру, рисуем схему фундамента и определяем число получившихся фрагментов.

Берем длинную сторону (12 метров), на ней находятся 6 «прямоугольников» и два отрезка стены по 5,4 м, где находится по 10 перемычек. В результате получается:

6 + 10 + 10 = 26 шт.

Рассчитать число перемычек на участке 6 метров можно аналогичным способом, получаем 10 штук. Умножаем значение на количество стен:

2 х 26 + 10 х 3 = 82

Ранее было подсчитано, что на каждую часть получается по 2,5 метра арматуры, поэтому:

82 х 2,5 = 205 м

Итоговое количество материала

Рассчитывая арматуру, определили, что продольные усиливающие элементы имеют диаметр 12 мм, а вертикальные и поперечные — 8 мм. Прутков первого типа необходимо 184,4 м, а второго — 205 м.

Часто при вязке каркаса остаются небольшие обрезки, которые нельзя использовать. Поэтому, рассчитав арматуру, необходимо приобрести материал с запасом. Нужно купить около 190–200 метров прутков 12 мм, а также 210–220 м изделий с диаметром 8 мм. Благодаря таким несложным подсчетам легко определить необходимый объем арматурных стержней.

ленточного, плитного типа и столбчатого

Мероприятиям по возведению любого здания предшествуют проектные работы, в процессе которых определяется тип фундаментной базы и необходимое количество материалов для ее сооружения. Важной частью фундамента является арматурный каркас. Он повышает прочность основания, демпфирует растягивающие усилия и изгибающие нагрузки, а также предотвращает образование трещин. Для выполнения работ необходимо понимать, сколько арматуры нужно для армирования ленточного фундамента, а также для столбчатого и плитного основания. Разберемся с особенностями вычислений.

Расход арматуры на армирование ленточного фундамента

Готовимся выполнить расчет количества арматуры для фундамента – важные моменты

Планируя постройку частного дома, следует обратить особое внимание на конструкцию арматурной решетки, воспринимающую значительные нагрузки на фундамент. Квалифицированно разработанная схема силовой решетки и применение оптимального сечения арматуры позволяет обеспечить требуемый запас прочности фундаментной базы, а также ее продолжительный ресурс использования.

Самостоятельно рассчитать арматуру на фундамент можно различными способами:

  • с использованием программных средств и онлайн-калькуляторов, которые выполняют расчет арматуры после введения рабочих параметров;
  • выполняя вычисления вручную на основании информации о конструктивных особенностях фундамента, величине усилий и параметрам решетки.

Фундаментная основа, воспринимает нагрузку от массы здания и равномерно распределяет ее на опорную поверхность почвы.

Возведение зданий осуществляется на различных типах оснований:

  • ленточных;
  • плитных;
  • столбчатых.
Расчет арматуры для ленточного фундамента

 

До начала вычислений следует разобраться с конструкцией силового каркаса, который состоит из следующих элементов:

  • вертикальных и поперечных стержней, между которыми выдержан равный интервал;
  • вязальной проволоки, соединяющей продольно расположенные перемычки и вертикальные прутки;
  • муфт, обеспечивающих прочное соединение и удлинение арматурных прутков.

Для каждого вида основания применяется своя схема армирования фундамента, которая зависит от следующих факторов:

  • характеристик почвы;
  • габаритов здания;
  • конструктивных особенностей строения;
  • действующих нагрузок.

Применяется арматура, имеющая ребристую поверхность, которая отличается:

  • размером сечения;
  • классом;
  • уровнем воспринимаемых нагрузок;
  • расположением в силовой решетке;
  • стоимостью.
Укладка арматуры в ленточный фундамент

Для различных фундаментов на основании вычислений определяются следующие сведения:

  • количество арматуры для фундамента;
  • сортамент вертикальных и поперечных прутков;
  • общая масса арматурного каркаса;
  • методы фиксации стальных стержней в силовой конструкции;
  • технология сборки несущей решетки;
  • шаг обвязки арматурных элементов.

Важно правильно выполнить расчет. Арматура для фундамента в этом случае обеспечит необходимый запас прочности. Рассмотрим, какие необходимы исходные данные для расчетов, а также изучим методику выполнения вычислений для различных типов фундаментов.

Расчет количества арматуры для ленточного фундамента

Основание ленточного типа обеспечивает повышенную устойчивость строений на различных почвах. Конструкция представляет собой бетонную ленту, повторяющую контур здания и расположенную под капитальными стенами. Усиление стальной арматурой повышает прочностные характеристики бетонной основы и положительно влияет на ее долговечность. Для сооружения пространственной решетки можно использовать арматуру диаметром 10 мм.

Исходные данные для выполнения расчетов:

  • длина и ширина фундаментной базы;
  • сечение железобетонной ленты;
  • интервал между каркасными элементами;
  • общее количество обвязочных поясов;
  • размер ячеек силовой решетки.
Сколько арматуры нужно для фундамента

Рассмотрим порядок вычислений:

  1. Рассчитайте общую длину ленточного контура.
  2. Вычислите количество элементов в поясах.
  3. Определите метраж горизонтальных стержней.
  4. Вычислите потребность в вертикальных прутках.
  5. Рассчитайте длину поперечных перемычек.
  6. Сложите полученный метраж.

Зная общее количество стыковых участков, можно вычислить потребность в вязальной проволоке.

Расчет количества арматуры на фундамент плитного типа

Фундамент плитной конструкции применяется для строительства жилых зданий на пучинистых грунтах. Для обеспечения прочностных характеристик применяются арматурные стержни диаметром 10–12 мм. При повышенной массе строений диаметр прутков следует увеличить до 1,4–1,6 см.

Рассчитать количество арматуры для фундамента плитной конструкции можно, используя следующую информацию:

  • пространственный каркас из арматуры сооружается в двух уровнях;
  • соединение стержней выполняется в виде квадратных ячеек со стороной 15–20 см;
  • обвязка выполняется отожженной проволокой в каждой точке соединения.
Схема армирования монолитной плиты фундамента

Для определения потребности в арматуре выполните следующие операции:

  1. Определите количество горизонтальных прутков в каждом ярусе.
  2. Вычислите общий метраж арматурных стержней, формирующих ячейки.
  3. Прибавьте суммарную длину вертикальных опор, объединяющих ярусы.

Сложив полученные значения, получим общую потребность в арматуре. Зная количество стыков, несложно определить необходимый объем стальной проволоки.

Как рассчитать арматуру на фундамент столбчатой конструкции

Основание столбчатого типа широко применяется для строительства различных зданий. Оно состоит из железобетонных опор квадратного и круглого сечения, установленных в углах строения, а также в точках пересечения капитальных стен и внутренних перегородок. Для повышения прочности опорных элементов применяются ребристые стержни сечением 1–1,2 см.

Рассчитать количество арматуры на фундамент столбчатого типа несложно, учитывая следующие данные:

  • каркас опорного элемента квадратного профиля формируется из 4 стержней;
  • решетка железобетонной опоры круглого сечения выполняется из трех прутьев;
  • длина элементов усиления соответствует размерам опорной колонны;
  • поперечная обвязка каркаса опорной колонны производится с шагом 0,4–0,5 м.
Алгоритм расчета расхода арматуры фундамента

Алгоритм расчета:

  1. Определите длину вертикальных стержней в одной опоре.
  2. Вычислите метраж элементов поперечной обвязки одного каркаса.
  3. Рассчитайте общую длину, сложив полученные значения.

Умножив результат на количество опор, получим общую длину арматуры.

Как посчитать арматуру для фундамента – пример вычислений

В качестве примера рассмотрим, сколько нужно арматуры для фундамента 10х10, сформированного в виде монолитной железобетонной ленты.

Для выполнения вычислений используем следующую информацию:

  • ширина основы 60 см, позволяет уложить в каждом поясе по 3 горизонтальных стержня;
  • выполняется 2 пояса усиления, соединенные вертикальными прутками с интервалом 1 м.
  • для здания 10х10 м и глубиной основы 0,8 м используется арматура диаметром 10 мм.
Расход арматуры для ленточного фундамента

Алгоритм расчета:

  1. Определяем периметр фундаментной основы здания, сложив длину стен – (10+10)х2=40 м.
  2. Вычисляем количество горизонтальных элементов в одном поясе, умножив периметр на количество стержней в одном ярусе – 40х3=120 м.
  3. Общая длина продольных прутков определяется умножением полученного значения на количество ярусов 120х2=240 м.
  4. Рассчитываем количество вертикальных элементов, установленных по 10 пар на каждую сторону 10х2х4=80 шт.
  5. Суммарная длина вертикальных стержней составит 80х0,8=64 м.
  6. Определяем длину перемычек размером по 0,6 м каждая, установленных на двух поясах (по 20 на сторону) – 10х2х4х0,6=48 м.
  7. Сложив длину арматурных стержней, получим общий метраж 240+64+48=352 м.

Определить длину стальной проволоки несложно. Количество соединений, умноженное на длину одного куска проволоки, равную 20–30 см, даст искомый результат.

Подводим итоги – насколько необходим расчет арматуры на фундамент

Планируя строительство дома, бани или дачного строения, несложно определить потребность в арматуре своими руками. Пошаговые инструкции позволят на калькуляторе рассчитать метраж стержней для изготовления арматурной решетки, усиливающей основу здания. Зная, как рассчитать арматуру, можно самостоятельно выполнить вычисления, не прибегая к помощи сторонних специалистов. Правильно выполненные расчеты обеспечат прочность фундаментной основы, устойчивость здания, а также длительный ресурс эксплуатации.

Деревянный дом, бревенчатый дом, проектирование, строительство

Архитектурно-строительная компания «ArchiLine Wooden Houses — Houses for Health» специализируется на проектировании, производстве и строительстве деревянных домов, гостиниц, ресторанов и саун из оцилиндрованного бревна, бруса и клееного бруса.
ООО «АрчиЛайн» успешно работает на рынке деревянного строительства с 2004 года. Специалисты компании изготовили и построили сотни деревянных домов в разных странах — Австралии, Беларуси, Германии, Грузии, Испании, Казахстане, Кыргызстане, Ливане, Нидерландах, ОАЭ, Польша, Россия, Франция.более

В деревянном доме из клееного бруса «Белый дом» 5 спален, кухня-гостиная 58 м2 и 2 санузла. Этот дом подходит для большой семьи для круглогодичного проживания. …

более

Деревянный дом из клееного бруса «Мираж» — компактный дом с 2 спальнями, гостиной и отдельной кухней и выходом на террасу. Это отличное решение для тех, кто ищет небольшой дом для круглогодичного проживания. …

более

Скандинавский деревянный дом из клееного бруса «Dina’s Morning» — большой дом с просторной гостиной, отдельной кухней, двумя спальнями и совмещенной ванной / душем.. Это отличное решение для тех, кто не любит небольшие замкнутые пространства. …

более

Деревянный дом из клееного бруса и терраса «Евродом» — домик для круглогодичного проживания для небольшой семьи. Есть все самое главное: 2 спальни, санузел, просторная кухня-гостиная. …

более

Дом с террасой «IT House» состоит из: 3 спален с отдельными санузлами, просторной солнечной террасы и кухни-гостиной. Такой дом подойдет тем, кто любит принимать гостей и проводить деловые встречи дома….

более

Деревянный дом из клееного бруса с топкой и террасой «Маяк» имеет: 2 спальни по 17 м2 каждая, кухня-гостиная 50 м2 и 2 санузла 4,8 м2. . Это идеальное решение для тех, кто хочет жить круглый год семьей из …

более

Сауна из клееного бруса с бассейном и террасой «Посейдон» включает в себя: парилку 5 м2 со всеми важными помещениями и комнату отдыха, где будет комфортно большая, веселая тусовка….

более

«Шварцвальд» — стоимость системы отопления «тепловой насос» ниже стоимости прокладки газа на большие расстояния. Монтаж уникальной системы отопления для деревянного дома «Шварцвальд» может осуществляться параллельно с производством и …

более Расчетные модули

> Фундаменты> Стеновая опора

Нужно больше? Задайте нам вопрос

Этот модуль обеспечивает анализ единичной полосы непрерывного настенного фундамента с приложенными осевыми, моментными и поперечными нагрузками.Также можно указать перекрывающие нагрузки, которые будут применяться к площади основания (за исключением области, покрытой стеной). Модуль также обеспечивает автоматический расчет допустимого увеличения давления на грунт в зависимости от ширины основания и / или глубины под поверхностью.

Модуль проверяет давление на грунт рабочей нагрузки, устойчивость при опрокидывании, устойчивость при скольжении, устойчивость при подъеме, изгиб опоры и односторонний сдвиг опоры.

Общий

На этой вкладке собраны значения свойств материала, коэффициенты снижения прочности и другие параметры, влияющие на конструкцию.

f’c

Прочность бетона на сжатие в течение 28 суток.

fy

Предел текучести арматуры.

Ec

Модуль упругости бетона.

Плотность бетона

Плотность бетона используется для расчета собственного веса основания, когда выбран этот параметр.

Значения Phi

Введите значения уменьшения емкости, которые будут применяться к Vn и Mn.

Включите вес опоры как постоянную нагрузку

Щелкните [Да], чтобы модуль рассчитал вес основания и применил его как нагрузку, направленную вниз. Собственная масса основания будет умножена на коэффициент статической нагрузки в каждой комбинации нагрузок.

Мин. Соотношение стали — Температура / Усадка Reinf.

Введите минимальное соотношение температуры / усадки стали, рассчитанное с использованием толщины основания. Это вызовет предупреждающее сообщение, если секция недостаточно усилена.

Минимальный коэффициент безопасности при опрокидывании

Введите минимально допустимое отношение момента сопротивления к моменту опрокидывания. Если фактическое передаточное число меньше указанного минимального передаточного числа, появится сообщение о том, что устойчивость при опрокидывании не удовлетворена.

Минимальный запас прочности при скольжении

Введите минимально допустимое отношение силы сопротивления к силе скольжения. Если фактическое передаточное число меньше указанного минимального передаточного числа, будет выдано сообщение о том, что устойчивость скольжения не удовлетворена.

Допустимые значения почвы

Допустимое давление на грунт

Введите допустимое давление на грунт. Это сопротивление рабочей нагрузке, которое будет сравниваться с расчетным давлением грунта при рабочей нагрузке (нагрузки не учитываются при расчете прочности).

Увеличить подшипник за счет веса опоры

Нажмите [Да], чтобы модуль рассчитал вес одного квадратного фута (вид сверху) основания и прибавил его к допустимому значению несущей способности почвы.Это позволяет избежать ущерба грунту из-за собственного веса основания и полезно в ситуациях, когда в инженерно-геологическом отчете указаны допустимые значения чистого давления в опоре.

Пассивное сопротивление скольжению грунта

Введите значение пассивного давления грунта на сопротивление скольжению. Это значение будет использоваться для определения компонента сопротивления скольжению, создаваемого пассивным давлением почвы. Затем сопротивление скольжению из-за пассивного давления добавляется к сопротивлению скольжению из-за трения, чтобы определить общее сопротивление скольжению для каждой комбинации нагрузок.

Коэффициент трения грунт / бетон

Введите коэффициент трения между почвой и основанием, который будет использоваться при расчетах сопротивления скольжению.

Увеличение подшипника почвы

В этом разделе можно указать некоторые размеры, превышение которых автоматически увеличит допустимое давление на грунт.

Глубина основания основания под поверхностью почвы: Расстояние от низа основания до верха почвы.Это значение используется для определения допустимого увеличения давления на грунт и пассивного сопротивления скольжению грунта, но НЕ используется в других расчетах в этом модуле.

Увеличивается в зависимости от глубины основания: Предоставляет метод автоматического увеличения базового допустимого давления на грунт на основе глубины основания ниже некоторой контрольной глубины. Собирает следующие параметры:

Допустимое увеличение давления на фут: Определяет величину, на которую может быть увеличено базовое допустимое давление на грунт на каждый фут глубины ниже некоторой контрольной глубины.

Когда основание опоры ниже: Определяет необходимую глубину, чтобы начать реализацию постепенного увеличения допустимого давления на грунт на основе глубины опоры.

Пример: Предположим следующее: Базовое допустимое давление на грунт = 3 тыс. Фунтов стерлингов. Основание основания находится на 6–0 дюймов ниже поверхности почвы. В геотехническом отчете указывается, что увеличение опорного давления на 0,15 тыс.футов допускается для каждого фута глубины, когда основание находится глубже, чем на 4 фута ниже поверхности почвы.Поскольку вы указали, что основание находится на 6 футов ниже поверхности почвы, модуль автоматически рассчитает скорректированное допустимое давление на грунт, равное 3 тыс.футов + (6 ‘- 4’) * 0,15 тыс.футов = 3,30 тыс.футов.

Увеличение в зависимости от ширины основания: Предоставляет метод автоматического увеличения базового допустимого давления на грунт на основе ширины основания, превышающей некоторый контрольный размер. Собирает следующие параметры:

Допустимое увеличение давления на фут: Определяет величину, на которую может быть увеличено базовое допустимое давление на грунт для каждого фута шириной, превышающей некоторый контрольный размер.

Когда максимальная длина или ширина больше, чем: Указывает требуемый размер, чтобы начать реализацию постепенного увеличения допустимого давления на грунт на основе ширины опоры.

Пример: Предположим следующее: Базовое допустимое давление на грунт = 3 тыс. Фунтов стерлингов. Ширина опоры составляет 6 футов 0 дюймов. В геотехническом отчете указывается, что увеличение давления почвы на грунт на 0,15 тыс. Футов за фут для каждой ноги, если ширина основания превышает 4 фута-0 дюймов.Модуль автоматически рассчитает скорректированное допустимое давление на грунт, равное 3 тыс. Фунтов / футов + (6 футов — 4 футов) * 0,15 тыс. Фунтов / футов = 3,3 тыс. Фунтов / футов.

Примечание. Увеличение в зависимости от глубины и ширины основания является накопительным.

Размер опоры и арматура

Вкладка «Размеры»

Ширина основания: Определите ширину основания.

Ширина стены: определение ширины поддерживаемой стены.

Смещение центра стены от осевой линии фундамента: задайте размер между осевой линией стены и осевой линией фундамента. Положительные смещения сдвигают стену к правому краю основания.

Толщина основания: Определите толщину основания.

Автоматический расчет размера и толщины опор: Обеспечивает автоматическую процедуру увеличения размеров опор до тех пор, пока давление почвы не будет удовлетворено и односторонний сдвиг не станет приемлемым.

Примечание. Любые приложенные перекрывающие нагрузки не учитываются в области, занимаемой стеной.

Усиливающий язычок

Размер арматурного стержня: укажите размер арматурного стержня, который следует учитывать для стержней, идущих параллельно ширине фундамента.

Шаг арматурных стержней: предоставляет возможность указать явное значение для шага арматурных стержней или указать количество стержней на длине 12 дюймов.

Арматурный стержень от центра до бетонной кромки @ снизу: укажите прозрачную крышку плюс 1/2 диаметра арматурного стержня.

Прикладные нагрузки

Вкладка «Вертикальные нагрузки»

Предоставляет поля ввода для вертикальных нагрузок и давления покрывающих пород. Вертикальные нагрузки указаны в тысячах фунтов на фут, и считается, что они действуют в центре ширины стены. Перекрывающие нагрузки указаны в тысячах фунтов на квадратный фут, и считается, что они действуют на верхнюю поверхность основания, за исключением площади, занимаемой стеной.

Вкладка Moments & Shears

Предоставляет поля ввода для моментов и сдвигов. Моменты указываются в тысячах футов на фут. Ножницы указываются в тысячах фунтов на фут, и считается, что они действуют на высоте, указанной в поле «Приложение сдвига над верхней частью основания». Ножницы создают момент, равный силе сдвига, умноженной на расстояние от нижней части основания до места приложения силы сдвига.

Сочетания нагрузок

Вкладка «Комбинации нагрузок» используется для определения комбинаций нагрузок, которые будут использоваться в расчете. Вкладка «Комбинации нагрузок LRFD» управляет комбинациями, которые используются для проверки конструкции железобетона. Вкладка «Комбинации давления почвы» управляет комбинациями, которые используются для оценки давления почвы на грунт. Коэффициент увеличения грунта может применяться к сочетанию нагрузок на основе сочетания нагрузок, как это разрешено инженерно-геологическим отчетом.Вкладка «Комбинации устойчивости» управляет комбинациями нагрузок, которые используются для проверки работоспособности при опрокидывании, скольжении и подъеме.

Эти вкладки позволяют пользователю выбирать из наборов комбинаций нагрузок, которые поставляются с программой, или выбирать из пользовательских наборов комбинаций нагрузок, которые были созданы и сохранены на машине пользователя. Также можно разблокировать выбранный набор комбинаций нагрузок и внести изменения в факторы непосредственно в этом представлении.

Пользователь может контролировать, какие комбинации запускать, а какие игнорировать. Наконец, эти вкладки позволяют пользователю указать, должна ли программа рассматривать алгебраический знак указанных коэффициентов нагрузки при ветровых и сейсмических нагрузках как обратимые или нет. Это может быть удобным способом убедиться, что эти нагрузки исследуются как действующие как в положительном, так и в отрицательном направлении, если это предусмотрено конструкцией. Однако обратите внимание, что если этот параметр выбран, изменение алгебраического знака будет применяться ко ВСЕМ ветровым нагрузкам и / или ВСЕМ сейсмическим нагрузкам, включая горизонтальные И вертикальные нагрузки.

Расчеты

Вкладка результатов

На этой вкладке суммируются контрольные значения (наивысший коэффициент использования) для каждого проектного соображения из всех комбинаций нагрузок, которые были запущены. Для управляющей комбинации нагрузок он представляет Приложенную нагрузку, Допустимую или доступную сопротивляющуюся нагрузку, отношение прикладной нагрузки к нагрузке и управляющую комбинацию нагрузок, которая обеспечивает это регулирующее отношение.

Вкладка «Давление на грунт»

Для каждой комбинации служебных нагрузок на этой вкладке представлена ​​общая вертикальная нагрузка, результирующий эксцентриситет, давление грунта на левом и правом концах основания, допустимое давление грунта и отношение фактического давления грунта к допустимому.

Вкладка устойчивости при опрокидывании и скольжении

Для каждой комбинации служебной нагрузки на этой вкладке представлены опрокидывающий момент, момент сопротивления и отношение момента сопротивления к моменту опрокидывания относительно левого и правого краев основания.

Он также сообщает о силе скольжения, силе сопротивления и отношении силы сопротивления к силе скольжения.

Упор для изгиба опоры

На этой вкладке представлены результаты расчета изгиба на основе сочетания нагрузок.

Упор для опоры на ножки

На этой вкладке представлены результаты расчета на сдвиг для сочетания нагрузок на основе сочетания нагрузок.

Вкладка 3D

На этой вкладке представлена ​​трехмерная визуализация фундамента:

Вкладка 2D

На этой вкладке представлены виды фундамента в плане и в разрезе:

Инженер-строитель: Пример проектирования 3: Армированный ленточный фундамент.

Несущая стена одноэтажного дома должна опираться на широкий армированный ленточный фундамент.

Исследование участка выявило рыхлые и среднезернистые почвы от уровня земли до значительной глубины. Почва изменчива и имеет безопасную несущую способность от 75 до 125 кН / м2. Также были выявлены уязвимые места, где нельзя было рассчитывать на несущую способность.

Здание может поддерживаться на грунтовых балках и сваях, снятых до прочного основания, но в этом случае выбрано решение — спроектировать широкий усиленный ленточный фундамент, способный перекрывать мягкий участок номинальной ширины.

Чтобы свести к минимуму дифференциальные осадки и учесть мягкие участки, допустимое опорное давление будет ограничено до na = 50 кН / м2 по всей площади. Мягкие участки, встречающиеся во время строительства, будут удалены и заменены тощей бетонной смесью; Кроме того, основание будет спроектировано таким образом, чтобы охватить предполагаемые впадины шириной 2,5 м. Это значение было получено из указаний по местным впадинам, приведенным позже на фундаментах плотов. Плита перекрытия пола предназначена для подвешивания, хотя она будет залита с использованием земли в качестве несъемной опалубки.

Загрузки


Если фундамент и надстройка проектируются в соответствии с принципами предельного состояния, нагрузки должны сохраняться как отдельные необработанные характеристические мертвые и заданные значения (как указано выше) без учета факторов (как указано выше), как для расчета давления на опору фундамента, так и для проверок работоспособности. Затем, как обычно, нагрузки следует учесть при расчете отдельных элементов конструкции в предельном состоянии.

Для фундаментов, подверженных только статическим и прилагаемым нагрузкам, факторные нагрузки для расчета арматуры лучше всего выполнять путем выбора среднего коэффициента частичной нагрузки, γP, для покрытия как статических, так и накладываемых нагрузок надстройки из Рис.11.22 (это копия Рис. 11.20 Условия расчета железобетонной полосы.).

Рис. 11.22 Комбинированный частичный коэффициент безопасности для статических + приложенных нагрузок.
Из Рис. 11.22 , комбинированный частичный коэффициент запаса прочности по нагрузкам надстройки составляет γP = 1,46.

Вес основы и засыпки, f = средняя плотность × глубина
= 20 × 0.9
= 18,0 кН / м2

Это все статическая нагрузка, таким образом, комбинированный коэффициент частичной нагрузки для нагрузок на фундамент, γF = 1,4.

Определение ширины фундамента
Новые уровни земли аналогичны существующим, поэтому (вес) нового фундамента не требует дополнительной оплаты и может быть проигнорирован.

Минимальная ширина фундамента равна


Принять ленточный армированный фундамент шириной 1,2 м и глубиной 350 мм из бетона марки 35 (, см.рис.11.23 ).

Рис. 11.23 Пример расчета усиленного ленточного фундамента — нагрузки и опорные давления.


Реактивное расчетное давление вверх для расчета боковой арматуры
Боковой изгиб и сдвиг b = 1000 мм.

Таким образом, vu

Нагрузка для перекрытия углублений
В местах локального углубления фундамент действует как подвесная плита.Предельная нагрузка, вызывающая изгиб и сдвиг в фундаменте, — это общая нагрузка, т.е. нагрузка надстройки + нагрузка на фундамент, которая определяется как

.
Продольный изгиб и сдвиг из-за углублений
Предельный момент из-за перекрытия фундамента — предполагается, что он просто поддерживается — в локальной депрессии 2,5 м составляет Ширина для расчета арматуры b = B = 1200 мм.
Таким образом, vu

Впадина на углу здания
В предыдущих расчетах предполагалось, что впадина расположена под сплошным ленточным основанием.Впадина
может также возникнуть в углу здания, где две опоры встречаются под прямым углом. Затем следует выполнить аналогичный расчет, чтобы обеспечить верхнее усиление обеих опор до консоли в этих углах.

Рис. 11.24 Пример расчета армированной ленточной опоры — арматура.

ФУНДАМЕНТ

Выбор типа фундамента

Выбор подходящего тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от структура
  3. Характеристики недр
  4. Выделенная стоимость фундаменты

Поэтому решить о тип фундамента, необходимо проведение геологоразведочных работ.Тогда почва характеристики в зоне поражения под зданием должны быть тщательно оценен. Допустимая несущая способность пораженного грунта затем следует оценить слои.

После этого исследования можно было затем решите, следует ли использовать фундамент неглубокий или глубокий.

Фундаменты мелкого заложения, такие как опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы выполняются следующие два условия;

  1. Наложенное напряжение (Dp) вызванная зданием, находится в пределах допустимой несущей способности различных слоев почвы, как показано на рис.1.

Это условие выполнено когда на рисунке 1 меньше и меньше, меньше и меньше и так далее.

  1. Здание выдержало ожидаемая осадка по данному типу фундамента

Если один или оба из этих двух условия не могут быть выполнены использование глубоких фундаментов должно быть считается.

Глубокие фундаменты используются, когда верхние слои почвы мягкие и имеется хороший несущий слой на разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть достаточная прочность, чтобы противостоять наложенным напряжениям (Dp) из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно сваи или опоры, которые передают нагрузку здания на хорошую опору страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для выполнять.

Если исследуемые слои почвы мягкий на значительной глубине, и при разумных пределах не обнаруживается несущего пласта. глубины, можно использовать плавучие фундаменты.

построить плавающий фундамент, масса грунта, примерно равная весу Предлагаемое здание будет демонтировано и заменено зданием. В в этом случае несущее напряжение под зданием будет равно весу удаленной земли (γD) что меньше

(q a = γD + 2C)

а также Дп будет равно нулю.Это означает, что несущая способность под здания меньше, чем (q a ), и ожидаемое поселение теоретически равно нуль.

Наконец, инженер должен подготовить смету стоимости наиболее перспективного типа фундамента что представляет собой наиболее приемлемый компромисс между производительностью и Стоимость.

Фундамент мелкого заложения

Фундаменты неглубокие — это те выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее в предыдущей главе фундаменты мелкого заложения использовались при грунтовых геологоразведочные работы доказывают, что все слои почвы, затронутые зданием, могут противостоять наложенным напряжениям (Dp) не вызывая чрезмерных заселений.

Фундаменты мелкого заложения либо опоры или плоты.

Опоры

Фундамент является одним из старейший и самый популярный вид фундаментов мелкого заложения.Опора — это увеличение основания колонны или стены с целью распределения нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Существуют разные виды опоры, соответствующие характеру конструкции. Подножки можно классифицировать на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо его полная длина, как показано на рис.3. обычно используется в несущей стене типовые конструкции.

Изолированный фундамент колонны

Он действует как основание для колонны. Обычно применяется для железобетонных зданий типа Скелтон. Может принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.

Инжир.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это комбинированное основание для внешней и внутренней колонн здания, рис.5. Он также используется когда две соседние колонны здания расположены близко друг к другу другой, что их опоры перекрывают

Распределение напряжений под опорами

Распределение напряжений под опорами считается линейным, хотя на самом деле это не так. Ошибка участие в этом предположении невелико, и на него можно не обращать внимания.

Загрузить сборники

Нагрузки, влияющие на обычные типы строений:

  1. Постоянная нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Собственная нагрузка

Полная статическая нагрузка, действующая на элементы конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность динамической нагрузки будет действовать одновременно на всех этажах многоэтажный дом.Следовательно, своды правил допускают определенные снижение интенсивности динамической нагрузки. Согласно египетскому кодексу На практике допускается следующее снижение временной нагрузки:

N или . перекрытий Снижение временной нагрузки%

Земля нулевой этаж%

1 ул нулевой этаж%

2 nd этаж 10.0%

3 рд этаж 20,0%

4 этаж 30,0%

5 -й этаж и более 40,0%

Временная нагрузка не должна снижаться в течение склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие, Необходимо учитывать ветровое давление и землетрясение.

Допущение, использованное при проектировании спреда Опоры

Теория анализа эластичности указывает на что распределение напряжений под симметрично нагруженными фундаментами не является униформа. Фактическое распределение напряжений зависит от типа материала. под опорой и жесткостью опоры. Для опор на рыхлых не связный материал, зерна почвы имеют тенденцию смещаться вбок на края из-под груза, тогда как в центре почва относительно ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6. Для общего случая жестких оснований на связных и несвязных материалов, Рис.6 показывает вероятное теоретическое распределение давления. Высокое краевое давление можно объяснить тем, что краевой сдвиг должен иметь место до урегулирования.

Потому что давление интенсивность под опорой зависит от жесткости опоры, тип почвы и состояние почвы, проблема в основном неопределенный.Обычно используется линейное распределение давления. под фундаментом, и в этом тексте будет следовать этой процедуре. В в любом случае небольшая разница в результатах проектирования при использовании линейного давления распределение

Допустимые опорные напряжения под опорами

Коэффициент запаса прочности при расчете допустимая несущая способность под фундаментом должна быть не менее 3 если учитываемые при расчете нагрузки равны статической нагрузке + пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий ток. нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, оно должно быть уменьшено на объем бетона. под землей на единицу площади основания, умноженную на разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7, тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги следующие позиции следует учитывать

1 ножницы

Напряжения сдвига съедали обычно контролировать глубину расставленных опор.Критическое сечение для широкой балки сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены. лицо. Значения касательных напряжений приведены в таблице 1. разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис. 8-б. Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение в соответствии с Кодексом Американского института бетона (A.CI).

Таблица 1): допустимые напряжения в бетоне и арматуре: —

Виды напряжений

условное обозначение

Допустимые напряжения в кг / см 2

Куб прочности

f у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические усилия с большим эксцентриситетом

f c

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

в 1

в 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f с

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно контролировать глубину разложенных опор.Из принципов статики Рис. 8-б , сила на критическом участке сдвига равна силе на опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p = допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что критический участок для продавливания сдвига находится на торце колонны, и в этом случае допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2 (для прочности куба = 160).

Фундамент обычно проектируется чтобы гарантировать, что глубина будет достаточно большой, чтобы противостоять сдвигу бетона без армирования полотном ..

2- Облигация

Напряжение связи рассчитывается как

.

где поперечная сила Q равна взятые в том же критическом сечении для изгибающего момента или при изменении бетонное сечение или стальная арматура.Для опор постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В арматурный стержень должен иметь достаточную длину г г , Рис.9, чтобы избежать выдергивания (разрыва соединения) или раскалывание бетона. Значение d d вычисляется следующим образом:

Для первого расчета возьмем f s равно допустимой рабочей стресс.Если рассчитанный d d есть больше имеющегося d d затем пересчитайте d d взяв f с равно действительному напряжению стали.

Допустимая стоимость облигации напряжение q b следующие

3- Изгибающий момент

Критические разделы для изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны, это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел расположен на полпути между краем опорной плиты и лицевой стороной столбец Рис.(10-с).

Глубина, необходимая для сопротивления изгибающий момент

4- Опора на опору

Когда железобетон колонна передает свою нагрузку на опору, сталь колонны, которая несущий часть груза, не может быть остановлен на опоре, так как это может привести к чрезмерной нагрузке на бетон в зоне контакта колонны.Следовательно, это необходимо для передачи части нагрузки, переносимой стальной колонной, на напряжение сцепления с основанием за счет удлинения стальной колонны или дюбеля. С Рис.11:

где f s — фактическое напряжение стали

5- Обычная бетонная опора под R.C. Опора

Распространенной практикой является размещение ровный бетонный слой под железобетонным основанием. Этот слой около 20 см. до 40 см. Проекция C плоского бетонного слоя зависит от его толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент на единицу длины в сечении a-a равно

Где f n = чистое давление почвы.

Максимальное растягивающее напряжение внизу раздела а-а это:

ДИЗАЙН R.C. СТЕНА:

Основание стены представляет собой полосу из железобетон шире стены. На Рис.13 показаны различные типы стеновые опоры. Тип, показанный на Рис. 13-а, используется для опор, несущих легкие. нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в Рис. 13-б используется, когда грунт под фундаментом неоднородный и разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d. для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров длиной стена.

1. Найдите P на уровне земли.

2. Найти, если дано, то оно сокращается или вычисляется P T .

3. Вычислить площадь опоры

Если напряжение связи небезопасно, либо увеличиваем за счет использования стальных стержней меньшего диаметра, либо увеличивать ∑ О глубина d.Сгибая вверх стальная арматура по краям фундамента помогает противостоять сцеплению стрессы. Диаметр основной стальной арматуры не должен быть меньше более 12 мм. Для предотвращения растрескивания из-за неравномерного оседания под стеной Само по себе дополнительное армирование используется, как показано на рис. 13-c и d. это принимается как 1,0% от поперечного сечения бетона под стеной и распределяется одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент — используется, если есть ограничение в одном направлении или если поддерживаемые столбцы слишком удлиненный.прямоугольное сечение. В простейшем виде они состоят из единой плиты ФИг.15-а. На рис.15-б изображена колонна на пьедестале. опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки и во многих случаях

требуется чтобы обеспечить необходимую длину для дюбелей. Наклонные опоры, такие как те, что на Рис. 15-c

Методика проектирования опор квадратной колонны

Американец Кодексы практики равно момент около критического сечения y-y чистого напряжения, действующего на вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max . равно любому; момент действия чистых напряжений на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а. о г-у.

8.Определите необходимую глубину сопротивления пробивке d p .

9. Рассчитайте d м , глубину сопротивления

b = B, сторона опоры согласно Американским нормам практики

.

b = (b c + 20) см где b c — сторона колонны по континентальному Кодексы практики.

Следует отметить, что d м вычисленное континентальным методом, больше, чем вычисленное американским кодом. Большая глубина уменьшит количество стальной арматуры и обычно соответствует глубине, необходимой для штамповки. Американский код дает меньший d м с более высоким значением стальной арматуры, но с использованием высокопрочной стали, площадь стальной арматуры может быть уменьшена. В этом тексте изгибающий момент рассчитывается в соответствии с Американскими нормами, а b равно принимается либо равным b c + 20, когда используется обычная сталь, либо равно B при использовании стали с высоким пределом прочности.

Глубина основания d может быть принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это Следует отметить, что при одном и том же изгибающем моменте большая глубина будет требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям минимальный процент стали. Также небольшая глубина потребует большой площади стали. особенно при использовании обычной низкоуглеродистой стали.

10. Выберите большее из d m или d p

11.Проверить d d , глубину установки дюбеля колонны.

Методика проектирования прямоугольных опор

Процедура такая же, как и квадратный фундамент. Глубина обычно контролируется пробивными ножницами, за исключением случаев, когда отношение длины к ширине велико, сдвиг широкой балки может контролировать глубина. Критические сечения сдвига находятся на расстоянии d по обе стороны от столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B. армирование в коротком направлении (сторона B) рассчитывается по изгибу момент М 11 .При размещении стержней в коротком направлении один необходимо учитывать, что опора, обеспечиваемая опорой колонны, является сосредоточены около середины, следовательно, зона опоры, прилегающая к колонна более эффективна в сопротивлении изгибу. По этой причине произведена регулировка стали в коротком направлении. Эта регулировка помещает процент стали в зоне с центром в колонне шириной, равной к длине короткого направления опоры.Остальная часть арматура должна быть равномерно распределена в двух концевых зонах, рис.18. По данным Американского института бетона, процент стали в центральная зона выдается по:

где S = отношение длинной стороны к короткой сторона, L / B.

СЕМЕЛЫ

Одиночные опоры должны быть связаны вместе пучками, известными как semelles, как показано на рис.19.a. Их функция нести стены первого этажа и переносить их нагрузки на опоры. Семелла могут предотвратить относительное оседание, если они имеют очень жесткое сечение. и сильно усиленный.

Семелле спроектирован как неразрезная железобетонная прямоугольная балка. несущий вес стены. Ширина семели равна ширина стены плюс 5 см и не должна быть меньше 25 см. Должно сопротивляться усилиям сдвига и изгибающим моментам, которым он подвергается, semelles должен

быть усиленным сверху и снизу для противодействия дифференциальным расчетам.равным усилением A s .

Верх уровень семеллы должен быть на 20 см ниже уровня платформы. окружающие здание. Если уровень первого этажа выше уровень платформы, уровень внутренней полумельки можно принять 20 см. ниже уровня цокольного этажа

Опоры, подверженные воздействию момента

Введение

Многие основы сопротивляются в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей основания.Момент может возникнуть из-за нагрузки, приложенной не к центру основание. Примеры основ, которые должны противостоять моменту, — это основания для подпорные стены, опоры, опоры мостов и колонны фундаменты высотных зданий, где давление ветра вызывает заметный прогиб моменты у основания колонн.

Результирующее давление на почву под внецентренно нагруженным основанием считается совпадающим с осевым нагрузка P, но не с центром тяжести фундамента, что приводит к линейному неравномерное распределение давления.Максимальное давление не должно превышать максимально допустимое давление на почву. Наклон опоры из-за возможна более высокая интенсивность давления почвы на пятку. Это может быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта давление. Глава 1, Раздел «Опоры с эксцентрическими или наклонными нагрузками» обеспечивают снижение допустимого давления на грунт для внецентренно нагруженных опоры.

Опоры с моментами или эксцентриситетом относительно Одна ось

где P = вертикальная нагрузка или равнодействующая сила

е = Эксцентриситет вертикальной нагрузки или равнодействующей силы

q = интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами средней

Когда нагрузка P находится за пределами средней трети, то есть е > L / 6, Уравнение7 указывает на то, что под опорой возникнет напряжение. Однако нет между почвой и основанием может возникнуть напряжение, поэтому напряжение напряжения не принимаются во внимание, а площадь основания, которая находится в натяжение не считается эффективным при несении нагрузки. Следовательно диаграмма давления на почву должна всегда находиться в сжатом состоянии, как показано на Рис.21-.c. Для в эксцентриситет е > L / 6 с участием относительно только одной оси, можно управлять уравнениями для максимальной почвы давление q 1 , найдя диаграмму давления сжатия, результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот диаграмма примет форму треугольника со стороной = q 1 и основанием =

Опоры с моментами или эксцентриситетом относительно обе оси

Для опор с моментами или эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено с помощью следующее уравнение

a- Нейтральная ось за пределами базы:

Если нейтральная ось находится снаружи основание, то все давление q находится в сжатом состоянии, и уравнение (9) имеет вид действительный.Расположение максимального и минимального давления на почву может быть определяется быстро, наблюдая направления моментов. Максимум давление q 1 находится в точке (1)

Рис.22-а и минимальный давление q 2 находится в точке (3). Давление q 1 и q 2 определяются из уравнения (9).

б- Нейтральная ось режет основание

Если нейтральная ось режет основание, то некоторый участок основания подвергается растяжению Рис.22. Как почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет Максимальное давление на почву должно зависеть от площади, фактически находящейся на сжатии. Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая должны быть равны и на одной линии действия силы P. Простейший способ получить эту диаграмму — методом проб и ошибок следующим образом:

1- Находить давление почвы во всех углах, применяя уравнение.(9).

2- Определите положение нейтральной оси N-A (линия нулевого давления). Это не прямая линия, но предполагается, что это так. Поэтому необходимо найти только две точки, по одной на каждой соседней стороне. основания.

3- Выбрать другой нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту результирующей нагрузки P, действующей на опору.

4- Вычислить момент инерции сжатой области по отношению к N’-A ‘. В Самая простая процедура — нарисовать опору в масштабе и разделить площадь на прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ПРЕДНАЗНАЧЕННЫХ ФУНТОВ К МОМЕНТУ

Основная проблема в конструкция эксцентрично нагруженных опор — это определение распределение давления под опорами. Как только они будут определены, процедура проектирования будет аналогична концентрически нагруженным опорам, выбраны критические сечения и произведены расчеты напряжений из-за момент и сдвиг сделаны.

Где изгибающие моменты на колонне поступают с любого направления, например от ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции, опору можно удлинить в направлении эксцентриситета

Размеры фундамента B и L пропорциональны таким образом, чтобы максимальное давление на носке не превышает допустимого давления почвы.

Если колонна несет постоянный изгибающий момент, например, кронштейн, несущий длительной нагрузке, может оказаться преимуществом смещение колонны от центра на опоры так, чтобы эксцентриситет результирующей нагрузки был равен нулю. В этом случае распределение давления на основание будет равномерным. Долго носок опоры должен быть спроектирован как консоль вокруг сечение лицевой стороны колонны, Расчет глубины сопротивления пробивные ножницы и ножницы для широкой балки такие же, как при опоре фундаментов концентрические нагрузки

Поскольку изгибающий момент на основание колонны, вероятно, будет большим для этого типа фундамента, арматура колонны должна быть правильно привязана к фундаменту., Детали армирования для этого типа фундаментов показаны на рис.24.

Для квадратного фундамента это как правило, удобнее всего поддерживать одинаковый диаметр стержня и расстояние между ними в обоих направления во избежание путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления разворота и стены. опоры.В этом разделе рассматриваются некоторые из наиболее сложных проблемы с мелким фундаментом. Среди них есть опоры, поддерживающие более один столбец в ряд (комбинированные опоры), который может быть прямоугольным или трапециевидной формы, или две накладки, соединенные балкой, как ремешок опора. Эксцентрично нагруженные опоры и опоры несимметричной формы тоже будет рассмотрено.

Прямоугольные комбинированные опоры

Когда линии собственности, расположение оборудования, расстояние между колоннами или другие соображения ограничить расстояние от фундамента в местах расположения колонн, возможное решение: использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать два столбца, как показано на рисунках 25 и 26, или более двух столбцов с только небольшое изменение процедуры расчета. Эти опоры обычно проектируется, предполагая линейное распределение напряжения на дне основания, и если равнодействующая давления почвы совпадает с равнодействующая нагрузок (и центр тяжести опоры), грунт предполагается, что давление равномерно распределено, линейное давление Распределение подразумевает твердую опору на однородной почве.Настоящий опора, как правило, не жесткая, и давление под ней неравномерно, но Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении расположение центра тяжести (cg) нагрузок на колонну и использование длины и такие размеры ширины, чтобы центр тяжести основания и центр силы тяжести колонны нагрузки совпадают.С размерами опоры установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига армирование, чтобы косвенно удовлетворить требованиям жесткости), и армирование сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба диагональное натяжение и широкая балка должны приниматься, как указано в предыдущем раздел.Максимальные положительные и отрицательные моменты используются при проектировании армирующей стали, и в результате получится сталь как в нижней, так и в верхней части луч.

В коротком направлении очевидно, что вся длина не будет эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее эффективен для изгиба, и рекомендуется использовать этот подход. Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного опоры

Если принять, что зона, в которую входят столбцы, больше всего эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то больше ширины столбца. Наверное, не должно быть больше ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода проиллюстрирован на рис.27. Для оставшейся части фундамента в коротком направлении Кодекс ACI Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен несколько критично, если желательно иметь диаграммы сдвига и момента математически близко как проверка ошибок.Это означает, что если длина точно вычисленное значение из местоположения cg столбцов, Эксцентриситет будет внесен в основание, что приведет к нелинейному диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15 см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и диаграммы моментов.Для расчета значения сдвига и момента на краю (торце) столбца следует использовать. Результирующая ошибка при использовании этого подхода: незначительно Рис. (28)

Если основание нагружено более чем двумя колоннами, проблема все еще сохраняется. статически детерминированный; реакции (нагрузки на колонку) известны также как распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: —

Ссылаясь на Рис.29, этапы проектирования можно резюмировать следующим образом:

1- Найдите направление применения результирующего R. Это исправление L / 2, поскольку y равно известные и ограниченные. Следует указать, что если длина L не равна точно рассчитанное значение, эксцентриситет будет введен в опоры, в результате чего получается нелинейная диаграмма давления грунта.Фактический как построенный длину, однако, следует округлить до практической длины, например, до ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6- Определите глубину сдвига. Принято делать глубину адекватной на сдвиг без использования сдвига армирование. Критическое сечение сдвига находится на расстоянии d от грани. столбца, имеющего максимум сдвиг, рис.30

7-Определить глубина продавливания сдвига для обеих колонн. По данным ACI, критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д выбран наибольший из

т = д + 5-8 см.

11- Проверьте напряжения сцепления и длину анкеровки d.

12- Короткое направление:

Нагрузки на колонну распределяются поперечно поперечными балками (скрытыми), одна под каждым столбцом.Длина балок равна ширине балки. опоры B. Эффективную ширину поперечной балки можно принять как минимум из следующих:

а- Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента за столбцом y, рис.31.

б- Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y. Поперечный изгибающий момент M T1 в колонне (1) равен

Поперечная арматура должна быть распределена по полезной ширине. поперечной балки.Для остальной части фундамента минимум следует использовать процентную сталь. Напряжения связи и длина анкеровки d d , следует проверить.

Стойка комбинированная трапециевидная: —

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или когда есть ограничение на общую длину опоры.Ссылаясь на Рис.32 ,

Положение результирующей нагрузки на столбцы R определяет положение центриод трапеции. Длина L определяется, а площадь A равна вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что диаграмма сдвига будет кривой второй степени, а изгибающий момент — кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору. где расстояние между колоннами настолько велико, что комбинированная или трапециевидная опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

Ремешок основание состоит из двух опор колонн, соединенных элементом, называемым ремень, балка или консоль, передающая момент извне опора.На рис.33 показано ленточное основание. Поскольку ремешок предназначен для

момент, либо это должно быть образуются вне контакта с почвой или почву следует разрыхлить на на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт действуя по нему. Для простоты разбора, если ремешок есть. не очень долго, весом ремешка можно пренебречь.

При проектировании ленточной опоры сначала необходимо выровнять опоры.Это делается при условии, что равномерное давление грунта под основаниями; то есть 1 и 2 (Рис.33) действуют в центре опоры.

Ремешок должен быть массивным член, чтобы это решение было действительным. Развитие уравнения 1 подразумевает жесткую вращение тела; таким образом, если ремешок не может передавать эксцентрик момент из столбца 1 без вращения, решение недействительно.Избежать рекомендуется вращение внешней опоры.

I планка / I опора > 2

Желательно пропорции обе опоры так, чтобы B и q были как можно более равны для управления дифференциальные расчеты.

Методика расчета опор ремня

реакция под интерьер опора будет уменьшена на такое же значение, как показано на Рис.33

1- Дизайн начинается с пробной стоимости

евро.

6- Убедитесь, что центр тяжести площадей двух опор совпадают с равнодействующей нагрузок на колонну.

7- Рассчитайте моменты и сдвиг в различных частях ремня. опора.

8- Дизайн ремешка

Ремешок представляет собой однопролетная балка, нагруженная вверх нагрузками, передаваемыми ей двумя опор и поддерживаются нисходящими реакциями по центральным линиям двух столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L. т / м ‘. Местоположение максимального момента получается приравниванием сдвига сила до нуля. Момент уменьшается к внутренней колонне и равен нулю. по центральной линии этого столбца. Следовательно, половина армирования ремня составляет снята с производства там, где больше нет необходимости, а вторая половина продолжается до внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если нужно.

9- Конструкция наружной опоры

Внешняя опора действует точно так же, как настенный фундамент длиной, равной L. Хотя колонна расположен на краю, балансирующее действие ремня таково, что передают реакцию R 1 равномерно по длине L 1 Таким образом достигается желаемое равномерное давление на почву. Дизайн выполнен точно так же, как для настенного фундамента.

10- Дизайн межкомнатной опоры

Внутренняя опора может быть спроектирован как простой одноколонный фундамент. Основное отличие состоит в том, что Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ

Введение

Фундамент плота непрерывные опоры, которые покрывают всю площадь под конструкцией и поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента. этого типа. Обычно используется на почвах с низкой несущей способностью и там, где площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой структура. Плотный фундамент применяется и там, где в грунтовой массе содержится сжимаемые линзы или почва достаточно неустойчива, так что дифференциал урегулирование будет трудно контролировать. Плот имеет тенденцию переходить мост неустойчивые отложения и уменьшает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине плота по сравнению с шириной обычной опоры, допустимая вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике что при допустимой несущей способности под плотом, равной удвоенной допустимая несущая способность определяется для обычной опоры.отдых на том же песке даст разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на глубина равна или больше B, ширина плота, допустимая Несущая способность, определенная для сухих условий, не должна уменьшаться. Если есть вероятность, что уровень грунтовых вод поднимается, пока не затопит площадка, допустимая несущая способность следует уменьшить на 50%.Если уровень грунтовых вод находится на промежуточной глубине между B и основанием плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность не влияет на ширину фундамента. вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал осадка под плотом более чем терпима или если вес здание, разделенное на его площадь, дает несущее напряжение больше, чем допустимая несущая способность, плавающий или частично плавающий фундамент должен быть на рассмотрении.

Выполнить плавающий фундамент, земляные работы должны проводиться до глубины D, на которой вес выкопанного Грунт равен весу конструкции, рисунок 2.В этом случае избыточное наложенное напряжение Δp на уровне фундамента равна нулю и, следовательно, здание не пострадает.

Если полный вес building = Q

и вес удаленной почвы = Ш с

и превышение нагрузки при уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента ;

Q = Ш с и, следовательно, Q e = Ноль

В случае частично плавающего фундамент, Q e имеет определенный значение, которое при делении на площадь основания дает допустимый подшипник емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими. конструкции (так называемый традиционный анализ), при которых давление грунта действует против плиты плота предполагается равномерно распределенным и равным общий вес постройки, деленный на площадь плота.Это правильно, если столбцы загружены более или менее одинаково и на равном расстоянии друг от друга, но на практике выполнить это требование сложно, поэтому допускается чтобы нагрузки на колонны и расстояния варьировались в пределах 20%. Однако если нисходящие нагрузки на одних участках намного больше, чем на других, это желательно разделить плот на разные части и оформить каждую зону на соответствующее среднее давление. Непрерывность плиты между такими области обычно предоставляются, хотя для областей с большими различиями в давление рекомендуется строить вертикальный строительный шов через плита и надстройка, чтобы учесть дифференциальную осадку.

В гибком плотном фундаменте дизайн не может быть основан только на требованиях к прочности, но это необходимо подвергнуться из-за прогнозируемого заселения. Толщина и количество армирования плота следует подбирать таким образом, чтобы предотвратить развитие трещин в плите. Поскольку дифференциальный расчет не учтено в конструктивном дизайне, принято усиливать плот с вдвое большей теоретической арматурой.Количество сталь можно принять как 1% площади поперечного сечения, разделенной сверху и Нижний. Толщина плиты не должна быть больше 0,01 от радиус кривизны. Толщина может быть увеличена около колонн до для предотвращения разрушения при сдвиге.

Есть два типа плотных фундаментов:

1- Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если толщина плиты недостаточна, чтобы противостоять продавливанию под колонны, пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2- Плита и балка на плоту, есть. перевернутый R.C. пол, состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях, Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, который равномерной толщины, делится на полосы столбцов и средние полосы как показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b = сторона колонки. Глубину плота d можно принять примерно равной 1/10 свободный промежуток между столбцами.Также ширину полосы столбца можно принять равно 3 б.

Планки колонн выполнены в виде неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть интенсивность равномерного восходящего давления f n под любой площадью, для Например, площадь DEFG можно принять равной одной четвертой общей нагрузки. на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения, показанных на рис. 35-б. Общая нагрузка на деталь DE, P DE , принимается равной чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота устанавливается равнодействующая всех нагрузок и определяется давление грунта. вычисляется в различных местах под основанием по формуле.

Плот подразделяется на ряд непрерывных полос (балок) с центром в рядах колонн, как показано на Рис.37.

Диаграммы сдвига и момента могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента коэффициент Коэффициенты момента балки. Коэффициент момента балки PI 2 /10 для длинных направлений и Для коротких направлений может быть принят PI 2 /8.Отрицательный и положительные моменты будем считать равными. Глубина выбрана так, чтобы удовлетворить требования к сдвигу без использования хомутов и растягивающей арматуры выбрано. Глубина обычно будет постоянной, но требования к стали могут варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Конструкция плиты перекрытия и фермы (ребристый мат)

Если столбец загружается и интервалы равны или изменяются в пределах 20%, чистое восходящее давление f n действие на плот предполагается равномерным и равным Q / A.

где

Q = вес здания при на уровне земли, и

A = площадь плота (по за пределами внешних колонн).

Если это давление больше чем чистое допустимое давление на грунт, площадь плота должна быть увеличена до площади, достаточно большой, чтобы снизить равномерное давление на сетку допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы внешняя грань внешних колонн.

Ссылаясь на Рис. 38, различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘ на

Пусть R 1 и R 2 быть центральной реакцией балок B 1 и B 2 на центральная балка дальнего света В и 3 соответственно.Концевые балки B 1 несет только часть нагрузки, которую несет балка B 2 и, следовательно, центральная реакция R 1 принимается равной

KR 2 где K — коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма центральных реакций от поперечных балок B 1 и B 2 равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2 = 2-пол. 1 + 2-пол. 2 (2)

Решение уравнений.(1) и (2), R 1 и R 2 может быть определен.

Изгибающий момент и сдвиг силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1 и R 2 можно определить, приравняв сумму вертикальных сил до нуля. Центральное сечение балок при положительном изгибающем моменте может быть выполнен в виде Т-образной балки, так как плита находится на стороне сжатия. Разделы балки под центральной балкой B 3 должны быть прямоугольными. раздел.

2- Конструкция центральной главной балки B 3

Нагрузка, усилие сдвига, диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть выполнен в виде Т-образной балки.

3- Конструкция центральной главной балки B 4

Нагрузка, усилие сдвига, диаграммы изгибающих моментов представлены на рис.40-б Разрез может быть спроектирован как тавровая балка

Ленточный фундамент — Designing Buildings Wiki

Фундаменты служат опорой для конструкций, передавая их нагрузку на слои почвы или породы, которые обладают достаточной несущей способностью и подходящими характеристиками осадки.

В широком смысле фундаменты можно разделить на мелкие и глубокие. Фундаменты мелкого заложения обычно используются там, где нагрузки, создаваемые конструкцией, невелики по сравнению с несущей способностью поверхностных грунтов. Глубокие фундаменты необходимы там, где несущая способность поверхностных грунтов недостаточна для выдерживания нагрузок, создаваемых конструкцией, и поэтому их необходимо переносить на более глубокие слои с более высокой несущей способностью.

Ленточный фундамент (или ленточный фундамент) — это тип неглубокого фундамента, который используется для обеспечения непрерывной, ровной (или иногда ступенчатой) полосы поддержки линейной конструкции, такой как стена или близко расположенные ряды колонн. в центре над ними.

Ленточный фундамент можно использовать для большинства грунтов, но он больше всего подходит для грунта с относительно хорошей несущей способностью. Они особенно подходят для легких структурных нагрузок, таких как многие малоэтажные и средние жилые дома, где можно использовать ленточный фундамент из массивного бетона . В других ситуациях может потребоваться железобетон.

Старые здания могут иметь ленточный фундамент из кирпича.

В широком смысле размер и расположение ленточных фундаментов обычно связаны с общей шириной стены.Глубина традиционного ленточного фундамента обычно равна или больше общей ширины стены, а ширина фундамента обычно в три раза превышает ширину поддерживаемой стены. Это приводит к тому, что нагрузка передается под углом 45º от основания стены к грунту.

Утвержденный документ A Строительных норм определяет минимальную ширину ленточных фундаментов в зависимости от типа грунта и несущей стены, хотя обычно рекомендуется проконсультироваться с инженером-строителем при проектировании фундаментов.

Нижняя сторона ленточного фундамента должна быть достаточно глубокой, чтобы избежать воздействия мороза; например, не менее 450 мм, если они не опираются на скалу, и не менее 1 м на глинах с высокой усадкой.

Глубокий ленточный фундамент может потребоваться, если грунт с подходящей несущей способностью более глубокий.

Широкий ленточный фундамент может потребоваться, если грунт мягкий или с низкой несущей способностью, чтобы распределить нагрузку на большую площадь.Широкий ленточный фундамент обычно требует армирования.

Там, где есть более высокие локальные нагрузки, например, колонны, можно использовать опорные основания. Для получения дополнительной информации см. Основания колодок.

Там, где грунтовые условия плохие, вероятна осадка, или там, где может быть нецелесообразно создавать отдельные ленточные или блочные фундаменты для большого количества отдельных нагрузок, можно использовать плотные фундаменты. См. Фундаменты на плотах для получения дополнительной информации.

Если несущая способность грунта на поверхности недостаточна для выдерживания нагрузок, создаваемых конструкцией, могут использоваться глубокие фундаменты, такие как свайные фундаменты.См. Свайные фундаменты для получения дополнительной информации.

В более крупных или более сложных зданиях может использоваться несколько различных типов фундаментов.

Дополнительное руководство доступно в BRE’s Простые основы для малоэтажного жилья: «практическое правило» дизайна.

Типы фундаментов, конструкция и конструкция

Фундаменты из матов также известны как фундаменты на плотах, это толстые бетонные плиты, размещаемые на земле в качестве фундамента конструкции. Фундаменты матов возводятся в различных случаях, таких как строительство зданий, строительство мостов, строительство башен и т. Д.

Если мы имеем дело с фундаментом мелкого заложения, последний вариант фундамента неглубокого заложения — это фундамент на плоту.

При увеличении осевых нагрузок на конструкцию или из-за плохого состояния грунта необходимо увеличить площадь опор (изолированных, комбинированных, ленточных опор и т. Д.).

Увеличение размеров опор все больше и больше вызывает наложение напряжений друг на друга, что создает слабую зону. На этом фоне подбираем основания плота.

Что такое Mat Foundation?

Матовый фундамент — это всегда не плоская плита, лежащая на земле, в качестве опоры надстройки. Существуют различные конструкции, основанные на приложении нагрузок.

Меньшие нагрузки, приложенные к основанию мата, строим плоскую плиту. Однако с увеличением нагрузок используются различные методы, которые обсуждаются в этой статье, для повышения жесткости плиты.

Кроме того, мы могли бы использовать плотный фундамент для поддержки зданий высотой примерно до 10 этажей.

Кроме того, увеличение осевых нагрузок обеспечивает более высокие затраты на строительные работы. Это могло даже превзойти строительство свайных фундаментов сверх определенного уровня.

Типы основания матов

Классификация оснований матов основана на модификациях, внесенных в плоскую плиту.

Дополнительно к плоту сделана конструкция для повышения жесткости фундамента на изгиб.

Глубина фундамента плота значительно увеличена в местах расположения колонн, чтобы выдерживать высокие изгибающие моменты и поперечные силы.

Следующая категоризация, обсуждаемая в статье Типы фондов , может быть использована для получения более подробной информации о них.

Толстая бетонная плита, отлитая в качестве фундамента на грунт, представляет собой плоский плот.

Нет никаких выступов для придания жесткости фундаменту мата, кроме бетонных стен, работающих на сдвиг.

  • Плоский фундамент с утолщением под колонну

Увеличение осевых нагрузок на колонну приводит к увеличению прочности на изгиб и сдвиг.

Это приводит к удорожанию строительства. Далее, сверх определенного уровня, приходится увеличивать толщину матовой основы.

Если мы увеличим толщину всей основы мата, это не будет экономичным способом обработки.

Таким образом, увеличиваем толщину матового фундамента под колоннами. Поскольку выступ находится под плоской пластиной, строительство может быть затруднено.

Укладка арматуры, гидроизоляции и т. Д. Не могла быть такой простой задачей.

  • Фундамент с плоской пластиной Утолщен над братской в ​​колонне

Выступ над плоской пластиной такой же, как и выступ под пластиной.

Сконструировать выступ плота над его поверхностью очень просто. Однако мы можем сделать это только в том случае, если мы не используем плиту или оставшееся расстояние достаточно для этой цели.

  • Плотно-балочный фундамент

Плоская плита или выступы из плоской плиты не могут нести дальнейшее увеличение осевой нагрузки на колонну.Для придания жесткости фундаменту предусмотрены балки.

Введение балок значительно снижает толщину плиты перекрытия.

  • Фундаменты ячеистого плота

Одноэтапное развитие балочного плота — это фундамент ячеистого плота. В этот тип фундамента кладем и верхнюю плиту.

Еще больше увеличивает жесткость основы мата.

Фундаменты плотов Plie сооружаются в многоэтажных зданиях в тех случаях, когда сваю нельзя вставить в скалу, и когда концевое опоры сваи недостаточно, и т. Д.

Проектирование и строительство свайного фундамента — сложный процесс.

Сначала сваи принимает на себя нагрузку, а затем начинает делиться с фундаментом плота.

Как только сваи полностью мобилизованы, плот начинает полностью принимать на себя нагрузку. Наконец, плот принимает на себя всю нагрузку.

На следующем рисунке показана кривая зависимости нагрузки от осадки.

Для получения дополнительной информации можно обратиться к статье, посвященной фундаменту свайного плота.

На следующем рисунке показаны различные типы фундаментов на плотах, которые можно использовать при проектировании.

Выбор типа матового основания осуществляется в зависимости от приложенной нагрузки на фундаментную систему.

Проектирование фундамента из мата

В основном есть два метода проектирования фундамента плота.

  1. Традиционные методы — Используйте ручные расчеты и диаграммы
  2. Методы анализа конечных элементов — Используйте компьютерный пакет для решения проекта

Проектирование фундаментов из матов с помощью обычного жесткого метода

При проектировании фундаментов из матов можно выполнить следующие шаги от обычного жесткого метода.

  • Рассчитайте общую прилагаемую нагрузку к основанию мата
  • Рассчитайте давление под каждой колонной с учетом эксцентриситета нагрузки. Осевое напряжение и изгибающее напряжение из-за эксцентриситета центра нагрузки учитываются для определения давления под каждой колонной.
  • Убедитесь, что допустимое давление нетто больше, чем прикладываемое давление.
  • Затем мат делится на полосы в зависимости от его расположения.
  • Определите изгибающий момент и поперечные силы.
  • Определите эффективную глубину основания. Это может быть сделано на основе диагонального сдвига растяжения возле различных колонн.
  • Сформируйте диаграммы изгибающего момента, рассчитанные выше, определите положительный и отрицательный изгибающие моменты на единицу ширины.
  • Расчет площади армирования на единицу ширины секции

В дополнение к этой процедуре существуют другие методы, такие как приблизительный гибкий метод для анализа и проектирования фундаментов плотов.

Методы конечно-элементного анализа

Метод конечных элементов — это рассмотрение гибкого поведения грунта в структурном анализе. В этом методе почва является модельной, и ее поведение учитывается при анализе и проектировании.

Существуют разные методы моделирования почвы.

Мы можем моделировать грунт под фундаментом с учетом свойств материала. Для этой цели можно использовать такое программное обеспечение, как plaxis. В этом типе анализа очень важно выбрать правильную модель материала для почвы.Если мы не рассматриваем правильную идеализацию, мы получим неправильные ответы.

Кроме того, мы могли бы использовать такое программное обеспечение, как расчет и проектирование фундамента SAFE, чтобы получить изгибающие моменты и силы сдвига.

Почву можно моделировать как площадные источники. Пружины сечения можно рассчитать, как указано в книге «Анализ и проектирование фундаментов недр».

Источником площади является реакция земляного полотна почвы. Существует множество методов расчета реакции земляного полотна.В этой статье мы обсуждаем простейший метод, описанный в книге «Анализ и проектирование основания кишечника».

Площадь Пружина = SF x 40 x BC — для осадки фундамента плота 25 мм

Где SF — коэффициент запаса прочности, учитываемый для расчета допустимой несущей способности, а BC — допустимая несущая способность.

Вышеприведенное уравнение относится к осадке 25 мм в фундаменте плота. Отклонение от этого значения может дать неправильные ответы.

Следовательно, указанное выше уравнение должно быть изменено на основе указанного в отчете инженерно-геологического исследования осадки для определения допустимой несущей способности или на основе расчетной осадки.

Площадь Весна = SF x (1000 / поселение) x BC

После того, как мы вычислили ответвления площади почвы или реакцию земляного полотна, ее можно применить к компьютерной модели, созданной с помощью подходящего программного обеспечения.

После приложения нагрузок в положениях колонн можно выполнить анализ фундамента. Затем мы можем найти изгибающий момент и поперечные силы.

Расчет арматуры производить по результатам анализа.

Специальное примечание по анализу и проектированию фундаментов матов
  • Рекомендуется использовать вспомогательное компьютерное программное обеспечение для анализа и проектирования фундаментов матов.
  • Моделирование и идеализация фактического поведения фундамента должны выполняться очень тщательно и с особой тщательностью.
  • Грунт может быть модельным с площадными пружинами. Это реакция земляного полотна. Мы определяем реакцию земляного полотна в программе и соотносим ее с компьютерной моделью.
  • Реакцию Сусбграта можно оценить с помощью различных доступных методов. Это может быть основано на значении SPT, результатах испытаний, несущей способности почвы или использовании любого метода.
  • Фундамент можно смоделировать вместе с надстройкой, чтобы объединить поведение надстройки и фундамента.Прогиб фундамента может повлиять на надстройку, и поведение надстройки может быть включено в деформации фундамента.
  • Далее, фундамент может быть моделью без надстройки. Нагрузка на колонну может быть применена к модели напрямую. Стенки сдвига можно рассмотреть для включения в модель.
  • Фундамент из мата должен быть рассчитан на изгиб и сдвиг.
  • Фундамент необходимо проверить на наличие вертикального сдвига и продавливания.Периметр продавливания среза может быть определен согласно соответствующему стандарту, по которому выполняется проектирование. Статья о конструкции пробивных ножниц может быть использована для проектирования и определения периметра сдвига.
  • Особое внимание следует уделять проектированию на сдвиг. Требование к срезным звеньям должно быть проверено, и срезные звенья должны быть предоставлены там, где это необходимо для расчетов.
  • Анализ конструкции свайного плотина — это сложный процесс, который должен выполняться с использованием соответствующей опубликованной литературы.

Строительство фундамента из мата

Строительство фундамента из мата также выполняется с большим вниманием и с должным вниманием к контролю качества и обеспечению качества.

Давайте обсудим процесс строительства по порядку.

  • Земляные работы для фундамента циновки

Земляные работы и земляные работы, поддерживающие систему, должны быть решены до начала строительства. В зависимости от характера конструкции и глубины сооружения должен быть выбран тип опорной системы для земляных работ.

В статье земляные работы для фундамента можно сослаться на дополнительные сведения о проектировании и строительных аспектах систем земляных работ.

Кроме того, в качестве примеров работ по земляным подпорным системам можно отнести статьи , , проектирование опорных систем выемки грунта, , и , , подпорная стенка из шпунтовых свай, .

В целом все основания мата гидроизолированы. Выполнена гидроизоляция всех фундаментов плотов, так как в основном они сооружаются ниже уровня готовой земли.

Использование гидроизоляционной мембраны защищает фундамент от намокания или затухания. Кроме того, движение воды через бетон также не является гидроизоляцией.

Статью о различных типах гидроизоляции деталей, используемых в строительстве, можно назвать знанием устройства гидроизоляционных мембран.

В плотном фундаменте имеются строительные швы, деформационные швы, деформационные швы и т. Д. Они должны быть герметичными, чтобы вода не проходила через стык.

К статьям строительных швов и типов бетонных швов можно обратиться для получения дополнительной информации о деталях швов и методах обработки швов.

Гидрошпонки предусмотрены на строительных и деформационных швах. Тип стыка изменяет тип предусматриваемой остановки воды.

В строительных стыках мы обычно устанавливали гидрошпонку в центре плота. (Типичные детали см. В статье Гидроизоляция ).Гидрошпонки из низкоуглеродистой стали или ПВХ обычно используются в этих типах соединений.

Гидравлические стержни поверхностного типа предусмотрены в деформационных швах и компенсаторах. (Типичные детали см. В статье Гидроизоляция )

Кроме того, дополнительную информацию можно найти в статье Waterstop .

В основном есть два типа армирования, которые можно наблюдать в плотном фундаменте.

Это арматура для изгиба и арматуры на сдвиг.

Изгибаемая арматура связана как обычно, а поперечная арматура помещается в колонну в основном в соответствии с требованиями к сдвигу. Сдвиговые звенья должны соответствовать проектным требованиям. Распространение поперечных звеньев в любом направлении колонны должно соответствовать проектным требованиям.

В зависимости от характера конструкции и проектных требований Заливка бетона выполняется в несколько заливок.

Не обязательно иметь несколько заливок, но это может быть бетон в одной поре, если размер основания мата меньше и есть соответствующие ресурсы, такие как человеческие ресурсы и материальные ресурсы.

В фундаменте с большим матом количество заливок определяется в зависимости от возможностей подрядчика по доставке и укладке бетона.

Кроме того, при выборе последовательности заливки бетона учитываются тепловые эффекты. Первоначально последовательность, которая может быть применена к бетону, определяется таким образом, чтобы минимизировать термическое ограничение при повторной заливке. Однако нам не всегда удается избежать этого. Мы должны проектировать для этого.

Кроме того, последовательность отверстий планируется для каждой заливки, чтобы избежать образования холодного стыка с заливкой.В зависимости от времени схватывания бетон необходимо залить до начала схватывания.

Повышение температуры бетона, более высокий температурный градиент и разница температур между сердцевиной и поверхностью являются ключевыми факторами, которые необходимо учитывать при регулировании температуры.

На практике мы поддерживаем максимальное повышение температуры бетона за счет теплоты гидратации до 70 градусов Цельсия, чтобы избежать замедленного образования эттрингита.

Однако добавление летучей золы увеличивает этот запас даже до 80 градусов Цельсия или более.Максимальная температура также сильно зависит от типа цемента.

Поэтому всегда рекомендуется поддерживать температуру около 70 градусов Цельсия или ниже, поскольку мы не можем наблюдать, что происходит внутри бетона.

Испытания на макете проводятся для проверки повышения температуры бетона за счет теплоты гидратации. Кроме того, это дает другие преимущества, такие как выбор толщины и типа материалов, которые будут использоваться в качестве опалубки.

Тот же материал, что и при испытании макета, и если повышение температуры допустимо, также следует использовать в конструкции.Не допускается изменение материала и толщины материала.

Добавление в бетон зольной пыли действует как наполнитель и снижает содержание цемента. Кроме того, он снижает повышение температуры в процессе гидратации.

Рекомендуется поддерживать добавление летучей золы в диапазоне примерно 20% — 35%.

Кроме того, использование летучей золы в бетоне улучшает удобоукладываемость бетона .

Остальные методы ограничения температуры бетона перечислены ниже.

    • Ограничьте температуру помещения. Обычной практикой является ограничение температуры помещения до 30 градусов по Цельсию. Однако для ограничения повышения температуры потребуется дальнейшее снижение.
    • Добавьте лед или охлажденную воду, чтобы снизить повышение температуры.
    • Залить бетон ночью
    • Добавить летучую золу
    • Соединить заполнители
    • Используйте цемент с низким тепловыделением
    • Соедините бетон с труб, заделанных в бетон.

Подобные методы можно использовать для контроля повышения температуры бетона. При контроле мы могли бы быть выше, чтобы избежать образования отложенного эттрингита из-за повышения теплоты гидратации, термических трещин в бетоне из-за разницы температур и высокотемпературного градиента.

Проектирование фундамента | Tekla Tedds

Фундамент — одна из самых важных частей конструкции и одна из самых дорогих. Несложные, конструктивные и экономичные фундаменты являются основой успешного проектирования конструкций как на простых, так и на сложных участках.Tedds повышает производительность и качество строительства и строительства, заменяя повторяющиеся трудоемкие ручные расчеты автоматизированными расчетами конструкции фундамента. Это делает проектирование фундамента более эффективным, так что вы можете надежно создавать простые, но безопасные конструкции, которые ускоряют строительство в земле.

Анализ и проектирование опор

Tedds поддерживает анализ и проектирование опор для Еврокода и США. Эти расчеты позволяют быстро проверить результаты анализа и проектирования или только анализа подушечного или ленточного фундамента из железобетона или простого бетона.

Анализ свай

Чтобы ускорить время проектирования фундамента, этот расчет анализа свай для Еврокода и США выполняет статический анализ стойкости одиночных свай, забитых или пробуренных, в пластах из нескольких геоматериалов. Стальные, бетонные или деревянные сваи можно анализировать на сжимающие и растягивающие осевые нагрузки и боковые нагрузки. Расчет боковой нагрузки предназначен только для коротких жестких свай.

Конструкция заглушки

Этот расчет свайных заглушек для Еврокода и США проверяет конструкцию заглушек свай, поддерживающих одну колонну до 9 свай.Колонна может подвергаться осевому сжатию или растяжению, сдвигающим нагрузкам и двухосному изгибу. Возможные варианты нагрузки включают постоянную, вынужденную, снеговую и ветровую для всех типов нагрузки. Могут быть определены постоянные и наложенные дополнительные нагрузки. Стальные, бетонные или деревянные сваи можно определить по прочности на сжатие, растяжение и сдвиг. Определенные мощности сравниваются с результатами анализа.

Бетонная плита / плита на основании

Этот конкретный расчет позволяет быстро оценить способность элементов плота выдерживать различные нагрузки без превышения допустимого опорного давления.Он также определяет количество арматуры, необходимой для поддержки нагрузок при перекрытии теоретических круговых углублений в грунте, которые, как предполагается, образуются под плотом.

Проектирование стальных шпунтовых свай

Этот расчет для проектирования стальных шпунтовых свай Еврокод и США проверяет устойчивость консольной или подпертой / связанной стены из стальных шпунтовых свай. Он определяет требуемую минимальную длину заделки, а затем рассчитывает минимальный требуемый модуль упругости пластического сечения на метр длины стены.При необходимости расчет определит усилие на стяжке / стойке.

Получите БЕСПЛАТНУЮ 45-дневную полную пробную версию здесь

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *