Теплоизоляционные материалы современные: Обзор современных теплоизоляционных материалов в строительстве

Содержание

Современные теплоизоляционные материалы

Теплоизоляция — своеобразный барьер, не дающий тепловой энергии перетекать из одного объема в другой. Вопросы теплоизоляции домов сегодня особенно актуальны. Затраты на утепление окупаются за 3-4 сезона и далее «работают в плюс». Главный враг теплосбережения — сквозняки, потоки воздуха, выносящие тепло. Теплоизоляционные свойства утеплителей основаны на сложной структуре волокна, максимально затрудняющей свободное перемещение воздуха внутри материала. Утепляя дом, в первую очередь стоит уплотнить оконные и дверные створы, теплоизолировать перекрытия. Затем переходить к теплоизоляции наружных стен.

Рассмотрим основные характеристики теплоизоляционных материалов.

Коэффициент теплопроводности. Зависит от влажности материала (вода проводит тепло лучше, чем воздух, и материал не будет выполнять теплоизолирующую функцию, если он мокрый), температуры, химического состава утеплителя, структуры, пористости.

Пористость — доля объема пор в общем объеме материала. Определяет такие свойства, как плотность, прочность, газопроницаемость, теплопроводность.

Плотность материала — отношение его массы к занимаемому объему.

Паропроницаемость.

Влажность — содержание влаги в материале.

Водопоглощение — способность материала впитывать и удерживать влагу в порах при прямом контакте с водой.

Био- и огнестойкость. Показатели пожарной безопасности: Г (горючесть), В (воспламеняемость), РП (распространение пламени по поверхности), Д (дымообразующая способность), Т (токсичность продуктов горения).

Прочность. Предел прочности при сжатии — 0.2-2.5 МПа. Материалы с показателем выше 2.5 МПа относят к категории теплоизоляционных-конструктивных и используют для несущих ограждающих конструкций.

Предел прочности при изгибе (показатель для плит, сегментов, скорлуп) и предел прочности при растяжении (для матов) нужны, чтобы определить, достаточна ли прочность материала при транспортировке, складировании, монтаже.

Температуростойкость — температура, выше которой материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загореться.

Морозостойкость — способность многократно выдерживать изменения температур от стадии замораживания до стадии оттаивания, без видимых признаков нарушения структуры.

Спектр представленных на рынке теплоизоляционных материалов включает минеральную вату, пеностекло, пенопласт, пенополиуретан и экструдированный пенополистирол.

Минеральная вата. Благодаря высокой пористости (до 95% объема занимают воздушные пустоты) имеет хорошие тепло- и звукоизоляционные свойства. Относится к негорючим строительным материалам, эффективно препятствует распространению пламени, морозостойка, имеет стабильные физические и химические характеристики. При монтаже необходима паро- и гидроизоляционная пленка.

Минераловатные утеплители выпускают в виде прошивных матов и плит. Маты представляют собой полотна минеральной ваты, прошитые специальными огнеупорными нитями на основу или без нее. Минераловатные маты выдерживают температуры до 700 град.С, не горят, не выделяют вредных веществ. Они принимают форму основания, плотно прилегают к поверхности, сокращая утечку тепла. Используются для теплоизоляции трубопроводов, технологического оборудования, горизонтальных ненагруженных строительных конструкций.

Для теплоизоляции вертикальных и горизонтальных нагруженных строительных конструкций используют минераловатные плиты. Их изготавливают из минераловатного полотна, пропитанного для прочности синтетическим связующими, с гидрофобизирующими добавками или без них.

Минераловатные плиты, как и маты, устойчивы к действию высоких температур и большинству химических агрессивных веществ. В зависимости от плотности, их разделяют на мягкие, полужесткие, жесткие и плиты повышенной жесткости.

Пеностекло получается в результате спекания стеклянного порошка с газообразователями. Пористость материала — 80-95% дает хорошие показатели теплоизоляции. Пеностекло прочное, водостойкое, не горит, не боится перепадов температур.

Пенопласт представляет целое семейство утеплителей: пенополистиролы, ПВХ, пенополиуретаны и др. Наиболее распространены полистирольные пенопласты. Структура материала представляет маленькие скрепленные между собой шарики. Пенопласты — прочные, недорогие утеплители. Удобны в работе, имеют высокие теплоизолирующие свойства, практически не имеют нижней границы применения. Нуждаются в защите от влаги, которая при замораживании разрушает структуру утеплителя.

Пенополиуретан экономит время монтажа, образует сплошной изоляционный слой без стыков и позволяет утеплять неровные поверхности. Может применяться при температуре от -250 град.С до +180 град.С.

Экструдированный пенополистирол. Микроструктура материала представляет собой закрытые ячейки, наполненные газом. Материал более прочный, чем пенопласт, имеет более низкое водопоглощение, не разрушается под действием солнца и атмосферных осадков, не вступает в реакцию с большинством веществ.

Аналогом пенополиуретана является пенополиизоцианурат (PIR). При сохранении всех положительных качеств полиуретана (низкая теплопроводность, малая плотность, хороший предел прочности при сжатии, паро- и влагонепроницаемость), PIR обладает и повышенной огнестойкостью, не поддерживает горение и затухает без источников огня. Материал применяется в качестве наполнителя сэндвич-панелей. Вес таких панелей ниже, чем у аналогов с минераловатным сердечником. Это снижает нагрузку на несущие конструкции, что важно при строительстве на вечной мерзлоте. PIR экологически безопасен и может использоваться на объектах с повышенными санитарными требованиями. Обладает высокой стойкостью к агрессивным природным и техногенным факторам.

Теплоизоляционные материалы: виды,описание,фото,свойства | Строительные материалы

Чтобы защитить жилье от теплопотерь и повышенной влажности, его покрывают различными типами утеплителей. Выбрать лучший из них очень сложно, ведь у каждого изделия собственные уникальные свойства и область применения. Теплоизоляционные материалы, которые применяются в современном строительстве, с одной стороны экологичны, с другой – удобны в монтаже. Изучив основные виды утеплителей, можно выбрать лучший теплоизоляционный материал, отвечающий именно вашим потребностям.

Основные виды утеплителей

Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.

К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:

  • рулоны;
  • листовой;
  • единичный;
  • сыпучий.

По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:

  • волокнистые;
  • ячеистые;
  • зернистые.

По виду сырья выделяют такие изделия различного класса качества:

  1. Органические, природные или натуральные утеплители — это пробковая кора, целлюлозная вата, пенополистирол, древесное волокно, пенопласт, бумажные гранулы, торф. Эти виды строительных теплоизоляционных материалов применяются исключительно внутри помещения, чтобы минимизировать высокую влажность. Однако природные строительные термоизоляторы не огнеупорны.
  2. Неорганические теплоизоляционные материалы — горные породы, стекловолокно, пеностекло, минераловатные утеплители, вспененный каучук, ячеистые бетоны, каменная вата, базальтовое волокно. Хороший изолятор тепла из данной категории отличается высокой степенью паропроницаемости и огнестойкости. Особенно эффективно утепление изделием с гидрофобизирующими добавками.
  3. Смешанные — перлит, асбест, вермикулит и другие утеплители из вспененных горных пород. Отличаются наилучшим качеством и, разумеется, повышенной стоимостью. Это самые дорогие марки лучших теплоизоляционных материалов. Поэтому таким утеплителем покрывают помещения намного реже, чем более экономными материалами.

Если нужно сделать термическую изоляцию трубопровода в стене, то для этого применяются  специальные «рукава» повышенной плотности.

Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.

Какие задачи решает теплоизоляционный материал

Теплоизоляция является одним из приоритетных направлений при строительстве, поскольку ее применение позволяет многократно повысить эксплуатационные характеристики зданий. Постройка с достаточным количеством утеплителя гораздо меньше промерзает зимой, что снижает затраты на его отопление. Также она менее склонна к перегреву летом, сохраняя внутри комфортную температуру, что экономит ресурс кондиционерного оборудования.

Наличие теплоизоляции дает возможность избежать резких скачков температуры в помещении. Это очень важно, если внутри помещений применяется чувствительный к этому параметру отделочный материал, к примеру, древесина или отдельные виды пластика, в том числе и ПВХ используемый для производства натяжных потолков. Отсутствие существенных колебаний температуры дает возможность убрать благоприятные условия для образования конденсата. Именно применение теплоизоляции исключает появление сырости и развития плесени. Конечно при условии, что влага не образовывается внутри помещения слишком интенсивно от других факторов или накапливается в результате отсутствия гидроизоляции между фундаментом и фасадными стенами.

Сырость на стенах приводит к отслаиванию отделочных материалов. Как следствие наблюдается срывание обоев, а также тяжелой керамической плитки. Переизбыток влаги от отсутствия достаточной теплоизоляции также приводит к расширению изделий из дерева. Как следствие наблюдается коробление напольного покрытия, деформация дверей, от чего они неплотно входят в дверную коробку, и так далее.

Стоит также отметить, что теплоизоляционные материалы помимо своего прямого предназначения обладают звукоизоляционными свойствами. Конечно, их эффективность не столь высока как у специализированных для этой цели покрытий, но вполне достаточная, чтобы уменьшить передачу громких звуков.

Применяемые теплоизоляционные материалы
Существует довольно широкий ассортимент предлагаемых на рынке материалов, которые могут применяться в качестве удачного утеплителя. Среди них оптимальный баланс между стоимостью и эффективностью имеют:
  • Минеральная вата.
  • Пенопласт.
  • Пенополистирол.
  • Пеноплекс.
  • Вспененный пенополиэтилен.
  • Пенополиуретан.

На какие параметры обращать внимание при выборе?

Выбор качественной теплоизоляции зависит от множества параметров. Берутся во внимание и способы монтажа, и стоимость, и другие важные характеристики, на которых стоит остановиться подробнее.

Выбирая самый лучший теплосберегающий материал, необходимо тщательно изучить его основные характеристики:

  1. Теплопроводность. Данный коэффициент равен количеству теплоты, которое за 1 ч пройдет сквозь 1 м изолятора площадью 1 м2, измеряется Вт. Показатель теплопроводности напрямую зависит от степени влажности поверхности, поскольку вода пропускает тепло лучше воздуха, то есть сырой материал со своими задачами не справится.
  2. Пористость. Это доля пор во всеобщем объеме теплоизолятора. Поры могут быть открытыми и закрытыми, крупными и мелкими. При выборе важна равномерность их распределения и вид.
  3. Водопоглощение. Этот параметр показывает количество воды, которое может впитать и удержать в порах теплоизолятор при прямом контакте с влажной средой. Для улучшения этой характеристики материал подвергают гидрофобизации.
  4. Плотность теплоизоляционных материалов. Данный показатель измеряется в кг/м3. Плотность показывает соотношение массы и объема изделия.
  5. Влажность. Показывает объем влаги в утеплителе. Сорбционная влажность указывает на равновесие гигроскопической влажности в условиях разных температурных показателей и относительной влажности воздуха.
  6. Паропроницаемость. Это свойство показывает количество водяного пара, проходящее за один час через 1 м2 утеплителя. Единица измерения пара – мг, а температура воздуха внутри и снаружи принимается за одинаковую.
  7. Устойчивость к био разложению. Теплоизолятор с высокой степенью биостойкости может противостоять воздействию насекомых, микроорганизмов, грибков и в условиях повышенной влажности.
  8. Прочность. Данный параметр свидетельствует о том, какое влияние на изделие окажет транспортировка, хранение, укладка и эксплуатация. Хороший показатель находится в пределах от 0,2 до 2,5 МПа.
  9. Огнеустойчивость. Здесь учитываются все параметры пожарной безопасности: воспламеняемость материала, его горючесть, дымообразующая способность, а также степень токсичности продуктов горения. Так, чем дольше утеплитель противостоит пламени, тем выше его параметр огнестойкости.
  10. Термоустойчивость. Способность материала сопротивляться воздействию температур. Показатель демонстрирует уровень температуры, после достижения которой у материала изменятся характеристики, структура, а также уменьшится его прочность.
  11. Удельная теплоемкость. Измеряется в кДж/(кг х °С) и тем самым демонстрирует количество теплоты, которое аккумулируется слоем теплоизоляции.
  12. Морозоустойчивость. Данный параметр показывает возможность материала переносить изменения температуры, замерзать и оттаивать без потери основных характеристик.

Во время выбора теплоизоляции нужно помнить о целом спектре факторов. Надо учитывать основные параметры утепляемого объекта, условия использования и так далее. Универсальных материалов не существует, так как среди представляемых рынком панелей, сыпучих смесей и жидкостей нужно выбрать наиболее подходящий для конкретного случая тип теплоизоляции.

Теплоизоляционные материалы виды и свойства

Керамзит — один из основных пористых заполнителей, использующихся в строительстве. Это прочный и легкий материал, имеющий плотность 250—800 кг/м. Керамзит выпускается в виде песка, гравия и щебня.

Керамзитовый гравий получают в результате обжига легкоплавких вспучивающихся глин при температуре около 1200°С. В результате образуются гранулы размером 5— 40 мм. Спекшаяся оболочка на поверхности гранулы придает ей прочность. В изломе гранула керамзита имеет структуру застывшей пены.

Керамзитовый песок имеет зерна до 5 мм, его получают при производстве керамзитового гравия в небольших количествах. Кроме того, его можно получить дроблением зерен гравия диаметром свыше 50 мм.

Шлаковая пемза — искусственный пористый заполнитель ячеистой структуры — получают из отходов металлургии — расплавленных доменных шлаков. При быстром охлаждении шлаков с помощью воздуха, воды или пара происходит их вспучивание. Образовавшиеся куски шлаковой пемзы дробят и рассеивают на щебень и песок.

Гранулированный шлак представляет собой мелкозернистый пористый материал в виде крупного песка с зернами размером 5—7 мм.

Вспученный перлит — сыпучий теплоизоляционный материал в виде мелких пористых зерен белого цвета, который получают при кратковременном обжиге гранул из вулканических водосодержащих стеклообразных пород. При температуре 950—1200°С из материала энергично испаряется вода, пар вспучивает и увеличивает частицы перлита в 10—20 раз. Вспученный перлит выпускается в виде зерен диаметром 5 мм или песка и применяется для производства легких бетонов, теплоизоляционных изделий и огнезащитных штукатурок. Для производства бетонов плотность вспученного перлита должна составлять 150—430 кг/м3, для теплоизоляционных засыпок — 50—100 кг/м

3. Коэффициент теплопроводности равен 0,04—0,08 Вт/(мˑ°С).

Вспученный вермикулит — сыпучий теплоизоляционный материал в виде чешуйчатых частиц серебристого цвета, получаемый в результате измельчения и обжига водосодержащих слюд. При быстром нагреве вермикулит расщепляется на отдельные пластинки, частично соединенные друг с другом. В результате его объем увеличивается в 15—20 раз. Насыпная плотность вермикулита составляет 75—200 кг/м3.

Вспученный вермикулит используется для изготовления теплоизоляционных плит для утепления облегченных стеновых панелей и легких бетонов в качестве теплоизоляционной засыпки.

Топливные шлаки — пористые кусковые материалы, образующиеся в топке в качестве побочного продукта при сжигании антрацита, каменного и бурого угля и другого твердого топлива.

Аглопорит получают в результате спекания гранул из смеси глинистого сырья с углем. Спекание гранул происходит в результате сгорания угля. Одновременно с выгоранием угля масса вспучивается. Насыпная плотность аглопоритового щебня 300—1000 кг/м.

В настоящее время широкое распространение в строительстве получил керамзитобетон, из которого изготовляют однослойные и трехслойные панели.

Пенобетоны получают из смеси цементного теста с пеной (взбитой из канифольного мыла и животного клея или другого компонента), имеющей устойчивую структуру. После затвердения ячейки пены образуют бетон ячеистой структуры. Из пенобетона выпускают ряд изделий.

Газобетон получают из смеси портландцемента, кремнеземистого компонента и газообразователя (чаще всего алюминиевой пудры). Нередко в эту смесь добавляют воздушную известь или едкий натрий. Полученную смесь заливают в формы, для улучшения структуры подвергают вибрации и обрабатывают преимущественно в автоклавах. Изделия из газобетона формуют большого размера, а затем разрезают на элементы.

Гаэосиликат автоклавного твердения получают на основе известково-кремнеземистого вяжущего, с использованием местных материалов — воздушной извести, песка, золы, металлургических шлаков. В настоящее время дома, стены которых выполнены из газосиликата, получили широкое распространение в сельской местности.

Опилкобетон также используют для строительства домов. В его состав входит известково-цементное тесто, которое смешивают со смесью опилок с песком. Получаемый бетон состава — вяжущее: песок: опилки — (1:1,1:3,2) — (1:1,3:3,3) (по объему) является хорошим теплоизоляционным материалом.

Наиболее высокими теплоизоляционными характеристиками обладают теплоизоляционные пенопласты, применяемые для утепления стен, покрытий и других элементов жилых зданий. Они представляют собой пористые пластмассы, получаемые при вспенивании и термообработке полимеров. Под действием температуры происходит интенсивное выделение газов, вспучивающих полимер. В результате образуется материал с равномерно распределенными в нем порами. В ячеистых пластмассах поры занимают 90—98% объема материала, в то время как на стенки приходится 2—10%. Поэтому пенопласты очень легки. Кроме того, они не загнивают, достаточно гибки и эластичны. Недостаток теплоизоляционных полимеров — их ограниченная теплостойкость и горючесть.

Пенопласты подразделяются на жесткие и эластичные. В строительстве для изоляции ограждающих конструкций применяют жесткие. Пенопласты легко обрабатываются, им легко можно придать любую форму. Кроме того, их можно склеивать между собой и с другими материалами: алюминием, асбестоцементом, древесиной. Для склеивания применяют дифенольные каучуковые, модифицированные каучуковые и эпоксидные клеи.

Пористые пластмассы вырабатывают на основе полистирольных, поливинилхлоридных, полиуретановых, фенольных и карбамидных смол.

Полистирольный пенопласт(пенополистирол) является наиболее распространенным теплоизоляционным материалом, состоящим из спекшихся между собой сферических частиц вспененного полистирола.

Пенополистирол является твердой пеной с замкнутыми порами. Это жесткий материал, стойкий к действию воды, большинству кислот и щелочей. Существенный недостаток пенополистирола — его горючесть. При температуре 80°С он начинает тлеть, поэтому его рекомендуют устраивать в конструкциях, замкнутых со всех сторон огнестойкими материалами. Он используется в качестве утеплителя в слоистых панелях из железобетона, алюминия, асбестоцемента и пластика.

Пенополиуретан изготовляют жестким и эластичным. Полиуретановый поропласт выпускают в виде матов из пористого полиуретана с коэффициентом теплопроводности 0,04 Вт/(м°С) размером 2×1×(0,03—0,06) м, а также твердых и мягких плит плотностью 30—150 кг/м и теплопроводностью 0,022—0,03 Вт/(м’°С). Простота изготовления позволяет получать из этого материала плиты не только в заводских условиях, но и на стройплощадке. При специальных добавках пенополиуретан не поддерживает горения.

Мипора— пористый теплоизоляционный материал белого цвета, изготовляемый на основе мочевиноформаль-дегидного полимера. Мипору выпускают в виде блоков объемом не менее 0,005 м и коэффициентом теплопроводности 0,03 Вт/(м’°С) или плиток толщиной 10 и 20 мм. Мипора не является горючим материалом. При температуре 200°С она только обугливается, но не загорается. Однако она имеет малую прочность на сжатие и представляет собой гигроскопичный материал. Мипору применяют в виде легкого заполнителя каркасных конструкций или пустот, где нет требований к влагоустойчивости.

Пеноизол относится к новым высокоэффективным теплоизоляционным материалам и представляет собой застывшую пену с замкнутыми порами. В зависимости от введенных в него добавок он может быть жестким и эластичным. При использовании в качестве наполнителя тонко молотого керамзитового песка пеноизол становится трудно возгораемым теплоизоляционным материалом. До температуры 350°С он устойчив к воздействию огня, при температуре до 500°С не выделяет токсичных веществ, кроме углекислого газа. Пеноизол имеет хорошую адгезию к кирпичу, бетонным и металлическим поверхностям. Используется для утепления дачных домов, коттеджей, гаражей, ангаров, покрытий бассейнов.

Сотопласты выпускают в виде гофрированных листов бумаги, хлопчатобумажной или стеклянной ткани, пропитанной полимером и антипиреном. Сотопласты представляют собой регулярно повторяющиеся ячейки правильной геометрической формы (в виде пчелиных сот). Его используют в качестве утеплителя в трехслойных панелях из алюминия или асбестоцемента. При заполнении ячеек крошками из мипоры теплоизоляционные характеристики сотопласта повышаются. Применяют сотопласты в виде плит и блоков толщиной 350 мм.

Наиболее рациональными для строительства являются соты из крафт-бумаги, пропитанной фенолформальдегидной смолой с размерами сот 12 и 25 мм. Сотопласты, изготовленные из обычной бумаги и пропитанные мочевино-формальдегидной смолой, хрупки и ломки. При распиловке они сильно крошатся.

Алюминиевая фольга — один из эффективных утеплителей. В то же время она является хорошей воздухоизоляцией и пароизоляцией. В настоящее время промышленность цветной металлургии выпускает фольгу толщиной 0,005—0,2 мм. Алюминиевая фольга имеет блестящую серебристую поверхность с большой отражательной способностью. Большая часть потока лучистой теплоты, падающей на конструкцию, покрытую фольгой, отражается, благодаря этому уменьшаются теплопотери через ограждения и повышается их теплозащита.

Алюминиевая фольга для строительства выпускается в рулонах диаметром 8—43 см, толщиной полотна 0,005— 0,02 мм и шириной 10—460 мм.

Минеральная вата представляет собой теплоизоляционный материал, состоящий из тончайших стекловидных волокон, получаемых путем распыления жидких расплавов шихты из металлургических и топливных шлаков, горных пород типа доломитов, мергелей, базальтов. Длина волокон составляет 2—60 мм. Теплозащитные свойства минеральной ваты обусловлены воздушными порами, заключенными между волокнами. Воздушные поры составляют до 95% общего объема скелета минеральной ваты. Минеральная вата занимает ведущее положение среди неорганических теплоизоляционных материалов благодаря простоте производства, неограниченности сырьевых запасов, малой гигроскопичности и небольшой стоимости.

Недостаток минеральной ваты для тепловой изоляции состоит в том, что при хранении она уплотняется, комкуется, часть волокон ломается и превращается в пыль. Имеющая очень малую прочность, уложенная в конструкциях минеральная вата должна быть защищена от механических воздействий. Поэтому применение в строительстве находят изделия, выпущенные на ее основе, — маты, жесткие и полужесткие плиты.

Маты минераловатные прошивные применяются для теплоизоляции наружных ограждений, а также конструкций, температура которых не менее 400°С. Они имеют при плотности 100—200 кг/м коэффициент теплопроводности 0,052—0,062 Вт/(м’°С). Прошивные маты выпускаются длиной 2 м, шириной 0,9—1,3 м при толщине полотна 0,06 м. В строительстве используются прошивные маты на металлической сетке, на обкладке из стеклохолста, на крахмальном связующем с бумажной и тканевой обкладками.

Маты минераловатные на металлической сетке получают путем прошивки ковра из минеральной ваты на металлической сетке хлопчатобумажными нитками. Маты выпускаются плотностью 100 кг/м с коэффициентом теплопроводности около 0,05 Вт/(м’°С) и размером 3×0,5×0,05 м.

Минераловатные маты на обкладке из стеклохолста изготовляют прошивкой минераловатного ковра стекложгу-том, обработанным в мыльном растворе. Они выпускаются плотностью 125—175 кг/м с коэффициентом теплопроводности 0,044 Вт/(м’°С) размером 2×06×0,04 м и могут быть использованы для изоляции конструкций с температурой до 400°С. Минераловатные маты на крахмальном связующем с бумажной обкладкой выпускают плотностью 100 кг/м с коэффициентом теплопроводности 0,044 Вт/(м’°С) длиной 1—2 м, шириной 0,95—2 м, толщиной от 0,04 до 0,07 м с шагом в 0,01 м.

Теплоизоляционные полужесткие плиты на основе синтетического связующего используют для утепления строительных конструкций и др., в основном в качестве эффективной теплоизоляции покрытий и кровель, в том числе и шиферных. Их использование возможно во всех случаях, где исключается увлажнение и деформация утеплителя во время эксплуатации.

Полужествие плиты состоят из минерального волокна, пропитанного при распылении растворов фенолоспиртов с последующим охлаждением. Плиты марки ПП производят плотностью 100 кг/м с коэффициентом теплопроводности 0,046 Вт/(м’°С) длиной 1 м, шириной 0,5 м, толщиной 0,03; 0,04 и 0,06 м.

Полужесткие плиты на синтетическом вяжущем изготовляют из минераловатного ковра, пропитанного синтетическим связующим (например, карбамидными смолами) с последующей теплообработкой. Их выпускают плотностью 80—100 кг/м с коэффициентом теплопроводности 0,031—0,058 Вт/(м°С).

Жесткие минераловатные плиты на битумном связующем, имеющие коэффициент теплопроводности 0,042 Вт/(м°С), выпускаются размером 1×0,5×0,06 м. Они имеют низкую гигроскопичность, высокую водостойкость и мало подвержены поражению грибками и насекомыми.

Жесткие минераловатные плиты типа ПЭ на синтетическом связующем имеют коэффициент теплопроводности 0,04 Вт/(м’°С) и выпускаются размером 1×0,05×0,06 м. Они обладают повышенной прочностью и могут использоваться для утепления совмещенных кровель и крупнопанельных ограждающих конструкций.

Минераловатные мягкие плиты называют минеральным войлоком. Его выпускают в виде рулонов, упакованных в жесткую тару или водонепроницаемую бумагу. Полотнища минерального войлока выпускают длиной 1; 1,5 и 2 м, шириной 0,45; 0,5 и 1 м, толщиной 0-,05—0,1 м с шагом в 0,01 м. Мягкие минераловатные плиты на битумном связующем используют для утепления строительных конструкций. Серьезным их недостатком является способность войлока уплотняться при незначительных нагрузках, в первую очередь от собственного веса. При этом происходит резкое увеличение плотности, иногда вдвое, что приводит к снижению его теплозащитных качеств.

Строительный войлок получают из низкосортной шерсти животных, к которой добавляют растительные волокна и крахмальный клейстер. Полученные полотнища пропитывают 3%-ным раствором фтористого натрия для защиты от повреждения молью и высушивают. Строительный войлок — хороший утепляющий и звукоизоляционный материал, используется при штукатурке стен и потолков, утепления зазоров между дверными или оконными коробками и стеной.

Стеклянная вата является теплоизоляционным материалом, получаемым вытягиванием расплавленного стекла и состоящим из шелковистых, тонких, гибких стеклянных нитей белого цвета.

Маты из стекловолокна на синтетической связке плотностью 350 кг/м3 с коэффициентом теплопроводности 0,045 Вт/(м°С) выпускают длиной 1—1,5 м, шириной 0,5; 1; 1,5 м, толщиной 0,03—0,06 м.

Базальтовое супертонкое стекловолокно БСТВ является высокоэффективным теплоизоляционным материалом, обладающим малой плотностью 17—25 кг/м3 и коэффициентом теплопроводности 0,027—0,036 Вт/(м’°С). Из него изготовляют маты, обладающие хорошей теплозащитой и звукоизоляцией.

Пеностекло представляет собой материал, изготовляемый из стекольного боя или кварцевого песка, известняка, соды, т.е. тех же материалов, из которых производят различные виды стекол. Пеностекло образуется в результате спекания порошка стеклобоя с коксом или известняком, которые при высокой температуре выделяют углекислый газ. Благодаря этому в материале образуются крупные поры, стенки которых содержат мельчаший замкнутые микропоры. Двоякий характер пористости позволяет получить пеностекло, имеющее в зависимости от плотности низкий коэффициент теплопроводности 0,058— 0,12 Вт/(м°С). Оно обладает водостойкостью, морозостойкостью, несгораемостью и высокой прочностью. Пеностекло используют для утепления стен, перекрытий, кровель, для изоляции подвалов и холодильников.

Цементный фибролит является хорошим теплоизоляционным материалом, состоящим из смеси тонких древесных стружек длиной 20—50 см (древесной шерсти), портландцемента и воды. Полученную массу формуют, подвергают тепловой обработке и разрезают на отдельные плиты. Древесные стружки, приготовленные из неделовой древесины хвойных пород на специальных станках, выполняют в плитах роль армирующего каркаса. Цементно-фибролитовые плиты выпускают марками по плотности М 300, 350, 400 и 500 с коэффициентом теплопроводности 0,09—0,12 Вт/(м°С), длиной 2—2,4 м и шириной 0,5— 0,55 м и толщиной 5; 7,5 и 10 см.

Арболит изготовляют из смеси портландцемента, дробленой стружки и воды.

Древесно-стружечные плиты изготовляют в результате прессования специально подготовленных стружек с жидкими полимерами. Стружки изготовляют на станках из неделовой древесины, используя отходы фанерного и мебельного производства. Плиты представляют своего рода слоистую конструкцию, средний слой которой состоит из толстых стружек толщиной около 1 мм, а наружные слои из тонких стружек толщиной 0,2 мм. Для обеспечения биостойкости плит в массу из стружек и полимеров вводят антисептик (буру, фтористый натрий и др.), а также антипирены и гидрофобизирующие вещества. Применение гидрофобизаторов позволяет уменьшить набухание плит под действием влаги воздуха.

Плиты снаружи отделывают полимерными пленочными материалами, бумагой, пропитанной смолой, что также защищает их от увлажнения и истирания. Иногда поверхность плит покрывают водостойкими лаками.

Древесно-стружечные плиты выпускают различной плотности от 350 до 1000 кг/м3. Плиты средней (510— 650 кг/ ) и высокой (660—800 кг/м) плотностей используют в качестве конструкционного и отделочного материала, а малой плотности (350 кг/м) — как теплоизоляционный, а также звукоизоляционный материал. Плиты изготовляют длиной 1,8—3,5 м, шириной 1,22—1,75 м, толщиной 0,5—1 см.

Древесно-волокнистые плиты изготовляют из древесины или растительных волокон, получаемых из отходов деревообрабатывающих производств, неделовой древесины, а также костры, камыша, хлопчатника. Наибольшее распространение получили плиты на основе древесных отходов. Древесно-волокнистые плиты выпускают различной плотности — от 250 до 950 кг/м3. Твердые плиты (плотностью больше 850 кг/м) применяют для устройства перегородок, подшивки потолков, настилки полов, изготовления полотен и встроенной мебели.

Изоляционные древесно-волокнистые плиты плотностью до 250 кг/м с коэффициентом теплопроводности 0,07 Вт/(м’°С) используют для тепло- и звукоизоляции помещений. Они имеют длину 1,2—3 м, ширину 1,2— 1,6 м, толщину 0,8—2,5 мм.

Оргалит представляет собой теплоизоляционные древесно-волокнистые плиты из измельченной и химически обработанной древесины. При плотности 150 кг/м3 они имеют коэффициент теплопроводности 0,055 Вт/(м’°С) и используются для теплоизоляции стен, кровель и т.д.

Торфяные изоляционные плиты изготовляют прессованием из малоразложившегося торфа, имеющего волокнистую структуру. Торфяные плиты выпускают плотностью 170 и 250 кг/м с коэффициентом теплопроводности в сухом состоянии 0,06 Вт/(м’°С), длиной 1 м, шириной 0,5 м, толщиной 30 мм и используют для изоляции ограждающих конструкций зданий.

Асбестовый картон получают из асбеста 4-го и 5-го сортов, каолина и крахмала. Его изготовляют на листо-формовочных машинах в виде листов длиной и шириной 0,9—1 м, толщиной 2—10 мм. Коэффициент теплопроводности в сухом состоянии равен 0,157 Вт/(м’°С).

Опилки древесные получают в результате обработки древесины, в мебельном производстве, при распиловке. Опилки плотностью около 150 кг/м используют в качестве утепляющей засыпки, а также для производства арболита, ксилолита, при изготовлении опилкобетона и других строительных материалов.

Пакля представляет собой коротковолокнистый материал, получаемый из отходов пеньки и льна, имеет плотность 160 кг/м, коэффициент теплопроводности 0,047 Вт/(м°С) и применяется для конопатки стен и зазоров оконных коробок.

Гипсовые плиты для перегородок огнестойки, обладают высокими звукоизоляционными качествами, в них легко забиваются гвозди. Плиты применяются для перегородок в помещениях с относительной влажностью не более 70%. Гипсовые перегородки выпускают сплошными и пустотелыми, длиной 0,8—1,5 м, шириной 0,4, толщиной 80, 90 и 100 мм.

Гипсокартонные листы представляют собой отделочный материал, изготовленный из строительного гипса, армированного растительным волокном. Поверхность листов с обеих сторон оклеена картоном. Сухая штукатурка легко режется, не горит, хорошо прибивается гвоздями. Гипсокартонные листы лопаются при изгибе. Как и все изделия на основе гипса они разрушаются под действием влаги.

Сухая штукатурка выпускается листами длиной 2,5— 3,3 м, шириной 1,2 м, толщиной 10—12 мм и применяется для внутренней отделки помещений. Ее приклеивают к поверхности стен и потолков специальными мастиками. Швы между листами заделывают безусадочной шпатлевкой.

Гипсобетонные камни являются местным строительным материалом, их применяют для наружных стен малоэтажных зданий в районах, где нет других эффективных стеновых материалов.

Гипсобетон изготовляют на основе строительного, высокопрочного гипса или гипсоцементно-пуццоланового вяжущего. В его состав вводят пористые заполнители — керамзитовый гравий, топливные шлаки, а также смесь из кварцевого песка и древесных опилок. В зависимости от заполнителя гипсобетон имеет плотность 1000—1600 кг/м. Из него изготовляют сплошные и пустотелые плиты перегородок.

ПОХОЖИЕ СТАТЬИ:

  • Поворотно-точечная сборка стекла в современном строительстве
  • Почему плохо прогреваются батареи в квартире?
  • Рейтинг 8 лучших ящиков для инструментов в 2020 году
  • Гидроизоляционные материалы: виды,описание,фото,назначение,требования
  • Швеллер: описание,виды,обзор,фото,видео,обозначение,применение
  • Как избавиться от вредных жуков в квартире самостоятельно
  • 5 Самых покупаемых мини-дрелей с алиэкспресс
  • Преимущества использования бетона на гравийном щебне
  • Керамическая черепица:описание,виды,назначение,фото,размеры,цвета
  • Как сделать беседку своими руками
  • Краска по металлу: виды, состав, характеристики, преимущества и недостатки, фото, видео
  • Ветонит: особенности, виды, прочность, состав ,цена ,фото, описание

Лучшие теплоизоляционные материалы в современном строительстве

Чтобы защитить жилье от теплопотерь и повышенной влажности, его покрывают различными типами утеплителей. Выбрать лучший из них очень сложно, ведь у каждого изделия собственные уникальные свойства и область применения. Теплоизоляционные материалы, которые применяются в современном строительстве, с одной стороны экологичны, с другой – удобны в монтаже. Изучив основные виды утеплителей, можно выбрать лучший теплоизоляционный материал, отвечающий именно вашим потребностям.

Основные виды утеплителей

Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.

К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:

  • рулоны;
  • листовой;
  • единичный;
  • сыпучий.

По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:

  • волокнистые;
  • ячеистые;
  • зернистые.

По виду сырья выделяют такие изделия различного класса качества:

  1. Органические, природные или натуральные утеплители — это пробковая кора, целлюлозная вата, пенополистирол, древесное волокно, пенопласт, бумажные гранулы, торф. Эти виды строительных теплоизоляционных материалов применяются исключительно внутри помещения, чтобы минимизировать высокую влажность. Однако природные строительные термоизоляторы не огнеупорны.
  2. Неорганические теплоизоляционные материалыгорные породы, стекловолокно, пеностекло, минераловатные утеплители, вспененный каучук, ячеистые бетоны, каменная вата, базальтовое волокно. Хороший изолятор тепла из данной категории отличается высокой степенью паропроницаемости и огнестойкости. Особенно эффективно утепление изделием с гидрофобизирующими добавками.
  3. Смешанные — перлит, асбест, вермикулит и другие утеплители из вспененных горных пород. Отличаются наилучшим качеством и, разумеется, повышенной стоимостью. Это самые дорогие марки лучших теплоизоляционных материалов. Поэтому таким утеплителем покрывают помещения намного реже, чем более экономными материалами.

Если нужно сделать термическую изоляцию трубопровода в стене, то для этого применяются  специальные «рукава» повышенной плотности.

Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.

10 лучших теплоизоляционных материалов

Рассмотрим основные свойства лучших изоляторов тепла, которые применяются в современном строительстве и ремонте:

  1. Минеральная вата. Под этим названием понимают все гибкие волокнистые теплоизоляционные материалы, которые изготавливают из минерального сырья. Минераловатные утеплители относят к высокопористым материалам, благодаря чему прекрасно справляются со своими функциями, поэтому и являются очень популярными.

Кроме того, у минеральной ваты много других достоинств:

  • доступная цена, благодаря простоте производства и низкой стоимости сырья;
  • легкость и удобство монтажа;
  • высокая степень огнеустойчивости;
  • хорошо пропускает воздух;
  • не пропускает воду и влагу;
  • морозостойкость;
  • шумоизоляция;
  • долгий срок службы.

К минусам этого изделия можно отнести необходимость монтажа гидроизоляционной пленки при установке, а также небольшой запас прочности.

  1. Стекловата и базальтовые плиты. Как и обычное стекло, это изделие делают из кварцевого песка, извести и соды. Стекловату производят и как гибкие рулонные теплоизоляционные материалы, так и в виде цилиндра или плиты. Положительные свойства такие же, как и у минеральной ваты, но шумопроводность и запас прочности намного больше, а вот термоустойчивость ниже.

Базальтовая плита – это подвид стекловаты, который обладает такими положительными качествами, как:

  • устойчивость к деформирующим воздействиям;
  • долговечность;
  • высокая степень прочности;
  • низкие показатели поглощения влаги;
  • устойчивость к воздействию высоких температур.

Применяются базальтовые плиты, как правило, снаружи для защиты фасадов, фундамента, кровли.

  1. Пеностекло. Данный утеплитель делают посредством газификации стеклянного порошка при большой температуре. В результате получается материал с пористостью до 95 %.

Главные достоинства пеностекла:

  • водо- и морозостойкость;
  • простота обработки при монтаже;
  • высокая прочность;
  • огнеупорность;
  • долгий срок службы;
  • биологическая устойчивость;
  • химическая нейтральность.

Разумеется, имеются и недостатки – высокая цена и воздухонепроницаемость, поэтому данный материал используют, в основном, для теплоизоляции промышленных зданий.

  1. Целлюлозная вата имеет мелкозернистую структуру и состоит из нескольких компонентов: древесное волокно — 80 %, антипирен— 12 %, тетраборат натрия — 7 %. Данное изделие можно укладывать сухим и мокрым методом. В первом случае целлюлозную вату просто засыпаю и утрамбовывают, а вот втором — ее выдувают из специального пистолета.

Эковата облает такими преимуществами:

  • невысокая цена;
  • высокая степень теплоизоляции;
  • безопасность производства;
  • влагообмен без потери теплоизолирующих свойств.

Однако такой материал хорошо горит, легко повреждается при сжатии, а укладывать его очень непросто.

  1. Пенопласт и пенополистирол. К данным материалам относятся два вида изделий – термопластичные и термонепластичные утеплители. Первые при повторном нагревании размягчаются (пенополистирол, пенополивинилхлорид), а вторые – отвердевают изначально и не размягчаются при повторном нагреве (пенополиуретан, кремниевые, эпоксидные, органические, фенолформальдегидны смолы).

Экструдированный полистирол – самый популярный из пенопластов, так как обладает массой достоинств:

  • низкая степень влагопоглощения;
  • высокая степень теплоизоляции;
  • морозоустойчивость;
  • большой запас прочности;
  • простота укладки;
  • низкая стоимость.

К минусам можно отнести горючесть, не пропускание воздуха и хрупкость при замерзании (если мороз ударил по мокрому пенопласту).

  1. Пенополиуретан. Это изделие состоит из микрокапсул, заполненных воздухом, которые образуются в результате взаимодействия полиола и изоционата.

Среди преимуществ пенополиуретана можно выделить:

  • идеально подходит для теплоизоляции неровных поверхностей;
  • быстрота укладки;
  • эластичность и гибкость;
  • отсутствие стыков и швов;
  • защищает от температур в диапазоне от -250 °С до +180 °С;
  • устойчивость к биологическому воздействию.

Недостатками можно назвать выделение вредных веществ в случае горения, не пропускание воздушных потоков и необходимость использование специального оборудования для задувки при монтаже.

  1. Пробка. Этот материал относят к экологически чистому изделию, поэтому она очень популярна на Западе и в европейских странах, как для утепления, так и для отделки поверхностей. Для утепления применяются пробковые плиты с толщиной до 5 см.

Пробка обладает такими положительными качествами, как:

  • не усаживается с течением времени;
  • не поддается гниению;
  • легкая по весу;
  • быстро и просто резать при укладке;
  • высокая прочность;
  • экологичность;
  • долговечность;
  • не вступает в реакцию с химическими веществами;
  • не горит даже при воздействии прямого огня;
  • не выделяет вредных веществ при воздействии высоких температур.

Однако максимальная температура использования – всего 120 °С.

  1. Жидкая изоляция ТСМ Керамик. Этот утеплитель является одним из самых современных теплосберегающих материалов. В составе данного раствора – особые примеси с пустотелыми керамическими шариками, которые сцепляются друг с другом при помощи специальных веществ.

ТСМ Керамик обладает такими уникальными свойствами, как:

  • высокая степень растяжимости;
  • толщина изолятора всего 2-3 мм;
  • легко наносится на любую поверхность;
  • низкая теплопроводность;
  • устойчивость к низким и высоким температурам, в том числе к открытому пламени;
  • экономное применение – 1 литра ТСМ Керамик хватает для утепления двух квадратных метров поверхности.

При этом на напыление необходимо специальное оборудование, типа распылителя для краски или лоток и валик.

  1. Рефлекторные теплоизоляционные материалы. Особая группа теплоизоляционных материалов, которая действует по принципу отражателей: рефлекторы сначала поглощают тепло, а потом возвращают его обратно в пространство. Внешняя поверхность из полированного алюминия, которая наносится на вспененный полиэтилен, отражает до 97% тепла.

Такие утеплители, очень тонкие на вид, поражают своими свойствами:

  • 2 см рефлекторного материала выполняет функцию волокнистого изолятора тепла толщиной 15-20 см;
  • высокая звуко- и пароизоляционная защита.

Самые популярные марки в данной категории – Пориплекс,  Экофол, Армофол и Пенофол.

  1. Шлаковата. Стекловидный теплосберегатель из доменного шлака, который остается после выплавки чугуна. Поскольку шлак – отходы производства, то себестоимость материала очень низкая. Шлаковата прекрасно удерживает тепло в здании, но у этого утеплителя также есть и недостатки.

Прежде всего, это боязнь воды и влаги, вступает в реакцию с металлическими вставками внутри стен или пола. Кроме того, шлаковата ужасно колется при укладке, поэтому при проведении работ по монтажу нужна обязательная защита.

Однако, несмотря на множество недостатков, низкая цена этого утеплителя делает его одним из самых популярных современных материалов для теплоизоляции.

На какие параметры обращать внимание при выборе?

Выбор качественной теплоизоляции зависит от множества параметров. Берутся во внимание и способы монтажа, и стоимость, и другие важные характеристики, на которых стоит остановиться подробнее.

Выбирая самый лучший теплосберегающий материал, необходимо тщательно изучить его основные характеристики:

  1. Теплопроводность. Данный коэффициент равен количеству теплоты, которое за 1 ч пройдет сквозь 1 м изолятора площадью 1 м2, измеряется Вт. Показатель теплопроводности напрямую зависит от степени влажности поверхности, поскольку вода пропускает тепло лучше воздуха, то есть сырой материал со своими задачами не справится.
  2. Пористость. Это доля пор во всеобщем объеме теплоизолятора. Поры могут быть открытыми и закрытыми, крупными и мелкими. При выборе важна равномерность их распределения и вид.
  3. Водопоглощение. Этот параметр показывает количество воды, которое может впитать и удержать в порах теплоизолятор при прямом контакте с влажной средой. Для улучшения этой характеристики материал подвергают гидрофобизации.
  4. Плотность теплоизоляционных материалов. Данный показатель измеряется в кг/м3. Плотность показывает соотношение массы и объема изделия.
  5. Влажность. Показывает объем влаги в утеплителе. Сорбционная влажность указывает на равновесие гигроскопической влажности в условиях разных температурных показателей и относительной влажности воздуха.
  6. Паропроницаемость. Это свойство показывает количество водяного пара, проходящее за один час через 1 м2 утеплителя. Единица измерения пара – мг, а температура воздуха внутри и снаружи принимается за одинаковую.
  7. Устойчивость к био разложению. Теплоизолятор с высокой степенью биостойкости может противостоять воздействию насекомых, микроорганизмов, грибков и в условиях повышенной влажности.
  8. Прочность. Данный параметр свидетельствует о том, какое влияние на изделие окажет транспортировка, хранение, укладка и эксплуатация. Хороший показатель находится в пределах от 0,2 до 2,5 МПа.
  9. Огнеустойчивость. Здесь учитываются все параметры пожарной безопасности: воспламеняемость материала, его горючесть, дымообразующая способность, а также степень токсичности продуктов горения. Так, чем дольше утеплитель противостоит пламени, тем выше его параметр огнестойкости.
  10. Термоустойчивость. Способность материала сопротивляться воздействию температур. Показатель демонстрирует уровень температуры, после достижения которой у материала изменятся характеристики, структура, а также уменьшится его прочность.
  11. Удельная теплоемкость. Измеряется в кДж/(кг х °С) и тем самым демонстрирует количество теплоты, которое аккумулируется слоем теплоизоляции.
  12. Морозоустойчивость. Данный параметр показывает возможность материала переносить изменения температуры, замерзать и оттаивать без потери основных характеристик.

Во время выбора теплоизоляции нужно помнить о целом спектре факторов. Надо учитывать основные параметры утепляемого объекта, условия использования и так далее. Универсальных материалов не существует, так как среди представляемых рынком панелей, сыпучих смесей и жидкостей нужно выбрать наиболее подходящий для конкретного случая тип теплоизоляции.

1 Современные эффективные теплоизоляционные материалы и изделия.

За последние годы на российском строительном рынке появились десятки новых теплоизоляционных материалов, благодаря чему произошел значительный прорыв в первую очередь в сфере энергосбережения. С развитием новых технологий, современные изоляционные материалы стали более эффективными, экологически безопасными и разнообразными, и отвечающими конкретным техническим задачам строительства — возможность строительства высотных зданий, уменьшение толщины ограждающих конструкций, снижение массы зданий, расхода строительных материалов, а также экономии топливно-энергетических ресурсов при обеспечении в помещениях нормального микроклимата. К теплоизоляционным материалам относятся строительные материалы и изделия, предназначенные для тепловой изоляции ограждающих конструкций зданий и сооружений, технологического оборудования и трубопроводов. Такие материалы имеют низкую теплопроводность (при температуре 25°С коэффициент теплопроводности не более 0,175 Вт/(м°С)) и плотность (не выше 500кг/м³). Основная техническая характеристика теплоизоляционных материалов — это теплопроводность, т.е. способность материала передавать тепло. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м² при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(мК) или Вт/(м°C). При этом величина теплопроводности теплоизоляционных материалов зависит от плотности материала, вида, размера, расположения пор и т.д. Также сильное влияние на теплопроводность оказывает температура и влажность материала. Кроме этого, важными дополнительными свойствами теплоизоляционных материалов являются — прочность на сжатие, сжимаемость, водопоглощение, сорбционная влажность, морозостойкость, паропроницаемость и огнестойкость.

Использование современных теплоизоляционных материалов позволяет значительно удешевить строительство, сократить его сроки и создать довольно легкую конструкцию. Однако самое важное тут – правильно устроить теплоизоляцию, ведь это целая наука, согласно которой следует, что универсального решения быть не может. Все зависит от конкретных условий: где расположен дом, из чего построен, какие у него конструктивные особенности и т.д.

Для каждой конструкции предписан определенный алгоритм работы согласно специфике материала. Кроме этого, существуют некоторые особенности, обусловленные климатической зоной, в которой ведется строительство: где холоднее, там теплоизоляционный слой должен быть толще. Так, например, в конструкциях наружного утепления зданий из бруса толщиной 150 мм толщина теплоизоляционного слоя минеральной ваты (марки КТ-11 TWIN от Isover) составляет для Москвы 115 мм, Санкт-Петербурга – 111 мм, Новосибирска – 148 мм. Материалы маркируются коэффициентом теплопроводности (обозначается символом λ). Чем он меньше, тем лучше. Оптимальным показателем специалисты называют цифру 0,03–0,04 Вт/мК, ниже 0,024 Вт/мК у теплоизоляционных материалов он быть просто не может, поскольку именно такой коэффициент теплопроводности имеет воздух.

Существуют, впрочем, предложения, которые учитывают среднестатистические российские условия, – это готовые решения от компаний-производителей для тех, кто строит свои дома. Что же представляют собой теплоизоляционные материалы XXI века?

Теплоизоляционные материалы классифицируют по форме, внешнему виду, структуре, исходному сырью, жесткости (относительной деформации при сжатии), теплопроводности и горючести – в общем, по многим параметрам. Но, по большому счету, можно выделить две основные группы: минеральные волокнистые (типа стекловолокна, каменной ваты) и органические пенопласты (блочные, экструдированные). У каждого из этих материалов есть свои достоинства, соответствующие сфере применения, и свои недостатки, эту сферу ограничивающие. К достоинствам минеральных материалов относятся химическая стойкость, стабильность размеров, низкое влагопоглощение и хорошие звукопоглощающие свойства. Благодаря своей структуре материал не горит – при высоких температурах он спекается, не выделяя при этом опасных для человека веществ.

На основе минерального сырья производят минераловатные маты, полужесткие и жесткие плиты, а также скорлупы, сегменты, цилиндры и другие изделия. Теплоизоляционные маты на основе минерального волокна предназначены для тепловой изоляции строительных конструкций, промышленного оборудования и трубопроводов тепловых сетей. Отечественная промышленность производит несколько видов минераловатных матов. Минераловатные прошивные маты применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов, работающих при температуре до +400°С. Изготавливают их следующим образом: слои минеральной ваты из камеры осаждения сначала подают транспортером в камеру охлаждения, где минераловатный ковер уплотняется до заданной толщины и одновременно через него просасывается холодный воздух. Охлажденный ковер затем направляют на прошивочную машину, прошивают нитями с помощью специальных игл. На этом же станке при помощи дисковых ножей осуществляют продольную разрезку ковра, после чего разрезанные на заданные размеры маты поступают на рулоноукладчик, а затем на упаковку.

Пенополистирол (он же пенопласт) производится либо традиционным для нашей страны беспрессовым методом, либо методом экструзии, разработанным более 30 лет назад. К его достоинствам следует отнести более низкую, чем у минераловатных утеплителей, теплопроводность и высокую механическую прочность, что позволяет эффективно использовать его там, где изоляция подвергается высокой механической нагрузке, а также там, где невозможно (или нецелесообразно) использовать традиционные теплоизоляционные материалы из минерального волокна. Например, для инверсионных («перевернутых») плоских крыш, внешнего утепления стен подвалов, утепления нагружаемых полов, изоляции фундаментов, защиты дорожного полотна от морозной деформации. Недостатком можно назвать его горючесть с последующим выделением вредных для человека веществ и более высокую цену, хотя подсчитать его оптимальную стоимость с учетом сроков службы и прочих характеристик достаточно сложно…

Существует несколько способов утепления фасада, которые применяются в современном строительстве в зависимости от особенностей конкретного объекта и тех задач, которые утеплитель призван решить. Производители предлагают сегодня огромный ассортимент теплоизоляционных материалов. Здесь важно понимать, что один и тот же материал может использоваться при решении разных задач, но в каждом конкретном случае нужно найти оптимальный вариант. Выбор непрост: необходимо учитывать технологические, конструктивные и эксплуатационные свойства, а каждый материал обладает своим набором этих свойств, соразмерить их со стоимостью и только после этого, взвесив все «за» и «против», принять решение. Можно, конечно, свести вопрос теплоизоляции фасада к одному тезису: идеальным материалом для этих целей является минеральная вата, что в принципе вполне соответствует действительности. Однако купить какое-то количество этого материала, обшить им дом и жить в тепле не получится. Все дело в деталях – от них зависит, будут ли изоляционные свойства того или другого материала задействованы в полной мере. Производители в зависимости от использованных строительных и отделочных материалов, их толщины и прочих свойств рекомендуют не просто теплоизоляционный материал определенной марки, а целую систему материалов и технологий, необходимых для оптимального утепления, куда входят, например, гидро- и пароизоляционные материалы, создание вентиляционного зазора и прочие тонкости.

По большому счету существует всего три способа теплоизоляции фасада. Внутри стены (так называемые многослойные конструкции), снаружи (когда теплоизоляция контактирует с воздухом – вентилируемый фасад – или не контактирует, когда теплоизоляция находится под слоем штукатурки – мокрый фасад) и изнутри. Утепление снаружи считается наиболее эффективным, к внутренней теплоизоляции прибегают в исключительных случаях, поскольку велика вероятность того, что вода начнет скапливаться на границе «холодная стена – утеплитель» или в толще стены, не говоря уже о том, что утеплитель отбирает на себя полезную площадь дома. Размещение внутри стены (многослойные конструкции) – популярное на сегодняшний день решение для строительства. Утеплитель размещается с наружной стороны стены и закрывается облицовочным кирпичом или сайдингом. Все это, безусловно, только общие принципы – готовых решений, подходящих для поточного использования в коттеджном строительстве, не существует.

Изолировать можно не только стены, но и коммуникации, которые подвергаются воздействию холода. Хотя здесь есть маленький нюанс. Систему холодного водоснабжения, например, важно защищать от замерзания, а вот утепление системы с горячей водой позволяет уменьшить теплопотери и оказывается полезным в любое время года. Для предотвращения столь неприятных последствий производители предлагают специальные «трубные» утеплители – минеральную вату, стекловату, пенополиуретан, вспененный синтетический каучук и т.д. У всех этих материалов своя область применения, свои преимущества и недостатки. Наиболее распространенный утеплитель, защищающий от холода и перепадов температуры, – минеральная вата.

Трубопроводы изолируют минераловатными плитами с последующим покрытием алюминиевой фольгой или бумагой. Эффективность такого утепления во многом зависит от аккуратности исполнителей, а вот эстетическая ценность – крайне сомнительная.

Более прогрессивный материал – минераловатные цилиндры, благодаря которым удается значительно снизить трудоемкость изоляционных работ при очень высоком качестве исполнения. У полых цилиндров имеется надрез по всей длине, они легко защелкиваются на трубе и закрепляются либо клипсами, если цилиндр не каширован, либо алюминиевым скотчем, когда цилиндр каширован (покрыт алюминиевой фольгой). Цилиндры легко нарезать на сегменты для изоляции трубных отводов. Их используют для тепловой изоляции трубопроводов при надземной (на открытом воздухе, в подвалах, помещениях) и подземной (в каналах, тоннелях) прокладках. Температурный диапазон применения минераловатных цилиндров находится в пределах от – 180 до +600°С, то есть они подойдут для любых коммуникаций, которые используются в «домашнем» хозяйстве.

Для изоляции так называемых «холодных» объектов (системы вентиляции и кондиционирования, холодильных установок и прочего) применяют вспененный синтетический каучук, напоминающий резину. К достоинствам этого материала можно отнести прекрасные теплоизоляционные качества, надежность в работе, полную герметичность изоляционного слоя.

При склеивании вспененного синтетического каучука происходит так называемое взаимное проникновение поверхностей – «эффект холодной сварки», поэтому клееные швы получаются крепче, чем сам материал. К недостаткам относят довольно высокую стоимость.

Еще один теплоизоляционный материал – пенополиэтилен – более дешевый, но область его применения ограничена его свойствами. Низкое сопротивление диффузии водяного пара не позволяет использовать его для изоляции «холодных» объектов. Пенополиэтилен плохо поддается склеиванию, а через некоторое время дает значительную усадку. Клееные соединения нередко расклеиваются в течение первого года. Избежать указанных недостатков позволяет использование теплоизоляционных труб из пенополиэтилена, которые вместе с листовыми материалами и необходимыми аксессуарами образуют единую универсальную систему изоляции любых инженерных сетей. Трубы снабжены защелкой, что особенно удобно в местах, где требуется постоянный демонтаж изоляции. Монтаж ведут путем предварительного разрезания изоляции по технологическому шву с последующим склеиванием вдоль разреза.

СОВРЕМЕННЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ » Экструдированный пенополистирол ТЕРМОПЛЭКС, утеплитель, теплоизоляция XPS, эффективное утепление дома, стен, фасадов, полов, фундаментов

ФГУ «Федеральный центр технической оценки продукции в строительстве»

В последние годы в России наблюдается устойчивая тенденция роста потребления теплоизоляционных материалов. Это говорит о понимании важности экономии энергоресурсов, стоимость которых постоянно возрастает.

Важно отметить, что потребители отдают предпочтение материалам с повышенными техническими и эксплуатационными характеристиками, соглашаясь при этом нести достаточно большие материальные затраты.

Сейчас мы являемся свидетелями явления, возможность которою даже 2-3 года назад представлялась невероятной. Возник дефицит высококачественных теплоизоляционных материалов, связанный с тем, что спрос на них превышает предложение.

В связи с этим работу ряда российских компаний по реконструкции действующих и строительству новых заводов, производящих теплоизоляционные изделия, в первую очередь из минеральной ваты и стекловолокна, можно только приветствовать.

Как известно, наибольшая доля общего объёма потребления теплоизоляционных материалов приходится на минераловатную продукцию и, главным образом, на плиты из минеральной ваты на синтетическом связующем.

В настоящее время номенклатура минераловатных изделий достаточно широка. Надо заметить, что ведущие производители осуществляют градацию этой продукции исходя не из плотности, а из назначения, т.е. с максимальным учетом требований потребителя, основанных на знании условий применения утеплителя в той или иной конструкции или системе.

К сожалению, некоторые отечественные производители декларируют возможность применения своей продукции в тех или иных теплоизоляционных конструкциях или системах, не зная или не учитывая специальные требования, обеспечивающие эффективность применения утеплителя.

В качестве примера можно привести бурно развивающееся производство сэндвич-панелей, в которых во многих случаях используются минераловатные плиты, не обладающиe необходимыми свойствами, из-за чего не могут быть получены требуемые прочностные показатели панелей.
Известны случаи применения плит, не обладающих достаточной прочностью на отрыв слоев и т.д., в фасадных системах с тонким наружным штукатурным слоем.

Достаточно часто задается вопрос о долговечности утеплителей. По нашему мнению, говорить о долговечности тех же минераловатных плит, как и любого другого утеплителя, вне конкретной конструкции или системы, в которой они применены, без учета особенностей здания и конкретных условий его эксплуатации не целесообразно. К тому же ни в России, ни за рубежом не существует сколько-нибудь корректных методов определения долговечности, измеренной в годах или в других единицах времени.

Вместе с тем факторы, влияющие на долговечность тех же изделий из минеральной ваты, давно и хорошо известны. Это — химический состав, условно характеризуемый модулем кислотности и влияющий на водостойкость; качество и полнота полимеризации связующего; наличие в составе связующей композиции гидрофобизирующих, модифицирующих и иных добавок; диаметр волокон и их взаимное расположение в изделии. Интересно, что эти факторы с одним и тем же знаком влияют на продукцию, используемую как в строительной, так и в промышленной изоляции.

Довольно заметное место в полном объеме теплоизоляционной продукции занимают ячеистые пластмассы (пенополиуретаны, пенополистирол и др.)

Эти материалы обладают рядом несомненных достоинств, например, высокая прочность при малой плотности, практическое отсутствие водопоглощения и т.д.

Вместе с тем следует заметить, что теплопроводность ячеистых пластмасс со временем растет вследствие замещения порообразующего газа воздухом. По этой причине в странах ЕС теплопроводность для определения декларируемых (расчетных) значений измеряют через 90 суток после изготовления таких материалов. Подобное требование ранее соблюдалось и в нашей стране, но по каким-то причинам сейчас отменено. Поэтому следует с осторожностью воспринимать заявляемые некоторыми производителями и продавцами низкие показатели теплопроводности ячеистых пластмасс.

 В работах НИИСФ показано, что теплопроводность любого известного теплоизоляционного материала не может быть ниже теплопроводности воздуха, равной 0,026 Вт/м*К.

Как уже отмечалось, номенклатура теплоизоляционных изделий достаточно широка, У каждого вида этих изделий есть свои преимущества и, по-видимому, недостатки.  В связи с этим, определение рациональных вариантов применения таких изделий с максимальным использованием их преимуществ и является одной из задач, которую ФЦС Госстроя России и решает при проведении технической оценки пригодности продукции для применения в  строительстве.

УТЕЛЕНИЕ ДОМА: СОВРЕМЕННЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

Дом должен быть теплым. Это бесспорно и весьма актуально для Северо-Запада России. Добиться этого можно разными способами, например, с помощью теплоизоляции. Вообще, одним из самых важных показателей строительного материала считается его способность сохранять тепло. Кирпич по этому показателю сильно уступает, например, дереву: теплопроводность у него больше, поэтому строители вынуждены делать стены из кирпича толще. Но есть и другой способ – использовать специальные теплоизоляционные материалы.
Так, слой стекловолокна толщиной 10 см заменяет по теплоизолирующей способности 400 см железобетона, 160 см кирпичной кладки, 100 см газобетона, 45 см соснового бруса. Прямо скажем, впечатляет!

Прямая выгода

Использование современных теплоизоляционных материалов позволяет значительно удешевить строительство, сократить его сроки и создать довольно легкую конструкцию. Однако самое важное тут – правильно устроить теплоизоляцию, ведь это целая наука, согласно которой следует, что универсального решения быть не может. Все зависит от конкретных условий: где расположен дом, из чего построен, какие у него конструктивные особенности и т.д.
Для каждой конструкции предписан определенный алгоритм работы согласно специфике материала. Кроме этого, существуют некоторые особенности, обусловленные климатической зоной, в которой ведется строительство: где холоднее, там теплоизоляционный слой должен быть толще. Так, например, в конструкциях наружного утепления зданий из бруса толщиной 150 мм толщина теплоизоляционного слоя минеральной ваты (марки КТ-11 TWIN от Isover) составляет для Москвы 115 мм, Санкт-Петербурга – 111 мм, Новосибирска – 148 мм. Материалы маркируются коэффициентом теплопроводности (обозначается символом λ). Чем он меньше, тем лучше. Оптимальным показателем специалисты называют цифру 0,03–0,04 Вт/мК, ниже 0,024 Вт/мК у теплоизоляционных материалов он быть просто не может, поскольку именно такой коэффициент теплопроводности имеет воздух.
Существуют, впрочем, предложения, которые учитывают среднестатистические российские условия, – это готовые решения от компаний-производителей для тех, кто строит свои дома. Что же представляют собой теплоизоляционные материалы XXI века?

Какие они бывают

Теплоизоляционные материалы классифицируют по форме, внешнему виду, структуре, исходному сырью, жесткости (относительной деформации при сжатии), теплопроводности и горючести – в общем, по многим параметрам. Но, по большому счету, можно выделить две основные группы: минеральные волокнистые (типа стекловолокна, каменной ваты) и органические пенопласты (блочные, экструдированные). У каждого из этих материалов есть свои достоинства, соответствующие сфере применения, и свои недостатки, эту сферу ограничивающие. К достоинствам минеральных материалов относятся химическая стойкость, стабильность размеров, низкое влагопоглощение и хорошие звукопоглощающие свойства. Благодаря своей структуре материал не горит – при высоких температурах он спекается, не выделяя при этом опасных для человека веществ.

На основе минерального сырья производят минераловатные маты, полужесткие и жесткие плиты, а также скорлупы, сегменты, цилиндры и другие изделия. Теплоизоляционные маты на основе минерального волокна предназначены для тепловой изоляции строительных конструкций, промышленного оборудования и трубопроводов тепловых сетей. Отечественная промышленность производит несколько видов минераловатных матов. Минераловатные прошивные маты применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов, работающих при температуре до +400°С. Изготавливают их следующим образом: слои минеральной ваты из камеры осаждения сначала подают транспортером в камеру охлаждения, где минераловатный ковер уплотняется до заданной толщины и одновременно через него просасывается холодный воздух. Охлажденный ковер затем направляют на прошивочную машину, прошивают нитями с помощью специальных игл. На этом же станке при помощи дисковых ножей осуществляют продольную разрезку ковра, после чего разрезанные на заданные размеры маты поступают на рулоноукладчик, а затем на упаковку.

Пенополистирол (он же пенопласт) производится либо традиционным для нашей страны беспрессовым методом, либо методом экструзии, разработанным более 30 лет назад. К его достоинствам следует отнести более низкую, чем у минераловатных утеплителей, теплопроводность и высокую механическую прочность, что позволяет эффективно использовать его там, где изоляция подвергается высокой механической нагрузке, а также там, где невозможно (или нецелесообразно) использовать традиционные теплоизоляционные материалы из минерального волокна. Например, для инверсионных («перевернутых») плоских крыш, внешнего утепления стен подвалов, утепления нагружаемых полов, изоляции фундаментов, защиты дорожного полотна от морозной деформации. Недостатком можно назвать его горючесть с последующим выделением вредных для человека веществ и более высокую цену, хотя подсчитать его оптимальную стоимость с учетом сроков службы и прочих характеристик достаточно сложно…

Стена в тепле

Существует несколько способов утепления фасада, которые применяются в современном строительстве в зависимости от особенностей конкретного объекта и тех задач, которые утеплитель призван решить. Производители предлагают сегодня огромный ассортимент теплоизоляционных материалов. Здесь важно понимать, что один и тот же материал может использоваться при решении разных задач, но в каждом конкретном случае нужно найти оптимальный вариант. Выбор непрост: необходимо учитывать технологические, конструктивные и эксплуатационные свойства, а каждый материал обладает своим набором этих свойств, соразмерить их со стоимостью и только после этого, взвесив все «за» и «против», принять решение. Можно, конечно, свести вопрос теплоизоляции фасада к одному тезису: идеальным материалом для этих целей является минеральная вата, что в принципе вполне соответствует действительности. Однако купить какое-то количество этого материала, обшить им дом и жить в тепле не получится. Все дело в деталях – от них зависит, будут ли изоляционные свойства того или другого материала задействованы в полной мере. Производители в зависимости от использованных строительных и отделочных материалов, их толщины и прочих свойств рекомендуют не просто теплоизоляционный материал определенной марки, а целую систему материалов и технологий, необходимых для оптимального утепления, куда входят, например, гидро- и пароизоляционные материалы, создание вентиляционного зазора и прочие тонкости.

По большому счету существует всего три способа теплоизоляции фасада. Внутри стены (так называемые многослойные конструкции), снаружи (когда теплоизоляция контактирует с воздухом – вентилируемый фасад – или не контактирует, когда теплоизоляция находится под слоем штукатурки – мокрый фасад) и изнутри. Утепление снаружи считается наиболее эффективным, к внутренней теплоизоляции прибегают в исключительных случаях, поскольку велика вероятность того, что вода начнет скапливаться на границе «холодная стена – утеплитель» или в толще стены, не говоря уже о том, что утеплитель отбирает на себя полезную площадь дома. Размещение внутри стены (многослойные конструкции) – популярное на сегодняшний день решение для строительства. Утеплитель размещается с наружной стороны стены и закрывается облицовочным кирпичом или сайдингом. Все это, безусловно, только общие принципы – готовых решений, подходящих для поточного использования в коттеджном строительстве, не существует.

Не только стены

Изолировать можно не только стены, но и коммуникации, которые подвергаются воздействию холода. Хотя здесь есть маленький нюанс. Систему холодного водоснабжения, например, важно защищать от замерзания, а вот утепление системы с горячей водой позволяет уменьшить теплопотери и оказывается полезным в любое время года. Для предотвращения столь неприятных последствий производители предлагают специальные «трубные» утеплители – минеральную вату, стекловату, пенополиуретан, вспененный синтетический каучук и т.д. У всех этих материалов своя область применения, свои преимущества и недостатки. Наиболее распространенный утеплитель, защищающий от холода и перепадов температуры, – минеральная вата. Трубопроводы изолируют минераловатными плитами с последующим покрытием алюминиевой фольгой или бумагой. Эффективность такого утепления во многом зависит от аккуратности исполнителей, а вот эстетическая ценность – крайне сомнительная.

Более прогрессивный материал – минераловатные цилиндры, благодаря которым удается значительно снизить трудоемкость изоляционных работ при очень высоком качестве исполнения. У полых цилиндров имеется надрез по всей длине, они легко защелкиваются на трубе и закрепляются либо клипсами, если цилиндр не каширован, либо алюминиевым скотчем, когда цилиндр каширован (покрыт алюминиевой фольгой). Цилиндры легко нарезать на сегменты для изоляции трубных отводов. Их используют для тепловой изоляции трубопроводов при надземной (на открытом воздухе, в подвалах, помещениях) и подземной (в каналах, тоннелях) прокладках. Температурный диапазон применения минераловатных цилиндров находится в пределах от – 180 до +600°С, то есть они подойдут для любых коммуникаций, которые используются в «домашнем» хозяйстве.

Синтетический каучук

Для изоляции так называемых «холодных» объектов (системы вентиляции и кондиционирования, холодильных установок и прочего) применяют вспененный синтетический каучук, напоминающий резину. К достоинствам этого материала можно отнести прекрасные теплоизоляционные качества, надежность в работе, полную герметичность изоляционного слоя.
При склеивании вспененного синтетического каучука происходит так называемое взаимное проникновение поверхностей – «эффект холодной сварки», поэтому клееные швы получаются крепче, чем сам материал. К недостаткам относят довольно высокую стоимость.

Пенополиэтилен

Еще один теплоизоляционный материал – пенополиэтилен – более дешевый, но область его применения ограничена его свойствами. Низкое сопротивление диффузии водяного пара не позволяет использовать его для изоляции «холодных» объектов. Пенополиэтилен плохо поддается склеиванию, а через некоторое время дает значительную усадку. Клееные соединения нередко расклеиваются в течение первого года. Избежать указанных недостатков позволяет использование теплоизоляционных труб из пенополиэтилена, которые вместе с листовыми материалами и необходимыми аксессуарами образуют единую универсальную систему изоляции любых инженерных сетей. Трубы снабжены защелкой, что особенно удобно в местах, где требуется постоянный демонтаж изоляции. Монтаж ведут путем предварительного разрезания изоляции по технологическому шву с последующим склеиванием вдоль разреза.

Теплозадача

Следует признать, что проблема эффективной теплоизоляции дома не может быть решена только благодаря использованию теплоизоляционных материалов. Возьмем, например, кирпич. Сегодня производители предлагают керамический материал с более низкой теплопроводностью, которая позволяет ограничиться одним материалом. Кроме этого, теплоизоляция дома зависит от теплоизоляции крыши, площади застекленных поверхностей, системы вентиляции, благодаря которой тепло может преспокойно покидать дом. Другими словами, чтобы сделать дом теплым, необходимо рассматривать теплоизоляцию как комплекс мер. В любом случае правильное решение – это задача профессионалов.

Источник: Стройка

описание, классификация, вид и технические характеристики

Постоянный рост тарифов на энергоносители ведет к изменениям технологии строительства. Повсюду начинают применяться энергосберегающие технологии. Причём как в новом строительстве, так и в реконструкции старого фонда.

Незаменимыми становятся специальные теплоизоляционные материалы, способные защитить дом от низких температур.

Классификация теплоизоляционных материалов

На территории Российской Федерации классификация тепловой изоляции осуществляется по ГОСТ 16381–77 «Материалы и изделия строительные теплоизоляционные». По виду нормирования можно выделить:

  • Строительные, для изоляции стен, полов и крыш.
  • Технические, утепление оборудования и трубопроводов.
  • Специальные, к ним относятся материалы, обеспечивающие изоляцию вакуумную, отражающую и прочее.

Кроме того, изоляцию принято делить по основным признакам:

  • Виду основного сырья — органика или неорганика, минеральные и производные химической промышленности.

  • Структуре — применяются такие понятия, как волокнистость, ячеистость, зернистость.

  • Форме — рыхлые, плоские, фасонные, шнуровые.

  • Горючести — по ГОСТ 30244–94 , выделяется 3 класса. Негорючие — НГ, слабогорючие Г1 с температурой горения не выше 135оС, умеренно горючие Г2 с температурой до 235оС. Появление капель расплава не допускается. В некоторых случая разрешено использовать горючие материалы Г4.

Основные технические характеристики

Современные теплоизоляционные материалы принято оценивать по ряду технических характеристик:

  • Коэффициент теплопроводности. Чем ниже этот показатель, тем лучше материал сохраняет тепло.

  • Пористость описывает структуру материала и влияет почти на все другие характеристики.

  • Паропроницаемость. Чем выше его значение, тем комфортнее атмосфера в помещении. Низкая паропроницаемость полезна в основном при отделке парилок.

  • Водопоглощение, способность удерживать влагу. Чтобы повысить способность отталкивать воду, добавляются специальные вещества. Чем выше влажность, тем выше коэффициент теплопроводности.

  • Биостойкость характеризует возможность противостоять развитию микроорганизмов, грибков и заселению насекомыми.

  • Огнестойкость. Основная характеристика, обеспечивающая безопасное использование теплоизоляции.

  • Прочность. Утеплитель не должен нести нагрузку, но при транспортировке и монтаже он не должен разваливаться.

  • Удельная теплоёмкость. Современные технологии строительства не предусматривают аккумулирования тепла в утеплителе. Главное, чтобы он имел низкую теплопроводность.

  • Морозостойкость. Показатель, влияющий на долговечность материала.

Современные теплоизоляционные материалы

Современная промышленность выпускает самые разнообразные виды теплоизоляционных материалов. Ориентироваться во всем их многообразии непросто. При промышленном домостроении необходимый материал закладывается в проект. А вот для частного строительства и при текущем ремонте важно иметь представление, какой теплоизоляцией можно пользоваться:

Плиты из пенопласта

Один из самых распространённых, эффективных и дешёвых материалов. Этому способствовала простота монтажа и универсальность. Применяются для утепления стен, фасадов, кровли, пола и во многих других случаях. Потребительские качества —

  1. Эксплуатируются в температурном диапазоне от -60 до +80оС.

  2. Имеют низкую теплопроводность. По возможности сохранять тепло 50 мм эти плиты заменяют 900 мм кирпича или 200 мм дерева.
  3. Пенопласт, имея закрытую структуру ячеек, почти не впитывает жидкость. С успехом используется в подвалах, где возможен прямой контакт с водой.
  4. Неплохо поглощают шум. Но при высоких ударных звуковых воздействиях не очень эффективны.
  5. Устойчивы к воздействию химически активных сред.
  6. Имеют хорошую биостойкость. Правда, грызуны любят в них селиться. На это стоит обращать внимание при использовании.
  7. Материал изготовления экологически безопасен.
  8. При установке следует быть осторожным, материал будет гореть при прямом воздействии пламени. Правда, самостоятельно быстро гаснет. Под кратковременным воздействием высоких температур деформируется и теряет свои свойства.

Утеплитель из пеноплекса

Старший брат пенопласта. За счёт других технологий изготовления имеет мелкоячеистую структуру, что придаёт ему ряд замечательных качеств.

  1. Дом с таким материалом всегда будет тёплым.
  2. Прочность. Обрабатывается не сложнее пенопласта, но существенно прочнее. Не деформируется при хранении.
  3. Хорошая биостойкость. Его не любят даже грызуны.
  4. Экологически безопасен.
  5. Обладает низкой паропроницаемостью. Это накладывает некоторую осторожность при его использовании в жилых помещениях. Следует следить, чтобы не создать парникового эффекта в комнатах. Вторая опасность — точка росы может оказаться на внутренней части стены. Это приводит к появлению влаги на поверхности и угрозе грибкового заражения.
  6. Эксплуатируется не менее 50 лет.

Минеральная стекловата

Минеральный утеплитель, хорошо зарекомендовавший себя за долгие годы применения. Производится из песка и стеклянного вторсырья. Выпускается в виде рулонов или матов. Существенные характеристики этого утеплителя:

  1. Материал хрупкий, и при монтаже образуется большое количество мелких частиц, которые, попадая на тело, вызывают раздражение.
  2. Теплопроводность уступает ряду современных аналогичных материалов.
  3. Транспортировка такого материала не вызывает затруднений. Этому способствует малый вес и компактная упаковка.
  4. Монтаж на вертикальных стенах более сложный, чем у пенопласта или пеноплекса. При утеплении горизонтальных поверхностей или имеющих сложную архитектурную форму, наоборот, более удобный.
  5. Экологически безопасный.
  6. Грызуны ненавидят стекловату.
  7. Относится к негорючим материалам.
  8. Обеспечивает качественную звукоизоляцию.
  9. Низкая цена — основное конкурентное преимущество.

Доменная шлаковата

Исходным сырьём для её производства служит доменный шлак. Цена такого утеплителя очень низкая, но его технические характеристики желают лучшего.

  1. Материал боится влаги и к тому же способен окислять металлические детали.
  2. При монтаже, попадая на кожу, может вызывать раздражение.
  3. Утеплитель не любит частых и резких перепадов температуры.
  4. Низкая виброустойчивость.
  5. Возможно выделение фенолформальдегида.
  6. В защиту утеплителя, кроме низкой цены, могут послужить — хорошая теплоизоляционная способность, высокий коэффициент звукопоглощения, простота монтажа и долговечность.

Роквул или каменная вата

Так же, как и стекловата, относится к минеральным материалам. Иногда её называют базальтовой или каменной ватой.

  1. По размеру волокон напоминает минеральную вату, но при монтаже не вызывает раздражения.
  2. Хорошо держит тепло.
  3. Её применение экологически безопасно.
  4. Высокая морозоустойчивость. Способна выдерживать большое количество резких перепадов температуры.
  5. Негорючая, под воздействием огня будет только плавиться.
  6. Имеет хорошую паропроницаемость. Не нарушает циркуляцию воздуха в помещении.
  7. Вызывает некоторое неудобство при укладке на вертикальные стены, но сложность монтажа не столь существенна, чтобы помешать использованию роквула.
  8. Хороший звукоизолятор.
  9. Не подвергается воздействию химически активных веществ. Не вызывает химических реакций с предметами соприкосновения.
  10. Биологически нейтральная. Гниение и заражение грибком ей не свойственно. Грызуны тоже её не любят.
  11. С точки зрения применения, как утеплитель — почти идеальный материал, но имеет высокую стоимость.

Эковата из целлюлозы

Исходным сырьём для этого материала служат отходы целлюлозы — бумага, картон и прочее.

  1. Одна из основных задач, которую приходится решать производителям, это борьба за пожаробезопасность. Целлюлоза легко воспламеняется, и требуется добавление большого количества антисептиков и мощный антипирен, чтобы обеспечить качественные показатели пожаробезопасности.
  2. Большим недостатком является её свойство со временем оседать. При закладке объем обычно увеличивают на 20% от требуемого.
  3. Боится влаги. Следует предусматривать конструкции, в которых она будет отдавать влагу во внешнюю среду.
  4. При монтаже требуется специальное оборудование, равномерно закачивающее утеплитель во влажном состоянии.
  5. Используется только при каркасном монтаже.
  6. Имеет определённые ограничения по пожарной безопасности.
  7. При этом цена настолько низкая, что даже неудобство монтажа сохраняет её привлекательной.
  8. Экологически безопасная.
  9. Один из немногих бесшовных утеплителей, не образует мостика холода.
  10. Отличный звукоизолятор.

Пенополиуретановый утеплитель

Жидкий состав из полиэфира и воды с добавлением эмульгаторов и различных активных реагентов под влиянием катализатора образует качественный пенообразный утеплитель. Наносится методом распыления.

  1. К сильным сторонам можно отнести возможность нанесения на любые самые сложные поверхности.
  2. Низкая теплопроводность.
  3. Не имеет мостиков холода.
  4. Устойчив к воздействию внешней среды в виде температурных перепадов, влаге, гниению и прочее. Единственное, чего боится этот утеплитель — прямого воздействия ультрафиолетового солнечного света.
  5. Абсолютно безопасен для человека.
  6. Химически нейтрален и не вступает во взаимодействие с металлическими поверхностями.

Рефлекторные материалы

Рефлекторные виды теплоизоляции. Ранее приводились примеры удерживающей теплоизоляции. Кроме того, в современном строительстве используют теплоизоляцию, действующую по принципу отражателей.

Такой материал сделан по принципу слоёного пирога — в середине находится пенополиэтилен, по краям фольга. Материал хорошо отражает тепловые волны. Достаточно небольшой толщины, чтобы добиться поразительного эффекта теплозащиты. Вода, пар, температурные перепады, ультрафиолет и атмосферные осадки такому утеплителю не страшны. Единственный недостаток — отделанные им помещения должны иметь принудительную вентиляцию.

Благодаря своим качествам он получил самое широкое распространение. Существует большое количество разновидностей, среди которых можно отметить различные типы:

  • А, имеет один слой фольги и утеплитель. В основном применяется совместно с другими теплоудерживающими материалами.
  • В, классический трёхслойный пирог — «фольга» — «утеплитель» — «фольга». При толщине от 2 до 10 мм может заменить многие виды теплоудерживающих утеплителей. Иногда для удобства монтажа на одну сторону наносится клеевой слой.
  • ALP, одна из сторон состоит из утолщённого слоя фольги, покрытой полиэтиленовой плёнкой. Применяется для утепления помещений, подвергающихся воздействию химически агрессивных сред.
  • R и M, имеют один слой пенополиэтилена с рельефной поверхностью, покрытый слоем фольги. Популярен для утепления зданий всех типов.
  • Для того чтобы утеплённое помещение могло дышать, используют перфорированный Пенофол.

Сравнительный анализ

Сравнивая различные утеплители, убеждаемся, что идеального материала не существует. Каждый вид теплоизоляционного материала стоит применять при изучении конкретных условий:

  • При утеплении стен стоит избегать мостиков холода, важно, чтобы утеплитель плотно прилегал к стене. Для этих целей отлично подходит минеральная вата. Для слоёных пирогов хорошо зарекомендовали различные пенопласты.
  • Работая с кровлей, следует особое внимание обратить на пожаробезопасность материала. Не менее важно уменьшить паро — и водопроницаемость. При этом материал не должен впитывать влагу. Различные части кровли, скорее всего, придётся утеплять по-разному. Выделяются такие зоны, как плита перекрытия, теплоизоляция крыши, пароизоляция, гидроизоляция.
  • Утепление полов несколько проще. На основание можно просто положить слой минеральной ваты, ведь она все равно не будет подвергаться нагрузкам.
  • Есть свои особенности при утеплении сауны и трубопроводов. В этом случае отлично зарекомендовали себя рефлекторные материалы.
  • Если в доме есть хозяйственные постройки для содержания животных, то при их утеплении есть свои особенности. Не каждый материал выдержит длительное воздействие мочевины и фекалий.

В целом торговля предлагает широкий ассортимент теплоизоляционного материала под любые потребности. Правильно утеплённый дом будет экономить энергию на обогрев, а летом — на охлаждение, и всегда в нём уютно жить.

5 Наиболее распространенные теплоизоляционные материалы

Сегодня на рынке доступно множество дешевых и распространенных изоляционных материалов. Многие из них существуют уже довольно давно. У каждого из этих изоляционных материалов есть свои плюсы и минусы. В результате, решая, какой изоляционный материал вам следует использовать, вы должны знать, какой материал лучше всего подойдет в вашей ситуации. Мы рассмотрели такие различия, как R-ценность, цена, воздействие на окружающую среду, воспламеняемость, звукоизоляцию и другие факторы, указанные ниже.Вот 5 наиболее распространенных типов изоляционных материалов:

Изоляционный материал Цена / кв. Ft. R-Value / дюйм Экологичность? Легковоспламеняющийся? Примечания
Стекловолокно $ R-3.1 Да Нет Не впитывает воду
Минеральная вата $$ R-3.1 Да Не плавится и не поддерживает горение
Целлюлоза $$ R-3.7 Да Да Содержит наибольшее количество переработанных материалов
Пенополиуретан $$$ R-6.3 Нет Да Превосходный звукоизолятор
Полистирол (EPS) $ R-4 Нет Да Трудно использовать вокруг дефектов

1. Стекловолокно

Стекловолоконная изоляция.

Стекловолокно — наиболее распространенная изоляция, используемая в наше время. Стекловолокно способно минимизировать теплопередачу благодаря тому, как оно изготовлено, эффективно вплетая тонкие пряди стекла в изоляционный материал. Главный недостаток стекловолокна — опасность обращения с ним. Поскольку стекловолокно состоит из тонко сплетенного кремния, образуется стеклянный порошок и крошечные осколки стекла. Это может привести к повреждению глаз, легких и даже кожи, если не надето соответствующее защитное снаряжение. Тем не менее, при использовании надлежащих средств защиты установка стекловолокна может быть выполнена без происшествий.

Стекловолокно — отличный негорючий изоляционный материал со значением R от R-2,9 до R-3,8 на дюйм. Если вы ищете дешевую изоляцию, это определенно лучший вариант, хотя ее установка требует мер предосторожности. Обязательно используйте защитные очки, маски и перчатки при работе с этим продуктом.

2. Минеральная вата

Минеральная вата.

Минеральная вата фактически относится к нескольким различным типам изоляции. Во-первых, это может относиться к стекловате, которая представляет собой стекловолокно, произведенное из переработанного стекла.Во-вторых, это может относиться к минеральной вате, которая является типом утеплителя из базальта. Наконец, это может относиться к шлаковой вате, которая производится из шлака сталелитейных заводов. Большая часть минеральной ваты в Соединенных Штатах на самом деле является шлаковой ватой.

Минеральную вату можно купить в войлоках или в виде сыпучего материала. Большинство минеральной ваты не имеют добавок, которые делают ее огнестойкой, что делает ее непригодной для использования в условиях сильной жары. Однако он не горюч. При использовании в сочетании с другими, более огнестойкими формами изоляции, минеральная вата определенно может быть эффективным способом изоляции больших площадей.Минеральная вата имеет R-ценность от R-2,8 до R-3,5.

3. Целлюлоза

Целлюлозный изоляционный материал.

Целлюлозный утеплитель, пожалуй, один из самых экологически чистых видов утеплителя. Целлюлоза производится из переработанного картона, бумаги и других подобных материалов и поставляется в сыпучем виде. Целлюлоза имеет значение R от R-3,1 до R-3,7. Некоторые недавние исследования целлюлозы показали, что это может быть отличный продукт для минимизации ущерба от огня. Из-за компактности материала целлюлоза практически не содержит кислорода.Отсутствие кислорода в материале помогает свести к минимуму ущерб, который может вызвать пожар.

Таким образом, целлюлоза является не только одной из самых экологически чистых форм изоляции, но и одной из самых огнестойких форм изоляции. Однако у этого материала есть и недостатки, например, аллергия на газетную пыль. Кроме того, найти специалистов, умеющих использовать этот тип изоляции, относительно сложно по сравнению, скажем, со стекловолокном.3). Они имеют R-значение приблизительно R-6,3 на дюйм толщины. Существуют также пены низкой плотности, которые можно распылять на участки, не имеющие теплоизоляции. Эти типы полиуретановой изоляции обычно имеют рейтинг R-3,6 на дюйм толщины. Еще одно преимущество утеплителя этого типа — его огнестойкость.

5. Полистирол

Полистирол (пенополистирол).

Полистирол — это водостойкий термопластичный пенопласт, который является отличным звуко- и температурным изоляционным материалом.Он бывает двух типов: вспененный (EPS) и экструдированный (XEPS), также известный как пенополистирол. Эти два типа различаются по производительности и стоимости. Более дорогой XEPS имеет R-значение R-5,5, а EPS — R-4. Утеплитель из полистирола имеет уникально гладкую поверхность, которой нет ни в одном другом изоляционном материале.

Обычно пену создают или разрезают на блоки, идеально подходящие для утепления стен. Пена легковоспламеняющаяся, и ее необходимо покрыть огнестойким химическим веществом под названием гексабромциклододекан (ГБЦД). ГБЦД недавно подвергся критике из-за рисков для здоровья и окружающей среды, связанных с его использованием.

Другие распространенные изоляционные материалы

Хотя перечисленные выше элементы являются наиболее распространенными изоляционными материалами, они используются не только. В последнее время такие материалы, как аэрогель (используемый НАСА для изготовления термостойких плиток, способных выдерживать нагрев до примерно 2000 градусов по Фаренгейту с небольшой теплопередачей или без нее), стали доступными и доступными. В частности, это Pyrogel XT. Пирогель — одна из самых эффективных промышленных изоляционных материалов в мире.Его необходимая толщина на 50% — 80% меньше, чем у других изоляционных материалов. Хотя пирогель немного дороже, чем некоторые другие изоляционные материалы, он все чаще используется для конкретных целей.

Асбест.

Другими не упомянутыми изоляционными материалами являются натуральные волокна, такие как конопля, овечья шерсть, хлопок и солома. Полиизоцианурат, как и полиуретан, представляет собой термореактивный пластик с закрытыми ячейками с высоким значением R, что делает его также популярным в качестве изолятора.Некоторые опасные для здоровья материалы, которые использовались в прошлом в качестве изоляции, а теперь запрещены, недоступны или используются редко, — это вермикулит, перлит и карбамидоформальдегид. Эти материалы имеют репутацию содержащих формальдегид или асбест, что существенно исключило их из списка обычно используемых изоляционных материалов. .

Доступно множество форм изоляции, каждая со своими собственными свойствами. Только тщательно изучив каждый вид, вы сможете определить, какой из них подходит именно вам.Вкратце:

  • Аэрогель более дорогой, но определенно лучший тип изоляции.
  • Стекловолокно дешевое, но требует осторожного обращения.
  • Минеральная вата эффективна, но не огнестойка.
  • Целлюлоза огнестойкая, экологически чистая и эффективная, но ее трудно применять.
  • Полиуретан — это хороший изоляционный продукт, хотя и не особенно экологичный.
  • Полистирол — это разнообразный изоляционный материал, но его безопасность остается предметом споров.

Связанные сообщения:

Разница между горячими и холодными изоляционными материалами

Рейтинги изоляции: расчет R-фактора, K-фактора и C-фактора

5 распространенных теплоизоляционных материалов

Прежде чем решить, какой изоляционный материал, по вашему мнению, подходит именно вам, необходимо учесть несколько моментов. Каковы R-ценность, цена, звукоизоляционные свойства и воздействие на окружающую среду? Вот список из 5 наиболее часто используемых изоляционных материалов и того, что они могут для вас сделать.

Минеральная вата
Минеральная вата покрывает довольно много типов изоляции. Это может относиться либо к стекловате, которая представляет собой стекловолокно, произведенное из переработанного стекла, либо к минеральной вате, которая является типом изоляции, сделанной из базальта. Минеральную вату можно купить в ватном или сыпучем виде. Большинство минеральной ваты не имеют добавок, которые делают ее огнестойкой, что делает ее непригодной для использования в условиях сильной жары. Минеральная вата имеет R-значение от R-2.8 к R-3.5.

Стекловолокно
Стекловолокно — чрезвычайно популярный изоляционный материал. Одно из ключевых преимуществ — ценность. Изоляция из стекловолокна имеет более низкую установленную цену, чем многие другие типы изоляционных материалов, и для эквивалентных характеристик R-Value (то есть термического сопротивления), как правило, является наиболее экономичным вариантом по сравнению с системами изоляции из целлюлозы или напыляемой пены. Стекловолокно способно минимизировать теплопередачу благодаря тому, как оно изготовлено, эффективно вплетая тонкие пряди стекла в изоляционный материал.При установке стекловолокна необходимо надевать необходимое защитное оборудование, так как образуется стеклянный порошок и крошечные осколки стекла, которые потенциально могут вызвать повреждение глаз, легких и кожи. Стекловолокно — превосходный негорючий изоляционный материал со значением R в диапазоне от R-2,9 до R-3,8 на дюйм
Полистирол
Полистирол — это водостойкая термопластичная пена, которая является отличным звуко- и температурным изоляционным материалом. Он бывает двух типов: вспененный (EPS) и экструдированный (XEPS), также известный как пенополистирол.Более дорогой XEPS имеет R-значение R-5,5, а EPS — R-4. Утеплитель из полистирола имеет уникально гладкую поверхность, которой нет ни в одном другом изоляционном материале. Он используется как в жилых, так и в коммерческих помещениях. Изоляция из полистирола очень жесткая, в отличие от своих более пушистых собратьев. Обычно пену создают или разрезают на блоки, что идеально подходит для утепления стен.

Целлюлоза
Целлюлоза — очень экологичная форма изоляции. Он на 75-85% состоит из переработанного бумажного волокна, обычно газетной бумаги, бывшей в употреблении.Остальные 15% — это антипирен, такой как борная кислота или сульфат аммония. Из-за компактности материала целлюлоза практически не содержит кислорода. Отсутствие кислорода в материале помогает свести к минимуму ущерб, который может вызвать пожар. Таким образом, целлюлоза, возможно, не только одна из самых экологически чистых форм изоляции, но также одна из самых огнестойких форм изоляции. Целлюлоза имеет значение R от R-3,1 до R-3,7.
Пенополиуретан
Пенополиуретан (SPF) для распыления получают путем смешивания и реакции химических веществ с образованием пены.Смешивающиеся и вступающие в реакцию материалы реагируют очень быстро, расширяясь при контакте, образуя пену, которая изолирует, герметизирует воздух и создает барьер для влаги. Они относительно легкие, весят примерно два фунта на кубический фут и имеют R-значение примерно R-6,3 на дюйм толщины.

Для получения дополнительной информации о теплоизоляции посетите наш центр продуктов

Добавить в доску проекта

Выберите из существующих досок проектов ниже:

Или Создайте новую доску проекта:

Товар добавлен на доску проекта.Перейдите в Моя учетная запись, чтобы просмотреть свои проекты.

Добавить в доску проекта

Выберите из существующих досок проектов ниже:

Или Создайте новую доску проекта:

Товар добавлен на доску проекта. Перейдите в Моя учетная запись, чтобы просмотреть свои проекты.


Материалы и методы теплоизоляции зданий

🕑 Время чтения: 1 минута

Что такое теплоизоляция зданий?

В общем, люди, живущие в жарких регионах, хотят сделать свою внутреннюю атмосферу очень прохладной, так же как люди, живущие в холодных регионах, хотят более теплой атмосферы внутри.Но мы знаем, что передача тепла происходит из более горячих областей в более холодные. В результате происходит потеря тепла. Чтобы преодолеть эту потерю в зданиях, предусмотрена теплоизоляция для поддержания необходимой температуры внутри здания. Цель теплоизоляции — минимизировать теплопередачу между внешней и внутренней частью здания.

Материалы и методы теплоизоляции зданий

На рынке доступны следующие виды теплоизоляционных материалов:
  1. Изоляция плит или блоков
  2. Изоляционное одеяло
  3. Сыпучая изоляция
  4. Изоляционные материалы летучей мыши
  5. Плиты изоляционные
  6. Светоотражающие листовые материалы
  7. Легкие материалы

1.Изоляция плит или блоков

Блоки изготавливаются из минеральной ваты, пробковой доски, пеностекла, пористой резины или опилок и т. Д. Они крепятся к стенам и крыше для предотвращения потери тепла и поддержания необходимой температуры. Эти доски доступны размером 60 см x 120 см (или больше) с толщиной 2,5 см.

2. Изоляция одеяла

Изоляционные материалы для одеял доступны в форме одеял или в виде рулонов бумаги, которые накидываются прямо на стену или потолок. Они гибкие и имеют толщину от 12 до 80 мм.эти одеяла сделаны из шерсти животных, хлопка или древесных волокон и т. д.

3. Неплотный утеплитель

В стене предусмотрено место для стоек, где должны быть предусмотрены окна и двери. В этом подрамнике стены предусмотрена неплотная засыпка изоляционными материалами. Материалы: минеральная вата, древесноволокнистая вата, целлюлоза и т. Д.

4. Изоляционные материалы летучей мыши

Они также доступны в виде рулонов полотна, но изолирующие рулоны летучей мыши имеют большую толщину, чем материалы типа полотна. Они также распространяются по стенам или потолку.

5. Изоляционные плиты

Изоляционные плиты изготавливаются из древесной массы, тростника или других материалов. Эти целлюлозы сильно прессуются с некоторым напряжением при подходящей температуре, чтобы сделать их твердыми плитами. Они доступны на рынке во многих размерах. И они обычно предусмотрены как для внутренней облицовки стен, так и для перегородок.

6. Светоотражающие листовые материалы

Светоотражающие листовые материалы, такие как алюминиевые листы, гипсовые панели, стальные листы, будут иметь большую отражательную способность и низкую излучательную способность.Итак, эти материалы обладают высокой термостойкостью. Тепло уменьшается, когда солнечная энергия ударяет и отражается. Они фиксируются снаружи конструкции, чтобы предотвратить попадание тепла в здание.

7. Легкие материалы

Использование легких заполнителей при приготовлении бетонной смеси также дает хорошие результаты в предотвращении потерь тепла. Бетон будет иметь большую термостойкость, если он будет сделан из легких заполнителей, таких как доменный шлак, вермикулит, заполнители обожженной глины и т. Д.

Другие общие методы теплоизоляции зданий

Без использования каких-либо теплоизоляционных материалов, как указано выше, мы можем получить теплоизоляцию следующими способами.
  • Затеняя крышу
  • По высоте потолка
  • Ориентация здания

8. Затенение крыши

Обеспечивая затенение крыши здания в месте, где солнце напрямую падает на здание в часы пик, мы можем уменьшить тепло за счет затенения крыши.Для притенения необходимо обеспечить точный угол наклона для предотвращения попадания солнечного света.

9. По высоте потолка

Тепло поглощается потолком и излучается вниз, в здание. Но следует отметить, что вертикальный градиент интенсивности излучения незначителен за пределами от 1 до 1,3 м. Это означает, что он может перемещаться на расстояние от 1 до 1,3 м вниз от потолка. Таким образом, установка потолка на высоте от 1 до 1,3 м от высоты человека снизит потери тепла.

10.Ориентация здания

Ориентация здания по отношению к солнцу очень важна. Таким образом, здание должно быть ориентировано таким образом, чтобы не подвергаться большим тепловым потерям.

Общие изоляционные материалы, используемые в зданиях

Изоляционные материалы поступают из различных источников, таких как минералы, растительные волокна, продукты животного происхождения и синтетические соединения. Как и во многих инженерных решениях, каждый материал имеет достоинства и недостатки, которые необходимо учитывать при выборе утеплителя для строений .

В этой статье представлен обзор основных вариантов, представленных на рынке, и того, как они работают в реальных проектах. Существуют изоляционные материалы, которые больше не используются, но могут быть найдены в старых конструкциях — одним из примеров является изоляция с содержанием асбеста, запрещенная законом.


Убедитесь, что ваше здание имеет надлежащую изоляцию, и сократите расходы на электроэнергию.


Стекловолокно

Стекловолокно — один из самых популярных изоляционных материалов, который изготавливается путем плетения тонких стеклянных нитей.Производится в основном из переработанного стекла.

Характеристики:
— Минимизирует теплопередачу
— Невоспламеняемость
— Диапазон значений R от 2,9 до 3,8 на дюйм
— Низкая стоимость
— Экологичность
— Не впитывает воду
— Может быть опасно для монтажников, которым требуется специальная защита. Мелкие частицы стекла могут повредить глаза, легкие и кожу.
— Неплотная изоляция наносится с помощью выдувной машины

Доступен в:
— Одеяла (войлоки и рулоны): стекловолокно бывает средней или высокой плотности, с более высокими значениями R, чем стандартные войлоки
— Насыпной и выдувной
— Выдув — в системе одеял (BIBS): разновидность изоляции с неплотным заполнением, которая выдувается сухим воздухом, и испытания показали более высокий уровень изоляции, чем у других типов стекловолокна
— Жесткие плиты
— Изоляция воздуховодов
— Жесткая волокнистая изоляция

Минеральная вата

Минеральная вата относится к двум типам изоляционных материалов:

  • Минеральная вата из базальта или диабаза
  • Шлаковая вата из доменного шлака сталелитейных заводов

Характеристики:
-Содержит в среднем 75% постиндустриальных переработанных материалов
-Не требует добавок, чтобы сделать его огнестойким
-Не рекомендуется в экстремальных жарких средах
-Негорючий
-R- значение в пределах от R-2.8 к R-3.5
-Экологически чистый
-Не плавится и не горюч
-Умеренная стоимость

Доступен в:
— Одеяло (ватные и рулонные)
— Сыпучие и выдувные
— Жесткая волокнистая или волокнистая изоляция

Целлюлоза

Целлюлоза производится из переработанной бумаги, в основном газет. В процессе производства бумага сначала разбивается на более мелкие кусочки, а затем превращается в волокна. Целлюлоза — одна из самых экологически чистых форм утеплителя, она доступна в версиях с сыпучим наполнением и выдуванием.

Характеристики:
-Экологически чистый
-Большая часть его содержимого перерабатывается (82-85%)
-Препятствует воздушному потоку
-Добавлен минеральный борат для обеспечения защиты от огня и насекомых
-Не требует барьера для влаги
— R-значения варьируются от R-3,1 до R-3,7
-Отличный продукт для минимизации повреждений от огня
-Из-за своей компактности он почти не содержит кислорода в пределах
-Может вызывать аллергию
-Требуются квалифицированные рабочие для установки
-умеренная стоимость

Полистирол

Полистирол — бесцветный и прозрачный термопласт.Утеплитель из полистирола доступен во многих версиях:

  • Формованный пенополистирол (MEPS), обычно используется в пенопластах и ​​в качестве мелких шариков пенопласта.
  • Пенополистирол (EPS), из маленьких пластиковых шариков, сплавленных вместе
  • Экструдированный полистирол (XPS), — это расплавленный материал, прессованный в листы, также известный как пенополистирол

Характеристики:
-Низкая стоимость, но не безвредна для окружающей среды
-Горючий, необходимо покрывать огнестойким химическим веществом
-Легкий
-Способен накапливать статическое электричество
-Трудно контролировать
-Тепловой дрейф или старение происходит с течением времени — значение R зависит от плотности: дорогой XEP имеет значение R, равное R-5.5, в то время как EPS предлагает R-4
— Водонепроницаемость
— Отличная звуко- и температурная изоляция
— Гладкая поверхность

Доступен в:
-Сыпучий заполнитель (мелкие шарики)
-Изоляция бетонных блоков и изоляционные бетонные блоки
-Изоляционные бетонные формы (ICF)
-Структурные изоляционные панели (SIP)
-Пенопласт или жесткий пенопласт

Полиуретан

Полиуретан доступен в пеноматериале с закрытыми порами и пене с открытыми порами. Пены с закрытыми ячейками обладают ячейками с высокой плотностью, заполненными газом (не содержащим ГХФУ), что позволяет пене расширяться.Пена с открытыми ячейками не такая плотная и наполнена воздухом, создавая губчатую текстуру при нанесении. Однако в некоторых разновидностях с низкой плотностью в качестве пенообразователя используется диоксид углерода.

Характеристики:
-высокая стоимость
-неэкологичная
-огнестойкая
-отличный звукоизолятор
-новые пены используют газ, не содержащий хлорфторуглеродов в качестве вспенивающего агента
-легкий
-R-значение R-6.3 на дюйм
-Содержит в ячейках газ с низкой проводимостью.
-Тепловой дрейф или старение происходит только в пенопластах с закрытыми порами в первые два года после нанесения.Чтобы замедлить тепловой дрейф, можно нанести слой фольги и пластиковых покрытий, обращенных к открытому воздушному пространству, создавая лучистый барьер.
— Распыляемая пена дешевле пенопласта и работает лучше. — Распыленная пена может расширяться быстро или медленно в зависимости от требований пользователя
— Устойчивость к диффузии водяного пара

Доступен в:
— Пенопласт или жесткий пенопласт
— Пена напыляемая и вспененная на месте
— Структурные изолированные панели (SIP)

Натуральные волокна

Многие натуральные волокна находят применение в теплоизоляции зданий.Некоторые примеры — хлопок, овечья шерсть, солома и конопля.

Хлопок доступен в войлоках и рулонах и предлагает следующие характеристики:

  • Состоит из 85% переработанного хлопка и 15% пластиковых волокон
  • Обработано боратом (антипирен и средство от насекомых)
  • Минимальные потребности в энергии для производства

Овечья шерсть также доступна в ватках и рулонах и имеет следующие характеристики:

  • Обработано боратом для защиты от вредителей, огня и плесени.
  • Удерживает воду, но многократное смачивание и высыхание снижает эффект бората

Солома используется в качестве изоляции с 1930-х годов. Он доступен в виде панелей или структурных изолированных панелей (SIP), которые являются звукопоглощающими и имеют типичную ширину от 2 до 4 дюймов.

Конопля не является распространенным изоляционным материалом в США, хотя ее R-значения сопоставимы с показателями других типов волокнистой изоляции.

Полиизоцианурат

Полиизоцианурат или полиизо — это термореактивный пластик с закрытыми порами, похожий на полиуретан.Он содержит газ с низкой проводимостью, не содержащий HCF, и его можно вспенивать на месте, что дешевле и эффективнее, чем использование пенопласта.

Polyiso испытывает термический дрейф или старение в течение первых 2 лет после изготовления, но фольга и пластмассовые покрытия могут быть применены лицом к открытому воздушному пространству. Это работает как лучистый барьер, стабилизируя R-значение

.

Полиизо выпускается в следующих формах:

  • Пенопласт или жесткий пенопласт
  • Пена напыляемая и вспененная на месте
  • Ламинированные изоляционные панели
  • Конструкционные изолированные панели (СИП)

Вяжущая пена

Как следует из названия, этот изоляционный материал изготовлен на основе цемента.Он нетоксичен и негорючий, изготовлен из минералов, добытых из морской воды. Цементная пена похожа на пенополиуретан и может быть распылена и вспенена на месте.

Фенольная пена

Фенольная пена — это еще один тип изоляции, который напыляется и вспенивается на месте. Он использует воздух в качестве пенообразователя и может давать усадку до 2% после отверждения.

Что такое изоляционные покрытия?

Облицовки — это покрытия, прикрепляемые к изоляции в процессе производства или после него.Их основные цели — защита поверхности, удержание изоляции и упрощение крепления к компонентам здания. В зависимости от типа облицовки он также может выполнять следующие функции:

  • Действует как пароизоляция
  • Огнестойкость
  • Алюминиевая фольга, в частности, также является радиационным барьером

Наиболее распространенными видами облицовки являются крафт-бумага, белая виниловая пленка и алюминиевая фольга.

Изоляционные материалы, которые больше не используются

Некоторые изоляционные материалы, которые использовались в прошлом, теперь запрещены, недоступны или не используются из-за проблем со здоровьем.Некоторые примеры — вермикулит, перлит и карбамидоформальдегид.

Вермикулит и перлит использовались для изоляции чердаков до 1950 года, но больше не используются, поскольку содержат асбест. Эти изоляционные материалы были в основном доступны в виде сыпучих материалов или гранул.

  • Для вывоза асбеста из существующих зданий требуются сертифицированные подрядчики
  • Наносились путем нагрева гранул горной породы до лопания.
  • Допускается смешивание с цементом

Мочевина-формальдегид представляет собой распыляемую пену, которая широко использовалась в 1970-х и 1980-х годах.Однако из-за неправильной установки было принято много судебных дел, связанных со здоровьем. В результате карбамидоформальдегид был запрещен в жилых домах, но до сих пор используется для кладки стен в коммерческих и промышленных зданиях.

  • В качестве пенообразователя используется сжатый воздух
  • Не расширяется при отверждении
  • УФ-отверждение на основе азота занимает больше времени
  • Водяной пар может проходить через
  • Не содержит антипиренов

Заключение

Огромное количество доступных изоляционных материалов может показаться огромным.Однако с помощью профессиональных инженерных услуг вы можете убедиться, что ваш проект имеет оптимальную изоляцию. Хорошо изолированное здание имеет более низкие расходы на отопление и охлаждение, поскольку эффективная изоляция сводит к минимуму приток тепла летом и потери тепла зимой.

Когда эффективная изоляция сочетается с высокоэффективной конструкцией систем отопления, вентиляции и кондиционирования воздуха, в вашем здании резко снижаются затраты на отопление и охлаждение. В новостройках утепление дешевле и проще, так как нет необходимости нарушать существующую конструкцию.Об этом следует помнить разработчикам, планирующим новый проект.

Теплоизоляционные материалы и их виды

Современные теплоизоляционные материалы и требования к ним, их виды и основные характеристики.

Каждое здание нуждается в теплоизоляции, чтобы обеспечить комфортное жилое пространство для людей, живущих в нем. Очень важно правильно выполнить процесс теплоизоляции частного дома, чтобы в нем не было опасных «мостиков холода», которые отогревают от вас и могут навредить вашему здоровью.В этой статье мы постараемся дать вам информацию о современных теплоизоляционных материалах , чтобы помочь вам выбрать наиболее подходящий для ваших нужд.

Что такое теплоизоляция? Этот материал должен выполнять несколько функций, и все они связаны с созданием комфортной и здоровой атмосферы в вашем жилом пространстве. Основные требования к теплоизоляционным материалам следующие:

  1. Высокие тепловые характеристики — чем лучше материал изолирует от низких температур зимой и высоких летом, тем он лучше.
  2. Небольшой вес — это обеспечит вам дешевую транспортировку, удобство в эксплуатации; не нужно будет укреплять стены, фундамент и т. д.
  3. Высокая паропроницаемость — позволяет лишней влаге из помещения и конструкции здания избежать появления грибка и плесени.
  4. Выбор отделки — материал должен быть декоративным; чем больше вариантов отделки вы сможете использовать, тем лучше.
  5. Долговечность — необходимое условие долгой работы материала.
  6. Экологически чистый — он должен быть безопасным для здоровья человека.
  7. Цена — хорошие материалы не могут быть дешевыми; не экономьте на своем здоровье.
  8. Горючесть — чем ниже показатель горючести материала, тем меньше потребуется дополнительных вложений.

Самые эффективные изоляционные материалы:

  1. Пенополистирол
  2. Пенополистирол экструдированный
  3. Базальтовая минеральная вата
  4. Укладка газобетона плотностью
  5. Рулон фольги пенофола
  6. Эковата
  7. Пеностекло

Пенополистирол

Основным преимуществом теплоизоляционных плит при работе с пенополистирольными плитами является их толщина.Этот материал подходит для любой последующей отделки без специальной подготовки. Гарантийный срок службы такой изоляции более 25 лет. Единственный его недостаток — это относительно легковоспламеняющийся материал. Не рекомендуется для деревянных домов. Он всегда защитит вас от воздействия ультрафиолета.

Пенополистирол экструдированный

Материал неплохой и недорогой. Гарантийный срок службы такой изоляции составляет более 25 лет, но на сегодняшний день испытания показали, что он составляет до 50 лет.Этот материал легко воспламеняется, поэтому необходимо будет устроить дополнительную вентиляцию. На этапе отделки возможно применение любого подходящего материала, но при нанесении краски адгезионные слои должны быть хорошо подготовлены, выполнив процесс шероховатости. Он всегда защитит вас от воздействия ультрафиолета.

Минеральная вата

Это довольно дорогой материал, поэтому неудивительно, что он обладает отличной паропроницаемостью и не все горит.С помощью этого материала создается теплоизоляция так называемого типа «одеяло». Утепление теплового одеяла выполняется с помощью волокнистых одеял. Это прочный и легкий материал, изготовленный из керамических волокон из оксида алюминия, диоксида циркония и кремнезема. S Этот материал имеет высокую плотность, что обеспечивает долговечность более 25 лет и все возможные виды отделки.

Укладка газобетона

Это сверхтолстый и тяжелый материал, но с хорошей паропроницаемостью.Это негорючий материал. Также следует отметить, что тот факт, что этот материал является конструкционным, позволит вам снизить относительное значение доли утеплителя в строительстве. Работа с газобетоном возможна со всеми видами отделки.

Рулон фольги пенофола

Рулоны термоизоляционной фольги (пенополиэтилен с наклеенной с двух сторон фольгой) обладают хорошей термостойкостью и массой. Но это очень дорого по сравнению с другими видами теплоизоляции.Утепление стен здания рулонами фольги пенофола сделает процесс еще более дорогостоящим, так как потребуются дополнительные вложения из-за затрат на дополнительные системы вентиляции и проведение мероприятий по вентиляции. Свойства этого материала (отсутствие адгезии полимерных материалов и цемента) сильно ограничивают выбор отделки и сокращают диапазон случаев его использования. Наличие фольги с обеих сторон этого изоляционного материала не влияет на термическое сопротивление стен, небольшое улучшение термического сопротивления наблюдается только в замкнутом воздушном пространстве, влияние которого измеряется в пределах математической погрешности, и такие слои в строительстве здания почти нет.Главный недостаток материала — его толщина — около 5 дюймов.

Эковата

Этот материал не дорогой и очень практичный. Этот теплоизоляционный материал изготовлен из целлюлозы, поэтому его главное преимущество сейчас очевидно — это натуральный, очень экологичный материал. Из-за неплотности и слабой несущей способности богатый выбор отделки невозможен, как в случае с рулонами термоизоляционной фольги — ее можно заливать в кирпичную кладку (создавая так называемый «колодец») или распылять на раму с помощью спецтехника.Горючесть этого материала не позволяет использовать его в массовом строительстве. Гарантийный срок службы такой изоляции составляет 10-15 лет.

Пеностекло

К достоинствам этого теплоизоляционного материала можно отнести возможность нанесения любой отделки, долговечность и горючесть. Этот материал может быть очень приятным, но он очень дорогостоящий, и вы начнете расстраиваться еще больше, когда узнаете, что потребуются дополнительные вложения затрат на вентиляционные системы.Гарантийный срок службы такой изоляции составляет 10-15 лет.

Надеемся, эта статья помогла вам, если вы искали информацию о теплоизоляционных материалах .

Теплоизоляция оболочки здания — энергоэффективность

Теплоизоляция — важная технология для снижения энергопотребления в зданиях за счет предотвращения поступления / потери тепла через оболочку здания. Теплоизоляция — это строительный материал с низкой теплопроводностью, часто менее 0.1Вт / мК. Эти материалы служат только для экономии энергии, защиты и комфорта пассажиров. Из множества форм, форм и применений теплоизоляции в этом разделе основное внимание уделяется тем, которые обычно используются для ограждающих конструкций зданий, т. Е. Полов, стен и крыши, и имеют потенциал для передачи технологий Юг-Юг. К ним относятся промышленные изоляционные материалы и применение природных элементов в качестве теплоизоляции.

Введение в теплоизоляцию

Промышленные изоляционные материалы в основном подразделяются на три группы — минеральное волокно, ячеистый пластик и продукты растительного / животного происхождения.

Минеральное волокно Продукция включает минеральную вату, шлаковату и стекловату, которые могут быть получены из переработанных отходов. Эти материалы плавятся при высоких температурах, скручиваются в волокна, а затем в них добавляется связующее, чтобы сформировать жесткие листы и изоляционные войлоки. При удалении в соответствующих условиях минеральное волокно может быть повторно использовано и переработано в конце срока его службы.

Ячеистый пластик Продукты получают из нефти и включают жесткий полиуретан, фенил, пенополистирол и экструдированный полистирол.Продукция доступна в виде сыпучих материалов, жестких листов и вспененного материала. В прошлом в производственном процессе использовались озоноразрушающие вещества, такие как ГХФУ. Однако производство перешло на использование нейтральных углеводородов. Таким образом, при закупке изоляционных материалов из ячеистого пластика важно убедиться, что указанные продукты имеют производственные процессы, в которых не используются озоноразрушающие вещества. Изделия из ячеистого пластика можно переработать, но это обременительный процесс. Продукты из ячеистого пластика больше подходят для сжигания для рекуперации энергии в конце срока их службы.

Продукты растительного / животного происхождения включают целлюлозное волокно, овечью шерсть, хлопок и лен. Эти продукты обладают низким содержанием энергии, поскольку материалы могут быть получены из возобновляемого сырья. Продукция представлена ​​в виде волокна, войлока или прессованного картона. Их производство включает химическую обработку для обеспечения соответствующих свойств, таких как огнестойкость и отсутствие заражения паразитами. Таким образом, в конце срока службы его трудно использовать для рекуперации энергии путем сжигания.

Теплоизоляция ограждающих конструкций здания — это проверенная технология, которая способствует повышению энергоэффективности зданий. В последнее время в развитии теплоизоляции наблюдаются две новые тенденции — разработка материалов с фазовым переходом (PCM) и инновационное использование необработанных природных элементов в качестве теплоизоляции.

Материалы с фазовым переходом (PCM) работают на основе принципа аккумулирования скрытой теплоты. «Когда температура повышается, температура в аккумуляторе скрытой теплоты не увеличивается, но среда переходит из одного физического состояния в другое и, таким образом, накапливает энергию.Следовательно, поглощение энергии не может быть обнаружено наощупь. Температура заметно повышается только после полного изменения фазы. Когда происходит изменение, скрытая теплота равна теплоте плавления или кристаллизации носителя. Преимущество PCM в том, что большое количество тепла или холода может храниться в небольших диапазонах температур ». (Hausladen et al., 2005).

Поскольку фазовые переходы между твердым телом и жидкостью, ПКМ (например, парафин) необходимо инкапсулировать перед использованием.ПКМ на основе парафина имеют температуру плавления от 24 до 26 ° C и в основном используются для предотвращения увеличения количества тепла в жарких погодных условиях (Hausladen et al., 2005). Инкапсулированные парафиновые ПКМ смешиваются со строительными растворами, наносимыми на ограждающие конструкции зданий. При использовании в сочетании со стратегиями ночного охлаждения PCM могут эффективно предотвращать попадание тепла через ограждающие конструкции здания. В настоящее время ПКМ находятся на стадии НИОКР и отработки. PCM являются многообещающими технологиями, потому что они легкие, простые в применении и хорошо сочетаются с традиционными методами строительства.

Вторым направлением развития теплоизоляции является инновационное использование природных материалов в качестве теплоизоляции. Примером может служить использование необработанных тюков соломы в качестве изоляции. Чтобы избежать опасности возникновения пожара, тюки соломы помещаются между огнеупорными облицовочными материалами, такими как металлическая облицовка или стеклянные панели, чтобы создать эстетический эффект, делая тюки соломы видимыми. Еще один природный элемент, используемый в качестве теплоизоляции, — воздух, имеющий теплопроводность около 0.025Вт / мК. Его применение часто находит в создании воздушного зазора в конструкции полой стены для улучшения теплоизоляционных характеристик (см. Рисунок 1). Использование воздушных зазоров недостаточно для зданий в регионах с умеренным климатом, но может быть достаточным для зданий в условиях мягкого климата.

Рис. 1: Воздушный зазор, используемый в сочетании с утепленной стеной из бревенчатого кирпича.

Стоимость технологии теплоизоляции ограждающих конструкций в развивающихся странах

В развитых и промышленно развитых странах строительные нормы и правила включают требования по обеспечению минимально приемлемых уровней изоляции для ограждающих конструкций зданий и, таким образом, предоставляют возможность для применения технологий теплоизоляции.Однако обычно этого не происходит во многих развивающихся странах, особенно в наименее развивающихся странах и отдаленных сельских районах. Таким образом, решающим фактором, ведущим к широкомасштабному внедрению теплоизоляции в этих странах, является внедрение поддерживающей политики, как стимулирующих, так и обязательных мер.

Кроме того, в упомянутом ранее процессе производства ячеистого пластика использовались озоноразрушающие вещества, такие как ГХФУ, которые перешли на использование нейтральных углеводородов.При закупке изоляционных материалов из ячеистого пластика важно убедиться, что указанные в производственном процессе продукты не связаны с озоноразрушающими веществами. Более эффективно, если действуют местные правила, запрещающие продукты, производственные процессы которых связаны с озоноразрушающими веществами.

Требования к применению большинства теплоизоляционных материалов для ограждающих конструкций зданий включают соответствующий детальный проект, хорошее качество изготовления и соответствующий выбор продуктов, методы обращения и установки.Следовательно, требуется наращивание потенциала, например семинары для обучения специалистов по проектированию и строительных рабочих в этих областях.

Теплоизоляционные материалы для ограждающих конструкций зданий используются в сочетании с конструктивными деталями полов, стен и крыш / потолков для новых строительных конструкций и для модернизации существующих зданий.

В отличие от простого процесса включения теплоизоляции оболочки здания в новые здания, при модернизации существующих зданий очень важно определить подходящие места для теплоизоляции.Ключевые местоположения:

  1. Крыша: для изоляции жесткими досками или стеганым одеялом между стропилами или балками или под ними.
  2. Подкровельное пространство (в регионах с умеренным климатом): для покрытия потолка жесткими гипсокартонными плитами с изоляцией.
  3. Стены из сплошной кирпичной кладки или бетона: для изоляции снаружи жесткими плитами, покрытыми водостойкими облицовочными материалами; и обеспечить внутреннюю облицовку гипсокартонными плитами с жесткой изоляцией.
  4. Стенки полостей: для инъекции рыхлых волокон; и обеспечить внутреннюю облицовку гипсокартонными плитами с жесткой изоляцией.
  5. Бетонный пол (в регионах с умеренным климатом): утеплить жесткой доской под новую стяжку и отделку пола.
  6. Фальшпол (в регионах с умеренным климатом): для изоляции жесткой доской или стеганым одеялом между балками пола или под ними (XCO2, 2002).

Как при новом строительстве, так и при модернизации существующих зданий важно понимать и обеспечивать условия для теплоизоляционных изделий, чтобы они могли достичь ожидаемых характеристик в течение их срока службы.

  1. Продукты из минерального волокна доступны в войлоках, рулонах и насыпью. Они могут применяться как в строительстве, так и вне строительной площадки. Благодаря открытой структуре изделия воздухо- и паропроницаемы, что может снизить их теплоизоляционные характеристики. Следовательно, необходимо обеспечить основу из фольги и хорошее качество изготовления, чтобы предотвратить воздействие пара и воды на продукт. Это часто может быть результатом конденсации, возникающей между панелью / слоем внешней стены и слоем изоляции, и / или протекающими водопроводными трубами, встроенными внутри стены.
  2. Изделия из ячеистого пластика считаются долговечными материалами. Продукты не подвержены гниению или заражению паразитами. Помимо жестких листов, изделия из ячеистого пластика могут быть в виде пенопласта, который наносится на ограждающую конструкцию здания путем распыления. Изоляция из аэрозольной пены наносится в жидком виде с помощью шланга и пистолета-распылителя. Это комбинация двух веществ, которые смешиваются при контакте и через несколько секунд превращаются в густую пену. Изоляцию можно распылять после того, как будут выполнены электрические и водопроводные работы, так как она расширяется во время отверждения, герметизируя все зазоры.
  3. Продукты растительного / животного происхождения наиболее подвержены заражению паразитами. Хотя химическая обработка часто проводится в производственном процессе, химическая обработка может выщелачивать, если продукты влажные или подвергаются воздействию условий высокой влажности. Профилактические меры включают обеспечение основы, хорошее качество изготовления и недопущение нанесения продуктов во влажных и влажных условиях.

Хорошая детализация и качество изготовления для предотвращения утечки воздуха имеют решающее значение для всех типов теплоизоляции ограждающих конструкций здания.При установке изоляционных материалов на электрические розетки и проводке внутри стен важно уделять дополнительное внимание деталям, вырезая и придавая изоляционным материалам форму, чтобы они плотно прилегали к каркасу стены.

Кроме того, в качестве общей меры контроля качества строительства в экстремальных климатических условиях рекомендуется вводить в эксплуатацию ограждающую конструкцию здания с уделением внимания теплоизоляции, особенно в крупных зданиях.

Текущее состояние и будущий рыночный потенциал теплоизоляции ограждающих конструкций зданий

Теплоизоляция ограждающих конструкций зданий широко используются в регионах с умеренным климатом.Во многих развитых и промышленно развитых странах теплоизоляция является нормативным требованием для целей энергоэффективности и здоровья жителей, что обеспечивает довольно постоянный рынок для производителей теплоизоляции. Рынок строительных теплоизоляционных материалов не так велик в жарких и влажных тропических регионах, где естественная вентиляция, а не воздухонепроницаемость, является более подходящей стратегией для обеспечения теплового комфорта. В этом контексте использование теплоизоляции не является обширным, и использование воздушного зазора в полой стене фасада, выходящего на запад, для предотвращения попадания тепла от жаркого полуденного солнца оказывается достаточным.Однако изоляция крыши применима во всех климатических регионах, включая жаркий тропический колокол. В странах Карибского бассейна, например, изоляция крыши считается «проверенным решением по сбережению энергии», а минеральное (стеклянное) волокно, как правило, является свинцовым продуктом.

Как теплоизоляция ограждающих конструкций здания может способствовать социально-экономическому развитию и охране окружающей среды в развивающихся странах

Основной вклад теплоизоляции ограждающих конструкций здания — обеспечение теплового комфорта для жителей.Это поддерживает здоровую среду обитания и повышает производительность на рабочих местах.

Теплоизоляция снижает нежелательные тепловые потери или попадание тепла через ограждающую конструкцию здания. Это, в свою очередь, снижает потребность в энергии для охлаждения и обогрева зданий и, таким образом, является мерой по снижению выбросов парниковых газов.

Масштабное внедрение теплоизоляции также оказалось экономическим стимулом. В одном только европейском регионе насчитывалось около 12 000 компаний с общей численностью сотрудников 400 000 человек, работающих в потоке создания ценности, полученной из продуктов из ячеистого пластика (ISOPA & Polyurethanes, 2009).У развивающихся стран есть широкие возможности для бизнеса и создания рабочих мест, если будут реализованы успешные программы передачи по линии Север-Юг и Юг-Юг для теплоизоляции ограждающих конструкций зданий.

Финансовые требования и затраты на теплоизоляцию ограждающих конструкций

Финансовые требования к теплоизоляции ограждающих конструкций здания включают стоимость изделий и их установку.

Затраты на изделие и установку теплоизоляции рассчитываются на единицу площади и на единицу значения теплопроводности.Стоимость установки сыпучих материалов ниже, чем у других изоляционных материалов, поскольку они просты в установке. Однако из-за отсутствия дополнительной защиты от влаги и заражения паразитами необходимо учитывать долгосрочную долговечность.

Расходы на техническое обслуживание теплоизоляционных изделий низкие и даже не требуются для изделий из ячеистого пластика. В случае минерального волокна и изоляции растительного / животного происхождения, если продукты не работают должным образом из-за повышенной теплопроводности, вызванной влажностью или заражением паразитами, требуется замена.

Для зданий с естественной вентиляцией в мягких климатических условиях изоляция крыши и изоляция стен, выходящих на запад, являются наиболее эффективными методами предотвращения попадания тепла через ограждающую конструкцию здания и, таким образом, обеспечивают лучшую окупаемость инвестиций по сравнению с изоляцией всей оболочки здания.

Использование тюков соломы и воздушных зазоров (в стенках полости) требует незначительных затрат, за исключением толщины стенки. Однако долгосрочная производительность — это проблема, на которую следует обратить внимание.В развитых и промышленно развитых странах продукты из минерального волокна конкурентоспособны по стоимости по сравнению с ячеистым пластиком и продуктами растительного / животного происхождения. Однако в развивающихся странах и сельских районах продукты растительного / животного происхождения более рентабельны из-за большей доступности и доступности этого сырья. Изделия из ячеистого пластика жесткие, стабильные и хорошо зарекомендовали себя в долгосрочной перспективе. Они требуют наименьших затрат на обслуживание.

Список литературы

  • Хаусладен Г., Салдана М., Лидл П. и Сагер К. (2005). Климатический дизайн: решения для зданий, которые могут сделать больше с меньшими технологиями. Мюнхен: Бирхаузер.
  • ISOPA и полиуретаны (2009 г.). Информационный бюллетень: Энергосбережение в зданиях за счет теплоизоляции полиуретаном. [Онлайн]: [[1]]
  • XCO2 (2002). Изоляция для устойчивого развития — Руководство. [Онлайн]: [[2]]

CEEOL — Сведения о статье

Автор (ы): Алена Тажикова, Зузана Струкова
Предмет (ы): ИКТ Информационные и коммуникационные технологии
Издатель: UIKTEN — Ассоциация информационных и коммуникационных технологий, образования и науки
Ключевые слова: Теплоизоляция; система теплоизоляции; фасад; ETICS; стоимость строительства; сроки строительства, методы принятия решений;

Резюме / Реферат: На тепловую защиту и общие энергетические характеристики здания влияет постепенное развитие технических и энергетических требований.Это должно быть адаптировано к применению новых теплоизоляционных материалов и систем в строительстве. В статье рассматриваются нетрадиционные теплоизоляционные материалы и системы, которые чаще всего применяются в зданиях, включенных в современные методы строительства (MMC). Пять типов теплоизоляционных систем или материалов — Baumit openTherm, Knauf SMARTwall N C1, SATSYS ThermoUm, Knauf TP 435 B и Airgel Spaceloft — оцениваются и сравниваются друг с другом на примере семейного дома. На основе сравнения систем теплоизоляции с помощью многокритериального метода принятия решения PATTERN определяется степень значимости систем с точки зрения стоимости строительства, времени строительства, теплопроводности, диффузионного сопротивления и огнестойкости.

Журнал: Журнал ТЕМ

  • Год выпуска: 7/2018
  • Номер выпуска: 4
  • Диапазон страниц: 769-774
  • Количество страниц: 6
  • Язык: Английский
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *